ST-CenterNet: Small Target Detection Algorithm with Adaptive Data Enhancement

General target detection with deep learning has made tremendous strides in the past few years. However, small target detection sometimes is associated with insufficient sample size and difficulty in extracting complete feature information. For safety during autonomous driving, remote signs and pedes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 25; číslo 3; s. 509
Hlavní autoři: Guo, Yujie, Lu, Xu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 16.03.2023
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract General target detection with deep learning has made tremendous strides in the past few years. However, small target detection sometimes is associated with insufficient sample size and difficulty in extracting complete feature information. For safety during autonomous driving, remote signs and pedestrians need to be detected from driving scenes photographed by car cameras. In the early period of a medical lesion, because of the small area of the lesion, target detection is of great significance to detect masses and tumors for accurate diagnosis and treatment. To deal with these problems, we propose a novel deep learning model, named CenterNet for small targets (ST-CenterNet). First of all, due to the lack of visual information on small targets in the dataset, we extracted less discriminative features. To overcome this shortcoming, the proposed selective small target replication algorithm (SSTRA) was used to realize increasing numbers of small targets by selectively oversampling them. In addition, the difficulty of extracting shallow semantic information for small targets results in incomplete target feature information. Consequently, we developed a target adaptation feature extraction module (TAFEM), which was used to conduct bottom-up and top-down bidirectional feature extraction by combining ResNet with the adaptive feature pyramid network (AFPN). The improved new network model, AFPN, was added to solve the problem of the original feature extraction module, which can only extract the last layer of the feature information. The experimental results demonstrate that the proposed method can accurately detect the small-scale image of distributed targets and simultaneously, at the pixel level, classify whether a subject is wearing a safety helmet. Compared with the detection effect of the original algorithm on the safety helmet wearing dataset (SHWD), we achieved mean average precision (mAP) of 89.06% and frames per second (FPS) of 28.96, an improvement of 18.08% mAP over the previous method.
AbstractList General target detection with deep learning has made tremendous strides in the past few years. However, small target detection sometimes is associated with insufficient sample size and difficulty in extracting complete feature information. For safety during autonomous driving, remote signs and pedestrians need to be detected from driving scenes photographed by car cameras. In the early period of a medical lesion, because of the small area of the lesion, target detection is of great significance to detect masses and tumors for accurate diagnosis and treatment. To deal with these problems, we propose a novel deep learning model, named CenterNet for small targets (ST-CenterNet). First of all, due to the lack of visual information on small targets in the dataset, we extracted less discriminative features. To overcome this shortcoming, the proposed selective small target replication algorithm (SSTRA) was used to realize increasing numbers of small targets by selectively oversampling them. In addition, the difficulty of extracting shallow semantic information for small targets results in incomplete target feature information. Consequently, we developed a target adaptation feature extraction module (TAFEM), which was used to conduct bottom-up and top-down bidirectional feature extraction by combining ResNet with the adaptive feature pyramid network (AFPN). The improved new network model, AFPN, was added to solve the problem of the original feature extraction module, which can only extract the last layer of the feature information. The experimental results demonstrate that the proposed method can accurately detect the small-scale image of distributed targets and simultaneously, at the pixel level, classify whether a subject is wearing a safety helmet. Compared with the detection effect of the original algorithm on the safety helmet wearing dataset (SHWD), we achieved mean average precision (mAP) of 89.06% and frames per second (FPS) of 28.96, an improvement of 18.08% mAP over the previous method.
General target detection with deep learning has made tremendous strides in the past few years. However, small target detection sometimes is associated with insufficient sample size and difficulty in extracting complete feature information. For safety during autonomous driving, remote signs and pedestrians need to be detected from driving scenes photographed by car cameras. In the early period of a medical lesion, because of the small area of the lesion, target detection is of great significance to detect masses and tumors for accurate diagnosis and treatment. To deal with these problems, we propose a novel deep learning model, named CenterNet for small targets (ST-CenterNet). First of all, due to the lack of visual information on small targets in the dataset, we extracted less discriminative features. To overcome this shortcoming, the proposed selective small target replication algorithm (SSTRA) was used to realize increasing numbers of small targets by selectively oversampling them. In addition, the difficulty of extracting shallow semantic information for small targets results in incomplete target feature information. Consequently, we developed a target adaptation feature extraction module (TAFEM), which was used to conduct bottom-up and top-down bidirectional feature extraction by combining ResNet with the adaptive feature pyramid network (AFPN). The improved new network model, AFPN, was added to solve the problem of the original feature extraction module, which can only extract the last layer of the feature information. The experimental results demonstrate that the proposed method can accurately detect the small-scale image of distributed targets and simultaneously, at the pixel level, classify whether a subject is wearing a safety helmet. Compared with the detection effect of the original algorithm on the safety helmet wearing dataset (SHWD), we achieved mean average precision (mAP) of 89.06% and frames per second (FPS) of 28.96, an improvement of 18.08% mAP over the previous method.General target detection with deep learning has made tremendous strides in the past few years. However, small target detection sometimes is associated with insufficient sample size and difficulty in extracting complete feature information. For safety during autonomous driving, remote signs and pedestrians need to be detected from driving scenes photographed by car cameras. In the early period of a medical lesion, because of the small area of the lesion, target detection is of great significance to detect masses and tumors for accurate diagnosis and treatment. To deal with these problems, we propose a novel deep learning model, named CenterNet for small targets (ST-CenterNet). First of all, due to the lack of visual information on small targets in the dataset, we extracted less discriminative features. To overcome this shortcoming, the proposed selective small target replication algorithm (SSTRA) was used to realize increasing numbers of small targets by selectively oversampling them. In addition, the difficulty of extracting shallow semantic information for small targets results in incomplete target feature information. Consequently, we developed a target adaptation feature extraction module (TAFEM), which was used to conduct bottom-up and top-down bidirectional feature extraction by combining ResNet with the adaptive feature pyramid network (AFPN). The improved new network model, AFPN, was added to solve the problem of the original feature extraction module, which can only extract the last layer of the feature information. The experimental results demonstrate that the proposed method can accurately detect the small-scale image of distributed targets and simultaneously, at the pixel level, classify whether a subject is wearing a safety helmet. Compared with the detection effect of the original algorithm on the safety helmet wearing dataset (SHWD), we achieved mean average precision (mAP) of 89.06% and frames per second (FPS) of 28.96, an improvement of 18.08% mAP over the previous method.
Audience Academic
Author Guo, Yujie
Lu, Xu
AuthorAffiliation College of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China; jennyguoyj@163.com
AuthorAffiliation_xml – name: College of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China; jennyguoyj@163.com
Author_xml – sequence: 1
  givenname: Yujie
  surname: Guo
  fullname: Guo, Yujie
– sequence: 2
  givenname: Xu
  orcidid: 0000-0002-6097-032X
  surname: Lu
  fullname: Lu, Xu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36981396$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URNuFA38AReICh7T-SJyYC1ptC1QqcOhytibOOOtVEi-Ot4h_X2-3rNoKWfJY42dez3jmlByNfkRC3jJ6JoSi58hLKmhJ1QtywqhSeSEoPXp0Pian07SmlAvO5CtyLKSqmVDyhHy_WeYLHCOGHxg_ZTcD9H22hNBhzC4woonOj9m873xwcTVkf9KezVvYRHeL2QVEyC7HFYwGh6Tymry00E_45sHOyK8vl8vFt_z659erxfw6NynJmLOmshygkcqKirWtLJmtq7ZhsmmENba0RglqWmAKyloyBNY2yBvZ8rIBRsWMXO11Ww9rvQlugPBXe3D63uFDpyFEZ3rUBTKKgnPLTV0oxYBWWIpCNbJCVBaT1ue91mbbDNiaVEaA_ono05vRrXTnbzWjtKgUY0nhw4NC8L-3OEU9uMlg38OIfjtpXqnUoLoqVELfP0PXfhvG9Fc7islCciESdbanOkgVuNH69LBJq8XBmdR765J_XhWikgVPZkbePa7hkPy_Pifg4x4wwU9TQHtAGNW7GdKHGUrs-TPWuAi7OUhZuP4_EXfSF8aj
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104611
crossref_primary_10_3390_s24216985
crossref_primary_10_1016_j_rineng_2025_105545
crossref_primary_10_1088_1361_6501_ad42c5
crossref_primary_10_3390_electronics14112274
crossref_primary_10_3390_s24144628
crossref_primary_10_1038_s41598_023_47716_2
Cites_doi 10.1109/ICIP.2018.8451686
10.1109/LSP.2021.3079850
10.1007/978-3-030-01252-6_24
10.1109/ACCESS.2019.2929760
10.1109/TPAMI.2016.2577031
10.1007/s11042-020-08725-9
10.1088/1742-6596/1983/1/012017
10.1016/j.neucom.2021.03.091
10.1109/CVPR.2017.106
10.1007/s13042-019-01006-4
10.1155/2019/4042624
10.1016/j.landurbplan.2020.103921
10.1109/CVPRW.2019.00103
10.1007/978-3-030-21344-2
10.1109/IWECAI55315.2022.00088
10.1109/DSAA.2019.00023
10.1109/DCABES52998.2021.00031
10.1109/JSTARS.2020.3025582
10.1109/CVPR46437.2021.01556
10.1117/1.JEI.28.4.043023
10.1109/CompComm.2018.8780907
10.1016/j.ijdrr.2018.09.015
10.1016/j.patcog.2019.107149
10.1109/ICCV.2019.00502
10.1145/2733373.2806349
10.1109/ACCESS.2020.3014910
10.1016/j.patcog.2021.108258
10.3390/app10010087
10.1109/ISCAS51556.2021.9401434
10.1109/WACV48630.2021.00360
10.1109/SIU49456.2020.9302500
10.1109/CVPR46437.2021.00281
10.1007/978-3-030-01264-9_45
10.3390/agriculture10090416
10.1007/978-3-319-46448-0_2
10.1016/j.patcog.2021.108290
10.1109/ISCID.2019.10112
10.1109/VCIP.2016.7805452
10.1007/978-1-4899-7687-1_79
10.1007/978-3-319-10602-1_48
10.1016/j.neucom.2022.11.062
10.1109/ICCV.2017.322
10.1609/aaai.v35i3.16336
10.1109/WSAI51899.2021.9486316
10.1109/CVPR42600.2020.00856
10.3390/rs13050847
10.1109/ICCV.2017.324
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/e25030509
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_4e10e322f2c84991a07e5349b67ee9fe
PMC10047911
A743764274
36981396
10_3390_e25030509
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 62176067
– fundername: Scientific and Technological Planning Project of Guangzhou
  grantid: 202103000040
– fundername: Key Project of Guangdong Province Basic Research Foundation
  grantid: 2020B1515120095
– fundername: Project Supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
  grantid: 2019
– fundername: Scientific and Technological Planning Project of Guangzhou
  grantid: 201903010041
– fundername: National Natural Science Foundation of China
  grantid: 62176067
– fundername: Scientific and Technological Planning Project of Guangzhou
  grantid: 201903010041; 202103000040
– fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
  grantid: 2019
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c509t-1b7f2aab69f371dd651f87db16bb3fcf5fc930cda19a5861ea1dbe2b6d25ba103
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000958782400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:43:21 EDT 2025
Tue Nov 04 02:07:31 EST 2025
Sun Nov 09 10:33:20 EST 2025
Fri Jul 25 12:10:59 EDT 2025
Tue Nov 04 18:16:41 EST 2025
Mon Jul 21 06:05:11 EDT 2025
Tue Nov 18 21:07:00 EST 2025
Sat Nov 29 07:10:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords adaptive data enhancement
deep learning
selective oversampling
small target detection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-1b7f2aab69f371dd651f87db16bb3fcf5fc930cda19a5861ea1dbe2b6d25ba103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6097-032X
OpenAccessLink https://doaj.org/article/4e10e322f2c84991a07e5349b67ee9fe
PMID 36981396
PQID 2791646233
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_4e10e322f2c84991a07e5349b67ee9fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10047911
proquest_miscellaneous_2792508749
proquest_journals_2791646233
gale_infotracacademiconefile_A743764274
pubmed_primary_36981396
crossref_primary_10_3390_e25030509
crossref_citationtrail_10_3390_e25030509
PublicationCentury 2000
PublicationDate 20230316
PublicationDateYYYYMMDD 2023-03-16
PublicationDate_xml – month: 3
  year: 2023
  text: 20230316
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hu (ref_14) 2018; 2018
Van (ref_47) 2023; 519
Wu (ref_65) 2021; 1983
Luo (ref_54) 2021; 28
ref_58
ref_13
ref_12
ref_56
ref_55
ref_10
Ren (ref_27) 2016; 39
ref_53
ref_51
Qiu (ref_11) 2019; 28
Kaku (ref_7) 2019; 33
ref_18
ref_15
ref_59
ref_61
ref_60
Liu (ref_19) 2020; 8
ref_25
ref_23
Wellmann (ref_9) 2020; 204
ref_22
ref_66
ref_21
Ma (ref_50) 2020; 100
ref_20
ref_64
ref_63
ref_62
ref_29
ref_28
ref_26
Han (ref_57) 2022; 60
Zhou (ref_45) 2022; 122
Niu (ref_52) 2021; 452
ref_36
ref_35
ref_34
Yin (ref_31) 2020; 13
ref_33
ref_32
ref_30
ref_39
ref_38
ref_37
Chen (ref_49) 2019; 13
Zhou (ref_17) 2019; 10
Miao (ref_24) 2022; 122
ref_46
ref_44
ref_42
ref_41
ref_40
ref_1
Zhang (ref_43) 2020; 79
ref_3
ref_2
ref_48
ref_8
ref_5
ref_4
ref_6
Zhao (ref_16) 2019; 7
References_xml – ident: ref_46
  doi: 10.1109/ICIP.2018.8451686
– volume: 28
  start-page: 1060
  year: 2021
  ident: ref_54
  article-title: A deep feature fusion network based on multiple attention mechanisms for joint iris-periocular biometric recognition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3079850
– ident: ref_55
– ident: ref_56
  doi: 10.1007/978-3-030-01252-6_24
– volume: 7
  start-page: 101160
  year: 2019
  ident: ref_16
  article-title: Detection, tracking, and geolocation of moving vehicle from uav using monocular camera
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929760
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_27
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 2018
  start-page: 4546896
  year: 2018
  ident: ref_14
  article-title: Small object detection with multiscale features
  publication-title: Int. J. Digit. Multimed. Broadcast.
– volume: 79
  start-page: 17445
  year: 2020
  ident: ref_43
  article-title: A real-time recognition method of static gesture based on DSSD
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-08725-9
– volume: 1983
  start-page: 012017
  year: 2021
  ident: ref_65
  article-title: An improved target detection algorithm based on EfficientNet
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1983/1/012017
– volume: 452
  start-page: 48
  year: 2021
  ident: ref_52
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– ident: ref_48
  doi: 10.1109/CVPR.2017.106
– ident: ref_23
– volume: 10
  start-page: 3155
  year: 2019
  ident: ref_17
  article-title: Enhance the recognition ability to occlusions and small objects with Robust Faster R-CNN
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01006-4
– ident: ref_15
  doi: 10.1155/2019/4042624
– volume: 204
  start-page: 103921
  year: 2020
  ident: ref_9
  article-title: Remote sensing in urban planning: Contributions towards ecologically sound policies
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2020.103921
– ident: ref_26
  doi: 10.1109/CVPRW.2019.00103
– ident: ref_10
  doi: 10.1007/978-3-030-21344-2
– ident: ref_44
  doi: 10.1109/IWECAI55315.2022.00088
– ident: ref_42
  doi: 10.1109/DSAA.2019.00023
– ident: ref_66
– ident: ref_38
– ident: ref_34
  doi: 10.1109/DCABES52998.2021.00031
– volume: 13
  start-page: 5862
  year: 2020
  ident: ref_31
  article-title: Hot region selection based on selective search and modified fuzzy C-Means in remote sensing Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3025582
– volume: 13
  start-page: 1049
  year: 2019
  ident: ref_49
  article-title: SSD object detection algorithm with multi-scale convolution feature fusion
  publication-title: J. Front. Comput. Sci. Technol.
– ident: ref_20
– ident: ref_59
– ident: ref_58
  doi: 10.1109/CVPR46437.2021.01556
– volume: 28
  start-page: 043023
  year: 2019
  ident: ref_11
  article-title: Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.28.4.043023
– ident: ref_41
  doi: 10.1109/CompComm.2018.8780907
– volume: 33
  start-page: 417
  year: 2019
  ident: ref_7
  article-title: Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies in Sentinel Asia
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2018.09.015
– volume: 100
  start-page: 107149
  year: 2020
  ident: ref_50
  article-title: MDFN: Multi-scale deep feature learning network for object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107149
– ident: ref_62
  doi: 10.1109/ICCV.2019.00502
– ident: ref_18
  doi: 10.1145/2733373.2806349
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_57
  article-title: Align deep features for oriented object detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 145740
  year: 2020
  ident: ref_19
  article-title: Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014910
– volume: 122
  start-page: 108258
  year: 2022
  ident: ref_24
  article-title: Balanced single-shot object detection using cross-context attention-guided network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108258
– ident: ref_1
  doi: 10.3390/app10010087
– ident: ref_61
  doi: 10.1109/ISCAS51556.2021.9401434
– ident: ref_53
  doi: 10.1109/WACV48630.2021.00360
– ident: ref_40
– ident: ref_63
– ident: ref_4
  doi: 10.1109/SIU49456.2020.9302500
– ident: ref_21
– ident: ref_60
  doi: 10.1109/CVPR46437.2021.00281
– ident: ref_6
– ident: ref_25
– ident: ref_37
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref_29
– ident: ref_8
  doi: 10.3390/agriculture10090416
– ident: ref_33
  doi: 10.1007/978-3-319-46448-0_2
– volume: 122
  start-page: 0031
  year: 2022
  ident: ref_45
  article-title: Contextual ensemble network for semantic segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108290
– ident: ref_2
– ident: ref_5
  doi: 10.1109/ISCID.2019.10112
– ident: ref_32
  doi: 10.1109/VCIP.2016.7805452
– ident: ref_39
  doi: 10.1007/978-1-4899-7687-1_79
– ident: ref_13
  doi: 10.1007/978-3-319-10602-1_48
– volume: 519
  start-page: 104
  year: 2023
  ident: ref_47
  article-title: Feature pyramid network with multi-scale prediction fusion for real-time semantic segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.11.062
– ident: ref_28
  doi: 10.1109/ICCV.2017.322
– ident: ref_64
– ident: ref_30
  doi: 10.1609/aaai.v35i3.16336
– ident: ref_35
  doi: 10.1109/WSAI51899.2021.9486316
– ident: ref_36
– ident: ref_3
  doi: 10.1109/CVPR42600.2020.00856
– ident: ref_51
  doi: 10.3390/rs13050847
– ident: ref_22
– ident: ref_12
  doi: 10.1109/ICCV.2017.324
SSID ssj0023216
Score 2.3639731
Snippet General target detection with deep learning has made tremendous strides in the past few years. However, small target detection sometimes is associated with...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 509
SubjectTerms Adaptive algorithms
Adaptive control
adaptive data enhancement
Algorithms
Alliances
Datasets
Deep learning
Feature extraction
Frames per second
Machine learning
Methods
Modules
Neural networks
Pedestrians
Safety helmets
selective oversampling
Semantics
Sensors
small target detection
Target acquisition
Target detection
Visual discrimination
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOACRTwaaCuDkOASdW0ndswFLbQVF1ZIu0i9RX52K22zy27K72fGmw2NQFx6ja1o7Hl4Zjz-hpB3HlwIV1qbF9pWeRFkzK3QLpfKe848vtorUrMJNZlUFxf6e5dw23RllTubmAy1XzrMkZ9wpREKiwvxafUzx65ReLvatdC4Tx4gSgJLpXvTPuASnMktmpCA0P4kwHEvEO9kcAYlqP6_DfKtE2lYLXnr-Dl_clfC98njzvGk462kPCX3QvOMfJvOcszvhvUktB_p9NosFnSWisPpaWhTmVZDx4tL-GE7v6aYtaVjb1ZoJOmpaQ09a-YoOJhkfE5-nJ_NvnzNuwYLuYNdaHNmVeTGWKmjUMx7WbJYKW-ZtFZEF8votBg5b5g2ZSVZMMzbwK30vLSGjcQLstcsm3BAKLfgF5ZgLDl3BSuUVeAJGVkKq6WupMjIh92W165DH8cmGIsaohDkTt1zJyNv-6mrLeTGvyZ9Rr71ExAlO31Yri_rTunqIrBRAIsVuasgsmNmpEIpQCqlCkHHkJH3yPUadRmIcaZ7kgBLQlSsegzulYIATRUZOdwxt-6UfFP_4WxG3vTDoJ5452KasLxJc4DkShVA8cutHPU0C9gZcMBlRqqBhA0WNRxpruYJApyl1gCMvfo_Xa_JIw5qgDVzTB6SvXZ9E47IQ_ervdqsj5Oy_AZ_wh57
  priority: 102
  providerName: ProQuest
Title ST-CenterNet: Small Target Detection Algorithm with Adaptive Data Enhancement
URI https://www.ncbi.nlm.nih.gov/pubmed/36981396
https://www.proquest.com/docview/2791646233
https://www.proquest.com/docview/2792508749
https://pubmed.ncbi.nlm.nih.gov/PMC10047911
https://doaj.org/article/4e10e322f2c84991a07e5349b67ee9fe
Volume 25
WOSCitedRecordID wos000958782400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOBSFfEKLSuDkOASNbYTO-a2pVvBoasVu0jLKfIrbKVtttqmHPntnUmy0UYgceGSQzyKxvOwZ5zxN4S89xBCuMzaONU2j9Mgy9gK7WKpvOfM4629tGk2oabTfLnUs71WX1gT1sIDt4I7TQNLAlhdyV0O0TkziQqZgC9LFYIuA66-idK7ZKpLtQRnssUREpDUnwbY6AUinQx2nwak_8-leG8vGtZJ7m08F0fksIsY6bjl9Cl5EKpn5HK-iPFgNmynof5E59dmvaaLpqqbnoe6qa-q6Hj9cwPJ_-qa4nErHXtzg6sbPTe1oZNqhRrH08Hn5PvFZPH5S9x1RogdTKKOmVUlN8ZKXQrFvJcZK3PlLZPWitKVWem0SJw3TJsslywY5m3gVnqeWcMS8YIcVJsqvCKUWwjoMljlOHcpS5VVEMIYmQmrpc6liMjHncQK18GGY_eKdQHpAwq36IUbkXc96U2LlfE3ojMUe0-A8NbNC1B60Sm9-JfSI_IBlVagEwIzznR3CWBKCGdVjCEuUpBZqTQiJzu9Fp133hZcaYRV4wJm97YfBr_CnyWmCpu7hgZYzlUKHL9szaDnWYBkIHKWEckHBjKY1HCkulo12N2swfRn7PX_EMMxecLB1rEkjskTclBv78Ib8tj9qq9utyPyUC3zEXl0NpnOvo0a_xhhaescn78nMDL7ejn7cQ9MURaS
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILD_EKFDAIBJeosZ3YMRJCC9uqVdsV0i5Sb8GvdCtts8tuCuJP8RsZOw-6AnHrgWtsRTP2Ny97PIPQSwsuhMm0jlOp8zh1vIw1kybmwlpKrH-1l4ZmE2I0yo-P5acN9LN7C-PTKjudGBS1nRt_Rr5NhfSlsChj7xdfY981yt-udi00GlgcuB_fIWRbvdsfwv6-onR3Z_JxL267CsQGjGMdEy1KqpTmsmSCWMszUubCasK1ZqUps9JIlhiriFRZzolTxGpHNbc004okDP57BV0FN4LKkCo47gM8RglvqhcxJpNtB-4F8_VV1mxeaA3wpwG4YAHXszMvmLvdW__bQt1GN1vHGg8aSbiDNlx1Fx2NJ7E_v3bLkavf4vGZms3wJCS_46GrQxpahQezE2Cgnp5hfyqNB1YtvBHAQ1UrvFNNvWD4Q9R76POlcHAfbVbzyj1EmGrwezMwBpSalKRCC_D0FM-YllzmnEXoTbfFhWmrq_smH7MCoiyPhqJHQ4Re9FMXTUmRv0364HHST_BVwMOH-fKkaJVKkTqSONDIJTU5RK5EJcJlDKSOC-dk6SL02qOs8LoKiDGqfXIBLPmqX8UA3EcBAahII7TVgaloldiq-I2kCD3vh0H9-DslVbn5eZgDJOciBYofNLjtaWawMhBg8Ajla4heY2p9pDqdhhLnJLQ-IOTRv-l6hq7vTY4Oi8P90cFjdIOCCPr8QMK30Ga9PHdP0DXzrT5dLZ8GQcXoy2UD_hf-fX7P
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDiFeBoivjAEGgeAlam0ndoKEUKGrqMaqSivS9hT8lXVSl5Y2A_Gv8ddxTtOwCsTbHniNrejO_t2Xfb4DeGHRhTCx1mGU6iSMnMhDzVMTCmkto9a_2ouqZhNyOEyOj9PRFvxcv4XxaZVrnVgpajsz_oy8zWTqS2Exztt5nRYx6vXfzb-GvoOUv2ldt9NYQeTA_fiO4dvy7aCHe_2Ssf7--MPHsO4wEBo0lGVItcyZUlqkOZfUWhHTPJFWU6E1z00e5yblHWMVTVWcCOoUtdoxLSyLtaIdjv-9BtvokkesBdujweHopAn3OKNiVcuI87TTduhscF9tZcMCVo0C_jQHl-zhZq7mJePXv_U_L9tt2KldbtJdycgd2HLFXTg8Gof-ZNsthq58Q47O1XRKxlVaPOm5skpQK0h3eooMlJNz4s-rSdequTcPpKdKRfaLiRcZf7x6Dz5fCQf3oVXMCvcQCNPoEcdoJhgzEY2klugDKhFznYo0ETyA1-vtzkxdd923_5hmGH95ZGQNMgJ43kydr4qN_G3Se4-ZZoKvD159mC1Os1rdZJGjHYe6OmcmwZiWqo50MUd5FNK5NHcBvPKIy7wWQ2KMqh9jIEu-HljWRcdSYmgqowD21sDKavW2zH6jKoBnzTAqJn_bpAo3u6jmIMmJjJDiBysMNzRzXBkMPUQAyQa6N5jaHCnOJlXxc1o1RaB09990PYUbiPPs02B48AhuMpRGnzhIxR60ysWFewzXzbfybLl4UkstgS9Xjfhf4N2JBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ST-CenterNet%3A+Small+Target+Detection+Algorithm+with+Adaptive+Data+Enhancement&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Yujie+Guo&rft.au=Xu+Lu&rft.date=2023-03-16&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=25&rft.issue=3&rft.spage=509&rft_id=info:doi/10.3390%2Fe25030509&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4e10e322f2c84991a07e5349b67ee9fe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon