Polarity-switching top coats enable orientation of sub-10-nm block copolymer domains
Block copolymers (BCPs) must necessarily have high interaction parameters (χ), a fundamental measure of block incompatibility, to self-assemble into sub-10-nanometer features. Unfortunately, a high χ often results from blocks that have disparate interfacial energies, which makes the formation of use...
Saved in:
| Published in: | Science (American Association for the Advancement of Science) Vol. 338; no. 6108; p. 775 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
09.11.2012
|
| ISSN: | 1095-9203, 1095-9203 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Block copolymers (BCPs) must necessarily have high interaction parameters (χ), a fundamental measure of block incompatibility, to self-assemble into sub-10-nanometer features. Unfortunately, a high χ often results from blocks that have disparate interfacial energies, which makes the formation of useful thin-film domain orientations challenging. To mitigate interfacial forces, polymers composed of maleic anhydride and two other components have been designed as top coats that can be spin-coated from basic aqueous solution in the ring-opened, acid salt form. When baked, the anhydride reforms and switches polarity to create a neutral layer enabling BCP feature alignment not possible by thermal annealing alone. Top coats were applied to the lamella-forming block copolymers poly(styrene-block-trimethylsilylstyrene-block-styrene) and poly(trimethylsilylstyrene-block-lactide), which were thermally annealed to produce perpendicular features with linewidths of 15 and 9 nanometers, respectively. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1095-9203 1095-9203 |
| DOI: | 10.1126/science.1226046 |