What Is Heat? Can Heat Capacities Be Negative?

In the absence of work, the exchange of heat of a sample of matter corresponds to the change of its internal energy, given by the kinetic energy of random translational motion of all its constituent atoms or molecules relative to the center of mass of the sample, plus the excitation of quantum state...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Entropy (Basel, Switzerland) Ročník 25; číslo 3; s. 530
Hlavný autor: Roduner, Emil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 19.03.2023
MDPI
Predmet:
ISSN:1099-4300, 1099-4300
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the absence of work, the exchange of heat of a sample of matter corresponds to the change of its internal energy, given by the kinetic energy of random translational motion of all its constituent atoms or molecules relative to the center of mass of the sample, plus the excitation of quantum states, such as vibration and rotation, and the energy of electrons in excess to their ground state. If the sample of matter is equilibrated it is described by Boltzmann’s statistical thermodynamics and characterized by a temperature T. Monotonic motion such as that of the stars of an expanding universe is work against gravity and represents the exchange of kinetic and potential energy, as described by the virial theorem, but not an exchange of heat. Heat and work are two distinct properties of thermodynamic systems. Temperature is defined for the radiative cosmic background and for individual stars, but for the ensemble of moving stars neither temperature, nor pressure, nor heat capacities are properly defined, and the application of thermodynamics is, therefore, not advised. For equilibrated atomic nanoclusters, in contrast, one may talk about negative heat capacities when kinetic energy is transformed into potential energy of expanding bonds.
AbstractList In the absence of work, the exchange of heat of a sample of matter corresponds to the change of its internal energy, given by the kinetic energy of random translational motion of all its constituent atoms or molecules relative to the center of mass of the sample, plus the excitation of quantum states, such as vibration and rotation, and the energy of electrons in excess to their ground state. If the sample of matter is equilibrated it is described by Boltzmann’s statistical thermodynamics and characterized by a temperature T. Monotonic motion such as that of the stars of an expanding universe is work against gravity and represents the exchange of kinetic and potential energy, as described by the virial theorem, but not an exchange of heat. Heat and work are two distinct properties of thermodynamic systems. Temperature is defined for the radiative cosmic background and for individual stars, but for the ensemble of moving stars neither temperature, nor pressure, nor heat capacities are properly defined, and the application of thermodynamics is, therefore, not advised. For equilibrated atomic nanoclusters, in contrast, one may talk about negative heat capacities when kinetic energy is transformed into potential energy of expanding bonds.
In the absence of work, the exchange of heat of a sample of matter corresponds to the change of its internal energy, given by the kinetic energy of random translational motion of all its constituent atoms or molecules relative to the center of mass of the sample, plus the excitation of quantum states, such as vibration and rotation, and the energy of electrons in excess to their ground state. If the sample of matter is equilibrated it is described by Boltzmann's statistical thermodynamics and characterized by a temperature T. Monotonic motion such as that of the stars of an expanding universe is work against gravity and represents the exchange of kinetic and potential energy, as described by the virial theorem, but not an exchange of heat. Heat and work are two distinct properties of thermodynamic systems. Temperature is defined for the radiative cosmic background and for individual stars, but for the ensemble of moving stars neither temperature, nor pressure, nor heat capacities are properly defined, and the application of thermodynamics is, therefore, not advised. For equilibrated atomic nanoclusters, in contrast, one may talk about negative heat capacities when kinetic energy is transformed into potential energy of expanding bonds.In the absence of work, the exchange of heat of a sample of matter corresponds to the change of its internal energy, given by the kinetic energy of random translational motion of all its constituent atoms or molecules relative to the center of mass of the sample, plus the excitation of quantum states, such as vibration and rotation, and the energy of electrons in excess to their ground state. If the sample of matter is equilibrated it is described by Boltzmann's statistical thermodynamics and characterized by a temperature T. Monotonic motion such as that of the stars of an expanding universe is work against gravity and represents the exchange of kinetic and potential energy, as described by the virial theorem, but not an exchange of heat. Heat and work are two distinct properties of thermodynamic systems. Temperature is defined for the radiative cosmic background and for individual stars, but for the ensemble of moving stars neither temperature, nor pressure, nor heat capacities are properly defined, and the application of thermodynamics is, therefore, not advised. For equilibrated atomic nanoclusters, in contrast, one may talk about negative heat capacities when kinetic energy is transformed into potential energy of expanding bonds.
In the absence of work, the exchange of heat of a sample of matter corresponds to the change of its internal energy, given by the kinetic energy of random translational motion of all its constituent atoms or molecules relative to the center of mass of the sample, plus the excitation of quantum states, such as vibration and rotation, and the energy of electrons in excess to their ground state. If the sample of matter is equilibrated it is described by Boltzmann's statistical thermodynamics and characterized by a temperature . Monotonic motion such as that of the stars of an expanding universe is work against gravity and represents the exchange of kinetic and potential energy, as described by the virial theorem, but not an exchange of heat. Heat and work are two distinct properties of thermodynamic systems. Temperature is defined for the radiative cosmic background and for individual stars, but for the ensemble of moving stars neither temperature, nor pressure, nor heat capacities are properly defined, and the application of thermodynamics is, therefore, not advised. For equilibrated atomic nanoclusters, in contrast, one may talk about negative heat capacities when kinetic energy is transformed into potential energy of expanding bonds.
Audience Academic
Author Roduner, Emil
AuthorAffiliation 1 Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; e.roduner@ipc.uni-stuttgart.de ; Tel.: +41-44-422-34-28
2 Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
AuthorAffiliation_xml – name: 1 Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; e.roduner@ipc.uni-stuttgart.de ; Tel.: +41-44-422-34-28
– name: 2 Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
Author_xml – sequence: 1
  givenname: Emil
  orcidid: 0000-0002-7391-9400
  surname: Roduner
  fullname: Roduner, Emil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36981417$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vGyEQhlGVqvnqoX-gWqmX9mBnBnaX5WSlVttYitpLox4RC4ODtV7cZR0p_z44Tq0kqjjMaHjmheHllB31sSfGPiBMhVBwQbwCAZWAN-wEQalJKQCOnuXH7DSlFQAXHOt37FjUqsES5Qmb_rk1Y7FIxRWZcVbMTf-Y5WRjbBgDpeIrFT9pacZwR7Nz9tabLtH7p3jGbr5_-z2_mlz_-rGYX15PbAVqnHBCh5ILaEXbVq7i6CxadOSlJysBWuBcQeOV4h7QVWTImVJ4UI1skIszttjrumhWejOEtRnudTRBPxbisNRmGIPtSDfgJVLtLaEtfUUtOVVDKx1X5Jz3WWu219ps2zU5S_04mO6F6MudPtzqZbzTCFA2CJgVPj8pDPHvltKo1yFZ6jrTU9wmzaXKDjRKQEY_vUJXcTv0-a12FNZlmUOmpntqafIEofcxH2zzcrQONpvrQ65fylLIuuSqyg0fn89wuPw_IzPwZQ_YIaY0kD8gCHr3SfThk2T24hWbnc7-xt34oftPxwNWpbof
CitedBy_id crossref_primary_10_3390_e25111532
crossref_primary_10_1119_5_0221403
Cites_doi 10.1023/A:1023776921610
10.1103/PhysRevLett.91.130601
10.1016/j.physa.2004.03.101
10.1209/0295-5075/82/43001
10.1038/scientificamerican0954-58
10.1016/S0378-4371(98)00518-4
10.1088/1475-7516/2004/12/006
10.1016/S1631-0705(02)01326-9
10.1103/PhysRevLett.86.1191
10.1007/978-94-010-0498-5
10.1119/1.14740
10.1007/BF01042598
10.1016/j.physrep.2021.11.002
10.1016/B978-0-444-52215-3.00006-4
10.1093/mnras/138.4.495
10.3390/e23081078
10.1002/andp.18501550306
10.1007/978-94-009-5335-2
10.1209/0295-5075/79/43001
10.1080/14786444308644730
10.1007/1-4020-2704-4
10.1103/PhysRevLett.87.203402
10.1038/d41586-019-02198-z
10.1111/j.1365-2966.2010.16869.x
10.1007/BF01645742
10.1063/1.439486
10.1007/978-3-642-40154-1
10.1080/14786447008640370
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the author. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the author. 2023
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e25030530
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_80f71e6fce1c4f5ebed960b7d29eddff
PMC10048101
A743764295
36981417
10_3390_e25030530
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c509t-2e1d17230b3bb5d521dc1c1def7fec700b022908f992f01d5eaeda43f09878123
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000956856200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Tue Oct 14 18:53:54 EDT 2025
Tue Nov 04 02:07:33 EST 2025
Sun Nov 09 10:29:32 EST 2025
Fri Jul 25 12:00:40 EDT 2025
Tue Nov 04 18:16:49 EST 2025
Thu Jan 02 22:52:05 EST 2025
Tue Nov 18 21:24:42 EST 2025
Sat Nov 29 07:10:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords heat
deficiencies of bulk thermodynamics
negative heat capacities
entropy of self-gravitating systems
work
virial theorem and heat
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-2e1d17230b3bb5d521dc1c1def7fec700b022908f992f01d5eaeda43f09878123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7391-9400
OpenAccessLink https://doaj.org/article/80f71e6fce1c4f5ebed960b7d29eddff
PMID 36981417
PQID 2791644279
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_80f71e6fce1c4f5ebed960b7d29eddff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10048101
proquest_miscellaneous_2792508930
proquest_journals_2791644279
gale_infotracacademiconefile_A743764295
pubmed_primary_36981417
crossref_primary_10_3390_e25030530
crossref_citationtrail_10_3390_e25030530
PublicationCentury 2000
PublicationDate 20230319
PublicationDateYYYYMMDD 2023-03-19
PublicationDate_xml – month: 3
  year: 2023
  text: 20230319
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Schmidt (ref_21) 2001; 86
Clausius (ref_3) 1870; 40
Katz (ref_28) 2003; 33
ref_12
Schmidt (ref_24) 2001; 87
Cropper (ref_6) 1986; 54
Ison (ref_23) 2004; 341
Boltzmann (ref_10) 1968; 58
He (ref_27) 2010; 406
Wood (ref_13) 1968; 138
Smith (ref_11) 2013; Volume 4
(ref_20) 2008; 82
Esq (ref_1) 1843; 23
Wang (ref_29) 2004; 12
Bardeen (ref_30) 1973; 31
Thirring (ref_26) 1970; 235
ref_25
Andersen (ref_17) 1980; 72
Kiessling (ref_15) 1989; 55
Dyson (ref_2) 1954; 191
Clausius (ref_5) 1850; 155
Roduner (ref_16) 2021; 944
Thirring (ref_19) 2003; 91
(ref_14) 1999; 263
ref_9
Michaelian (ref_18) 2007; 79
ref_8
Schmidt (ref_22) 2002; 3
Castelvecchi (ref_31) 2019; 458
ref_4
ref_7
References_xml – volume: 33
  start-page: 223
  year: 2003
  ident: ref_28
  article-title: Thermodynamics of Self-Gravitating Systems
  publication-title: Found. Phys.
  doi: 10.1023/A:1023776921610
– volume: 91
  start-page: 130601
  year: 2003
  ident: ref_19
  article-title: Negative specific heat, the thermodynamic limit, and ergodicity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.130601
– volume: 341
  start-page: 389
  year: 2004
  ident: ref_23
  article-title: Caloric curves in two- and three-dimensional Lennard–Jones-like systems including long-range forces
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2004.03.101
– volume: 82
  start-page: 43001
  year: 2008
  ident: ref_20
  article-title: Negative heat capacities do occur. Comment on “Critical analysis of negative heat capacities in nanoclusters” by Michaelian K. and Santamaría-Holek I
  publication-title: EPL
  doi: 10.1209/0295-5075/82/43001
– volume: 191
  start-page: 58
  year: 1954
  ident: ref_2
  article-title: What is heat?
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0954-58
– volume: 263
  start-page: 293
  year: 1999
  ident: ref_14
  article-title: Negative specific heat in astronomy, physics and chemistry
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/S0378-4371(98)00518-4
– volume: 12
  start-page: 6
  year: 2004
  ident: ref_29
  article-title: Current observational constraints on cosmic doomsday
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2004/12/006
– volume: 3
  start-page: 327
  year: 2002
  ident: ref_22
  article-title: Phase transitions in clusters
  publication-title: Comptes Rendus Phys.
  doi: 10.1016/S1631-0705(02)01326-9
– volume: 86
  start-page: 1191
  year: 2001
  ident: ref_21
  article-title: Negative Heat Capacity for a Cluster of 147 Sodium Atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.1191
– ident: ref_9
  doi: 10.1007/978-94-010-0498-5
– volume: 54
  start-page: 1068
  year: 1986
  ident: ref_6
  article-title: Rudolf Clausius and the road to entropy
  publication-title: Am. J. Phys.
  doi: 10.1119/1.14740
– volume: 55
  start-page: 203
  year: 1989
  ident: ref_15
  article-title: On the equilibrium statistical mechanics of isothermal classical self-gravitating matter
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01042598
– volume: 944
  start-page: 1
  year: 2021
  ident: ref_16
  article-title: The origin of irreversibility and thermalization in thermodynamic processes
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2021.11.002
– volume: Volume 4
  start-page: 333
  year: 2013
  ident: ref_11
  article-title: Equations of state and formulations of mixtures
  publication-title: Supercritical Fluid Science and Technology
  doi: 10.1016/B978-0-444-52215-3.00006-4
– volume: 138
  start-page: 495
  year: 1968
  ident: ref_13
  article-title: The Gravo-Thermal Catastrophe in Isothermal Spheres and the Onset of Red-Giant Structure for Stellar Systems
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/138.4.495
– ident: ref_4
  doi: 10.3390/e23081078
– ident: ref_25
– volume: 155
  start-page: 368
  year: 1850
  ident: ref_5
  article-title: Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen
  publication-title: Annalen Phys.
  doi: 10.1002/andp.18501550306
– ident: ref_12
  doi: 10.1007/978-94-009-5335-2
– volume: 79
  start-page: 43001
  year: 2007
  ident: ref_18
  article-title: Critical analysis of negative heat capacities in nanoclusters
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/79/43001
– volume: 23
  start-page: 263
  year: 1843
  ident: ref_1
  article-title: XXXII. On the calorific effects of magneto-electricity, and on the mechanical value of heat
  publication-title: Lond. Edinb. Dublin. Philos. Mag. J. Sci.
  doi: 10.1080/14786444308644730
– ident: ref_8
  doi: 10.1007/1-4020-2704-4
– volume: 87
  start-page: 203402
  year: 2001
  ident: ref_24
  article-title: Caloric Curve across the Liquid-to-Gas Change for Sodium Clusters
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.203402
– volume: 458
  start-page: 458
  year: 2019
  ident: ref_31
  article-title: Mystery deepens over speed of Universe’s expansion
  publication-title: Nature
  doi: 10.1038/d41586-019-02198-z
– volume: 58
  start-page: 517
  year: 1968
  ident: ref_10
  article-title: Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Studies on the balance of living force between moving material points
  publication-title: Wiener Berichte.
– volume: 235
  start-page: 339
  year: 1970
  ident: ref_26
  article-title: Systems with negative specific heat
  publication-title: Eur. Phys. J. A
– volume: 406
  start-page: 2678
  year: 2010
  ident: ref_27
  article-title: Entropy principle and complementary second law of thermodynamics for self-gravitating systems
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2010.16869.x
– volume: 31
  start-page: 161
  year: 1973
  ident: ref_30
  article-title: The four laws of black hole mechanics
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01645742
– volume: 72
  start-page: 2384
  year: 1980
  ident: ref_17
  article-title: Molecular dynamics simulations at constant pressure and/or temperature
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439486
– ident: ref_7
  doi: 10.1007/978-3-642-40154-1
– volume: 40
  start-page: 122
  year: 1870
  ident: ref_3
  article-title: On a mechanical theorem applicable to heat
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786447008640370
SSID ssj0023216
Score 2.317132
Snippet In the absence of work, the exchange of heat of a sample of matter corresponds to the change of its internal energy, given by the kinetic energy of random...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 530
SubjectTerms Analysis
Atomic properties
Atoms & subatomic particles
deficiencies of bulk thermodynamics
Electrons
Emission
Energy
Entropy
entropy of self-gravitating systems
Gases
Heat
Heat capacity
Heat exchange
Internal energy
Internal energy (Physics)
Kinetic energy
Nanoclusters
negative heat capacities
Opinion
Phase transitions
Potential energy
Specific heat
Stars
Statistical thermodynamics
Thermodynamics
Translational motion
Virial theorem
virial theorem and heat
work
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5ByoELD_HaUtCCkOCy1PZ6Y_sUNVWrcokqBFJv1q4fbSW0KUna38-M4yyJQFw4rbWew9iepx_fAHxwsmkJx6zyujWVVNFXOihVtZ2mh5dOi86lYhNqNtMXF-Y8b7gt87XKjU1MhtrPHe2RHwqFgYyU-Jnc_KyoahSdruYSGvdhj5DK5Aj2piez869DylULPl7jCdWY3B8GdPgo4HTlecsLJbD-P03ylk_avS-55YBOH_8v60_gUQ49y6O1rDyFe6F_Bp8Ju7v8sizP0ChPyuO2Ty1sYDKd0FbLaShn4TIBhE-ew_fTk2_HZ1WuoVA5DAVWlQjcY4xSs67uusajs_aOO-5DVDE4xVjHCPFdR2NEZNw3oQ2-lXVkRit0_vULGPXzPryC0hsmAsVIWjt0fUIHp2MXJRfCRe1MAZ82c2pdBhinOhc_LCYaNP12mP4C3g-kN2tUjb8RTWlhBgICwk4_5otLm_XKahYVD-PoAncyNiiSHnOyTnlhgvcxFvCRltWSuiIzrs2vDnBIBHxljzCCUpiDmaaAg83q2azHS_t76Qp4N3SjBtKxStuH-W2iQZYx7kOOX64FZeC5HhvNJVcF6B0R2hnUbk9_fZVQvnmC8mF8_998vYaHAuWcrsVxcwCj1eI2vIEH7m51vVy8zfrwC9YRE_U
  priority: 102
  providerName: ProQuest
Title What Is Heat? Can Heat Capacities Be Negative?
URI https://www.ncbi.nlm.nih.gov/pubmed/36981417
https://www.proquest.com/docview/2791644279
https://www.proquest.com/docview/2792508930
https://pubmed.ncbi.nlm.nih.gov/PMC10048101
https://doaj.org/article/80f71e6fce1c4f5ebed960b7d29eddff
Volume 25
WOSCitedRecordID wos000956856200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDBdbt4e9lJZ9ZW2PbAy2l6yxk5ztp9IrV9qHHcc-4PZkElvuCiMdvese97dXcnLhjg32spckxILIkmVJRP4J4K0rq5pxzDKva5OVKvhMo1JZ3Wg-eOm0bFxsNqFmM71YmPlGqy-uCevggTvBHes8KIHj4FC4MlT0TU9Bd6O8NOh9CLz7UtSzTqb6VKuQYtzhCBWU1B8jOXpa2FzqvOF9Ikj_n1vxhi_arpPccDzne7DbR4zpacfpPjzA9il8YMjt9HKZXtBeepKe1W18ogfKgSNIajrBdIZXEdf75Bl8PZ9-ObvI-tYHmSMPvsokCk-hRZE3RdNUnnysd8IJj0EFdCrPm5yB2nUwRoZc-Apr9HVZhNxoRT67eA477U2LLyH1JpfIoY3WjjyW1Oh0aEIppHRBO5PA-7VIrOtxwbk9xQ9L-QFLzw7SS-DNQPqzA8P4G9GE5ToQMH51fEFatb1W7b-0msA71oplKyNmXN0fFqApMV6VPaXAR1HqZKoEDteKs735La1UFPWWJd0SeD0Mk-Hw35C6xZu7SEMsU7hGHL_o9DzwXIyNFqVQCeitFbA1qe2R9vp7BOcWEYEnF6_-hxgO4Am3t-eaN2EOYWd1e4dH8Nj9Wl0vb0fwUC30CB5NprP5p1E0gBHXrn7m6-8pjcwvP86_3QN_Ng1H
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceIhXoEBAILiE2k6ytg9o1RaqXbVd7aFI5WQSP0qlKrvd3YL4U_xGxs6DXYG49cApVmJF43hmvpnY_gbglc7ywvOYJUYUMsm4M4mwnCdFKfzBSy1YqUOxCT4ei5MTOdmAn-1ZGL-tsvWJwVGbqfb_yLcZx0Amy_AymF0kvmqUX11tS2jUanFgf3zHlG3xfvQB5_c1Y_sfj_eGSVNVINEIjsuEWWoQtVNSpmWZG4Qvo6mmxjrurOaElMRzoAsnJXOEmtwW1hRZ6gim5wiHKb73GmyiKLnoweZkdDT53KV4KaP9mr8oTSXZthhgoEH5LdYrqBeKA_wJASsYuL4_cwXw9m__b5_qDtxqQut4p7aFu7Bhq3vwznOTx6NFPETQGcR7RRVa2JgVOrDJxrs2HtvTQIA-uA-frkTEB9CrppV9BLGRhFkfAwqhEdqZsFq40mWUMe2ElhG8bedQ6YZA3dfxOFeYSPnpVt10R_Cy6zqrWUP-1mnXK0LXwRN9hxvT-alq_IYSxHFq-05bqjOXo8kZzDlLbpi0xjgXwRuvRsq7IxRGF82pChySJ_ZSOxghcswxZR7BVqstqvFTC_VbVSJ40T1GD-OXjYrKTi9DHxQZ41qU-GGtmJ3MaV8KmlEegVhT2bVBrT-pzr4GFnMaqIoIffxvuZ7DjeHx0aE6HI0PnsBNhjbmtwBSuQW95fzSPoXr-tvybDF_1thiDF-uWqd_AQgScQw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC0JceIhXYIGAQHAJtZ2ktg-o2gfVVouqlQBpb8bxY1kJpaXtgvhr_DrGzoNWIG574JQosaJxPDPfTDL-BuC5KUodeMwyK7TMCu5tJhznma5E2HhpBKtMbDbBp1NxciKPt-BntxcmlFV2PjE6ajsz4Rv5gHEMZIoCDwPflkUcH4xH869Z6CAV_rR27TQaFTlyP75j-rZ8MznAtX7B2Pjth_3DrO0wkBkEylXGHLWI4Dmp8qoqLUKZNdRQ6zz3znBCKhL40IWXknlCbem0s7rIPcFUHaExx-degsu8wDghlg2-75O9nNFhw2SU55IMHIYaaFqh2HoN_2KbgD_BYA0NNys116BvfON_fmk34XobcKe7jYXcgi1X34bXgbE8nSzTQ4SiUbqv63iGJ3NtIsdsuufSqTuNtOijO_DxQkS8C9v1rHb3IbWSMBciQyEMAj4Tzghf-YIyZrwwMoFX3Xoq09Kqh-4eXxSmV2HpVb_0CTzrh84bLpG_DdoLStEPCPTf8cJscapab6IE8Zy6oTeOmsKXaIgWM9GKWyadtd4n8DKolApOCoUxut1rgVMKdF9qF-NGjpmnLBPY6TRHtd5rqX6rTQJP-9vod8LPJF272XkcgyJjtIsS32uUtJc5H0pBC8oTEBvquzGpzTv12efIbU4jgRGhD_4t1xO4ioqs3k2mRw_hGkNzC3WBVO7A9mpx7h7BFfNtdbZcPI5GmcKni1boX6czeFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+Is+Heat%3F+Can+Heat+Capacities+Be+Negative%3F&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Emil+Roduner&rft.date=2023-03-19&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=25&rft.issue=3&rft.spage=530&rft_id=info:doi/10.3390%2Fe25030530&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_80f71e6fce1c4f5ebed960b7d29eddff
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon