Diffusion‐time dependence of diffusional kurtosis in the mouse brain
Purpose To investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient spin‐echo (OGSE) sequences. Methods 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone‐treated, and age...
Saved in:
| Published in: | Magnetic resonance in medicine Vol. 84; no. 3; pp. 1564 - 1578 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.09.2020
|
| Subjects: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
To investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient spin‐echo (OGSE) sequences.
Methods
3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone‐treated, and age‐matched control mice with diffusion‐time (tD) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b‐values up to 4000 s/mm2. Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency‐dependence of kurtosis with both diffusion‐encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms.
Results
Kurtosis and diffusivity maps exhibited significant region‐specific changes with diffusion time/frequency across both gray and white matter areas. PGSE‐ and OGSE‐based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency‐dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone‐treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed‐ and oscillating‐gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non‐zero permeability.
Conclusion
The results show significant time/frequency‐dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter. |
|---|---|
| AbstractList | To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences.
3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (t
) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to t
= 30 ms with b-values up to 4000 s/mm
. Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms.
Kurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability.
The results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter. PurposeTo investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient spin‐echo (OGSE) sequences.Methods3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone‐treated, and age‐matched control mice with diffusion‐time (tD) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b‐values up to 4000 s/mm2. Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency‐dependence of kurtosis with both diffusion‐encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms.ResultsKurtosis and diffusivity maps exhibited significant region‐specific changes with diffusion time/frequency across both gray and white matter areas. PGSE‐ and OGSE‐based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency‐dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone‐treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed‐ and oscillating‐gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non‐zero permeability.ConclusionThe results show significant time/frequency‐dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter. Purpose To investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient spin‐echo (OGSE) sequences. Methods 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone‐treated, and age‐matched control mice with diffusion‐time (tD) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b‐values up to 4000 s/mm2. Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency‐dependence of kurtosis with both diffusion‐encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms. Results Kurtosis and diffusivity maps exhibited significant region‐specific changes with diffusion time/frequency across both gray and white matter areas. PGSE‐ and OGSE‐based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency‐dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone‐treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed‐ and oscillating‐gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non‐zero permeability. Conclusion The results show significant time/frequency‐dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter. To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences.PURPOSETo investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences.3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (tD ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b-values up to 4000 s/mm2 . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms.METHODS3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (tD ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b-values up to 4000 s/mm2 . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms.Kurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability.RESULTSKurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability.The results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.CONCLUSIONThe results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter. |
| Author | Aggarwal, Manisha Smith, Matthew D. Calabresi, Peter A. |
| AuthorAffiliation | 2 Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA |
| AuthorAffiliation_xml | – name: 2 Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA – name: 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA |
| Author_xml | – sequence: 1 givenname: Manisha orcidid: 0000-0001-5951-3271 surname: Aggarwal fullname: Aggarwal, Manisha email: maggarw2@jhu.edu organization: Johns Hopkins University School of Medicine – sequence: 2 givenname: Matthew D. surname: Smith fullname: Smith, Matthew D. organization: Johns Hopkins University School of Medicine – sequence: 3 givenname: Peter A. surname: Calabresi fullname: Calabresi, Peter A. organization: Johns Hopkins University School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32022313$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1u1DAUhS1URKcDC14ARWIDi7TXP3HiDRIqFJBaISFYW45zTV0Se7ATUHc8As_Ik-AyMwgqkBde3O8cX59zRA5CDEjIQwrHFICdTGk6Zh3t1B2yog1jNWuUOCAraAXUnCpxSI5yvgIApVpxjxxyBoxxylfk7IV3bsk-hh_fvs9-wmrADYYBg8UqumrYj81YfVrSHLPPlQ_VfInVFJeMVZ-MD_fJXWfGjA9295p8OHv5_vR1ff721ZvT5-e1bcrbdSMZItKOUqqG3nKKDmxjmbI4MNcwq5SRzMEg-1aCk45JS1XHATrZc9PyNXm29d0s_YSDxTAnM-pN8pNJ1zoar_-eBH-pP8YvumWSq3LW5MnOIMXPC-ZZTz5bHEcTsHxHM95Q0VEhb9DHt9CruKQSRKEEtJ2ArhGFevTnRr9X2UdcgJMtYFPMOaHT1s9mLpGWBf2oKeibEnUpUf8qsSie3lLsTf_F7ty_-hGv_w_qi3cXW8VPcT6spA |
| CitedBy_id | crossref_primary_10_1016_j_mri_2021_10_001 crossref_primary_10_1162_IMAG_a_35 crossref_primary_10_1016_j_neuroimage_2025_121141 crossref_primary_10_7554_eLife_95873_3 crossref_primary_10_7554_eLife_95873 crossref_primary_10_1016_j_neuroimage_2022_118976 crossref_primary_10_1002_nbm_4496 crossref_primary_10_1371_journal_pone_0255711 crossref_primary_10_1002_mrm_29473 crossref_primary_10_7554_eLife_90465_3 crossref_primary_10_1631_jzus_A2400139 crossref_primary_10_1016_j_neuroimage_2023_120409 crossref_primary_10_7554_eLife_90465 crossref_primary_10_1109_JBHI_2024_3417259 crossref_primary_10_1016_j_cobeha_2024_101353 crossref_primary_10_1016_j_heliyon_2024_e26391 crossref_primary_10_1162_imag_a_00123 crossref_primary_10_1016_j_neuroimage_2023_120328 crossref_primary_10_1016_j_neuroimage_2022_119277 crossref_primary_10_1016_j_neuroimage_2023_120124 crossref_primary_10_1002_mrm_30298 crossref_primary_10_1016_j_neuroimage_2023_119930 crossref_primary_10_1002_mrm_30510 crossref_primary_10_1002_mrm_30335 crossref_primary_10_1002_mrm_30435 crossref_primary_10_1002_mrm_30635 crossref_primary_10_1002_mrm_30429 crossref_primary_10_1002_nbm_70011 crossref_primary_10_3390_math9141688 crossref_primary_10_1088_1361_6560_acbde0 crossref_primary_10_1016_j_neuroimage_2021_118424 crossref_primary_10_3389_fphy_2021_793966 crossref_primary_10_1002_mrm_29720 crossref_primary_10_1038_s41598_025_93084_4 crossref_primary_10_1016_j_neuroimage_2020_117054 crossref_primary_10_1162_imag_a_00335 crossref_primary_10_1063_5_0213252 crossref_primary_10_1002_mrm_29926 crossref_primary_10_1162_imag_a_00055 |
| Cites_doi | 10.1002/cne.902910110 10.1002/mrm.25865 10.1002/nbm.1577 10.1002/mrm.24325 10.1146/annurev.bioeng.4.092101.125733 10.1109/TMI.2009.2015756 10.1002/nbm.3998 10.1560/E0WU-7FFH-31M6-VLYT 10.1016/j.neuroscience.2009.05.070 10.1007/978-3-662-02728-8 10.1002/mrm.22981 10.1016/j.neuroimage.2017.08.039 10.1016/j.dib.2015.08.022 10.1016/0921-4526(93)90124-O 10.1103/PhysRevB.47.8565 10.1016/j.jmr.2013.06.016 10.1097/NEN.0b013e3182482590 10.1016/j.neuroimage.2014.04.013 10.1002/nbm.783 10.1002/mrm.24987 10.1016/j.neuroimage.2016.08.022 10.1002/mrm.22426 10.1016/j.neuroimage.2011.07.050 10.1016/j.neuroimage.2015.10.052 10.1002/mrm.10385 10.1002/mrm.24632 10.1016/j.neuroimage.2012.12.036 10.1002/mrm.1910350319 10.1002/mrm.20508 10.1089/neu.2011.1763 10.1006/jmra.1995.9959 10.1002/mrm.26356 10.1002/mrm.24921 10.1002/nbm.1506 10.1007/s10334-013-0371-x 10.1002/nbm.1531 10.54294/fgfrtv 10.1002/mrm.22655 10.1016/j.neuroimage.2018.06.046 10.1073/pnas.91.4.1229 10.1002/mrm.25724 10.1002/mrm.20732 10.1016/j.jmr.2010.05.017 10.1016/j.jmr.2012.11.021 10.1016/j.neuroimage.2015.09.028 10.1002/nbm.3917 10.1007/978-94-007-1333-8_31 10.1016/j.neuroimage.2017.02.013 10.1002/nbm.3140 10.1093/med/9780195369779.003.0010 10.1016/j.jmr.2011.02.011 10.1161/STROKEAHA.114.006782 10.1002/nbm.1518 10.1016/S0079-6123(07)63001-5 10.1371/journal.pone.0179276 10.1161/STROKEAHA.112.657742 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q 10.1002/mrm.24956 10.1002/mrm.1910370115 10.1002/nbm.778 10.1016/0001-8686(85)80018-X |
| ContentType | Journal Article |
| Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.28189 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Biochemistry Abstracts 1 MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 1578 |
| ExternalDocumentID | PMC7263939 32022313 10_1002_mrm_28189 MRM28189 |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health funderid: R01AG057991; R21NS096249 – fundername: NIA NIH HHS grantid: R01 AG057991 – fundername: NINDS NIH HHS grantid: R01 NS082347 – fundername: NINDS NIH HHS grantid: R21 NS096249 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c5099-562eee181119dbc31ef0c5c29ced2f52c99a62f0d6b760f6f26c19830086b3a73 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511006100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Aug 21 13:23:10 EDT 2025 Fri Jul 11 15:57:41 EDT 2025 Sat Nov 29 14:43:37 EST 2025 Mon Jul 21 05:59:28 EDT 2025 Sat Nov 29 02:37:49 EST 2025 Tue Nov 18 22:37:41 EST 2025 Wed Jan 22 16:33:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | pulsed gradient permeability oscillating gradient diffusion time brain kurtosis non-Gaussian diffusion |
| Language | English |
| License | 2020 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5099-562eee181119dbc31ef0c5c29ced2f52c99a62f0d6b760f6f26c19830086b3a73 |
| Notes | Funding information p This study was supported by the National Institutes of Health (NIH) grants R21NS096249 (to M.A.) and R01AG057991 (to M.A.) Correction added after online publication 18 February, 2020. Due to publisher's error, the authors have corrected the permeablity values from “P” to ] ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5951-3271 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7263939 |
| PMID | 32022313 |
| PQID | 2407840854 |
| PQPubID | 1016391 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7263939 proquest_miscellaneous_2351481469 proquest_journals_2407840854 pubmed_primary_32022313 crossref_citationtrail_10_1002_mrm_28189 crossref_primary_10_1002_mrm_28189 wiley_primary_10_1002_mrm_28189_MRM28189 |
| PublicationCentury | 2000 |
| PublicationDate | September 2020 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2002; 15 2013; 26 2013; 69 2014; 27 2016; 76 2016; 75 2013; 70 2017; 150 1999; 42 2012; 59 1996; 35 1985; 23 2016; 142 2010; 23 2015; 46 2012; 71 2010; 64 2017; 78 1990; 291 2003; 49 2011; 65 2013; 234 2012; 29 2009; 162 2012; 67 2018; 31 2003; 43 2014; 97 1993; 47 2018; 182 2015; 5 2010; 206 2010 2019; 32 2006; 55 2007; 163 2013; 227 2016; 124 1993; 183 2009 1995; 117 2002; 4 2006 2016; 125 1991 2011; 210 2009; 28 1997; 37 2017; 12 2005; 53 2013 1994; 91 2014; 72 2014; 71 2012; 43 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 76 start-page: 237 year: 2016 end-page: 247 article-title: Surface‐to‐volume ratio mapping of tumor microstructure using oscillating gradient diffusion weighted imaging publication-title: Magn Reson Med – volume: 206 start-page: 41 year: 2010 end-page: 51 article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion‐weighted MR publication-title: J Magn Reson – year: 2009 – volume: 117 start-page: 118 year: 1995 end-page: 122 article-title: Frequency‐domain analysis of spin motion using modulated‐gradient NMR publication-title: J Magn Reson A – volume: 46 start-page: 545 year: 2015 end-page: 550 article-title: Diffusional kurtosis and diffusion tensor imaging reveal different time‐sensitive stroke‐induced microstructural changes publication-title: Stroke – volume: 42 start-page: 515 year: 1999 end-page: 525 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn Reson Med – volume: 291 start-page: 147 year: 1990 end-page: 161 article-title: Maturation of the corpus callosum of the rat: II. Influence of thyroid hormones on the number and maturation of axons publication-title: J Comp Neurol – volume: 163 start-page: 3 year: 2007 end-page: 22 article-title: The dentate gyrus: fundamental neuroanatomical organization publication-title: Prog Brain Res – volume: 125 start-page: 363 year: 2016 end-page: 377 article-title: Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination publication-title: NeuroImage – volume: 210 start-page: 141 year: 2011 end-page: 145 article-title: Surface‐to‐volume ratio with oscillating gradients publication-title: J Magn Reson – volume: 162 start-page: 1339 year: 2009 end-page: 1350 article-title: Magnetic resonance imaging and micro‐computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery publication-title: Neuroscience – volume: 124 start-page: 612 issue: Pt A year: 2016 end-page: 626 article-title: Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains publication-title: NeuroImage – volume: 43 start-page: 33 year: 2003 end-page: 44 article-title: Diffusion MR in biological systems: tissue compartments and exchange publication-title: Isr J Chem – volume: 142 start-page: 381 year: 2016 end-page: 393 article-title: Fast imaging of mean, axial and radial diffusion kurtosis publication-title: NeuroImage – volume: 182 start-page: 39 year: 2018 end-page: 61 article-title: Physical and numerical phantoms for the validation of brain microstructural MRI: a cookbook publication-title: NeuroImage – volume: 97 start-page: 363 year: 2014 end-page: 373 article-title: Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology publication-title: NeuroImage – volume: 150 start-page: 119 year: 2017 end-page: 135 article-title: Machine learning based compartment models with permeability for white matter microstructure imaging publication-title: NeuroImage – volume: 72 start-page: 492 year: 2014 end-page: 500 article-title: Relationship between the diffusion time and the diffusion MRI signal observed at 17.2 Tesla in the healthy rat brain cortex publication-title: Magn Reson Med – volume: 71 start-page: 83 year: 2014 end-page: 94 article-title: In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding publication-title: Magn Reson Med – volume: 12 year: 2017 article-title: Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms publication-title: PLoS ONE – start-page: 765 year: 2013 end-page: 791 – volume: 75 start-page: 1927 year: 2016 end-page: 1934 article-title: Time‐dependent influence of cell membrane permeability on MR Diffusion measurements publication-title: Magn Reson Med – volume: 23 start-page: 698 year: 2010 end-page: 710 article-title: MRI quantification of non‐Gaussian water diffusion by kurtosis analysis publication-title: NMR Biomed – volume: 182 start-page: 329 year: 2018 end-page: 342 article-title: Diffusion time dependence of microstructural parameters in fixed spinal cord publication-title: NeuroImage – volume: 47 start-page: 8565 issue: 14 year: 1993 end-page: 8574 article-title: Short‐time behavior of the diffusion coefficient as a geometrical probe of porous media publication-title: Phys Rev B Condens Matter – volume: 43 start-page: 2968 issue: 11 year: 2012 end-page: 2973 article-title: Stroke assessment with diffusional kurtosis imaging publication-title: Stroke – volume: 23 start-page: 711 year: 2010 end-page: 724 article-title: Monte Carlo study of a two‐compartment exchange model of diffusion publication-title: NMR Biomed – volume: 32 year: 2019 article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation publication-title: NMR Biomed – volume: 55 start-page: 75 year: 2006 end-page: 84 article-title: Temporal diffusion spectroscopy: theory and implementation in restricted systems using oscillating gradients publication-title: Magn Reson Med – volume: 59 start-page: 467 year: 2012 end-page: 477 article-title: Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury publication-title: NeuroImage – volume: 64 start-page: 249 year: 2010 end-page: 261 article-title: Three‐dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain publication-title: Magn Reson Med – volume: 71 start-page: 198 year: 2012 end-page: 210 article-title: Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury publication-title: J Neuropathol Exp Neurol – volume: 72 start-page: 726 year: 2014 end-page: 736 article-title: Oscillating gradient spin‐echo (OGSE) diffusion tensor imaging of the human brain publication-title: Magn Reson Med – volume: 234 start-page: 135 year: 2013 end-page: 140 article-title: Exact analytical results for ADC with oscillating diffusion sensitizing gradients publication-title: J Magn Reson – volume: 31 year: 2018 article-title: Oscillating gradient diffusion kurtosis imaging of normal and injured mouse brains publication-title: NMR Biomed – volume: 23 start-page: 836 year: 2010 end-page: 848 article-title: MR diffusion kurtosis imaging for neural tissue characterization publication-title: NMR Biomed – volume: 26 start-page: 345 year: 2013 end-page: 370 article-title: The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter publication-title: MAGMA – volume: 227 start-page: 25 year: 2013 end-page: 34 article-title: Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI publication-title: J Magn Reson – volume: 27 start-page: 948 year: 2014 end-page: 957 article-title: Histological correlation of diffusional kurtosis and white matter modeling metrics in cuprizone‐induced corpus callosum demyelination publication-title: NMR Biomed – volume: 53 start-page: 1432 year: 2005 end-page: 1440 article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn Reson Med – volume: 70 start-page: 10 year: 2013 end-page: 20 article-title: Systematic changes to the apparent diffusion tensor of in vivo rat brain measured with an oscillating‐gradient spin‐echo sequence publication-title: NeuroImage – volume: 29 start-page: 2318 issue: 13 year: 2012 end-page: 2327 article-title: Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study publication-title: J Neurotrauma – volume: 28 start-page: 1354 year: 2009 end-page: 1364 article-title: Convergence and parameter choice for Monte‐Carlo simulations of diffusion MRI publication-title: IEEE Trans Med Imaging – year: 2010 – volume: 72 start-page: 829 year: 2014 end-page: 840 article-title: Imaging neurodegeneration in the mouse hippocampus after neonatal hypoxia‐ischemia using oscillating gradient diffusion MRI publication-title: Magn Reson Med – volume: 183 start-page: 343 year: 1993 end-page: 350 article-title: Time‐dependent self‐diffusion by NMR spin‐echo publication-title: Physica B Condens Matter – volume: 5 start-page: 124 year: 2015 end-page: 128 article-title: Quantitative analysis of mouse corpus callosum from electron microscopy images publication-title: Data Brief – volume: 4 start-page: 375 year: 2002 end-page: 405 article-title: On the metrics and euler‐lagrange equations of computational anatomy publication-title: Annu Rev Biomed Eng – volume: 15 start-page: 456 year: 2002 end-page: 467 article-title: Diffusion‐tensor MRI: theory, experimental design and data analysis ‐ a technical review publication-title: NMR Biomed – volume: 23 start-page: 745 year: 2010 end-page: 756 article-title: Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy publication-title: NMR Biomed – year: 2006 – volume: 23 start-page: 129 year: 1985 end-page: 148 article-title: NMR self‐diffusion studies in heterogeneous systems publication-title: Adv Colloid Interface Sci – volume: 91 start-page: 1229 year: 1994 end-page: 1233 article-title: Time‐dependent diffusion of water in a biological model system publication-title: Proc Natl Acad Sci USA – volume: 65 start-page: 823 year: 2011 end-page: 836 article-title: Estimation of tensors and tensor‐derived measures in diffusional kurtosis imaging publication-title: Magn Reson Med – volume: 35 start-page: 399 year: 1996 end-page: 412 article-title: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results publication-title: Magn Reson Med – volume: 67 start-page: 98 year: 2012 end-page: 109 article-title: Probing mouse brain microstructure using oscillating gradient diffusion MRI publication-title: Magn Reson Med – volume: 49 start-page: 206 year: 2003 end-page: 215 article-title: Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain publication-title: Magn Reson Med – volume: 78 start-page: 156 year: 2017 end-page: 164 article-title: In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy publication-title: Magn Reson Med – volume: 69 start-page: 1131 year: 2013 end-page: 1145 article-title: Oscillating and pulsed gradient diffusion magnetic resonance microscopy over an extended b‐value range: implications for the characterization of tissue microstructure publication-title: Magn Reson Med – year: 1991 – volume: 37 start-page: 103 year: 1997 end-page: 111 article-title: An analytical model of restricted diffusion in bovine optic nerve publication-title: Magn Reson Med – volume: 15 start-page: 516 year: 2002 end-page: 542 article-title: High b‐value q‐space analyzed diffusion‐weighted MRS and MRI in neuronal tissues ‐ a technical review publication-title: NMR Biomed – ident: e_1_2_6_58_1 doi: 10.1002/cne.902910110 – ident: e_1_2_6_28_1 doi: 10.1002/mrm.25865 – ident: e_1_2_6_40_1 – ident: e_1_2_6_31_1 doi: 10.1002/nbm.1577 – ident: e_1_2_6_32_1 doi: 10.1002/mrm.24325 – ident: e_1_2_6_42_1 doi: 10.1146/annurev.bioeng.4.092101.125733 – ident: e_1_2_6_45_1 doi: 10.1109/TMI.2009.2015756 – ident: e_1_2_6_18_1 doi: 10.1002/nbm.3998 – ident: e_1_2_6_46_1 doi: 10.1560/E0WU-7FFH-31M6-VLYT – ident: e_1_2_6_43_1 doi: 10.1016/j.neuroscience.2009.05.070 – ident: e_1_2_6_49_1 doi: 10.1007/978-3-662-02728-8 – ident: e_1_2_6_23_1 doi: 10.1002/mrm.22981 – ident: e_1_2_6_34_1 doi: 10.1016/j.neuroimage.2017.08.039 – ident: e_1_2_6_55_1 doi: 10.1016/j.dib.2015.08.022 – ident: e_1_2_6_16_1 doi: 10.1016/0921-4526(93)90124-O – ident: e_1_2_6_51_1 doi: 10.1103/PhysRevB.47.8565 – ident: e_1_2_6_63_1 – ident: e_1_2_6_52_1 doi: 10.1016/j.jmr.2013.06.016 – ident: e_1_2_6_57_1 doi: 10.1097/NEN.0b013e3182482590 – ident: e_1_2_6_10_1 doi: 10.1016/j.neuroimage.2014.04.013 – ident: e_1_2_6_2_1 doi: 10.1002/nbm.783 – ident: e_1_2_6_25_1 doi: 10.1002/mrm.24987 – ident: e_1_2_6_62_1 doi: 10.1016/j.neuroimage.2016.08.022 – ident: e_1_2_6_35_1 doi: 10.1002/mrm.22426 – ident: e_1_2_6_7_1 doi: 10.1016/j.neuroimage.2011.07.050 – ident: e_1_2_6_12_1 doi: 10.1016/j.neuroimage.2015.10.052 – ident: e_1_2_6_22_1 doi: 10.1002/mrm.10385 – ident: e_1_2_6_24_1 doi: 10.1002/mrm.24632 – ident: e_1_2_6_27_1 doi: 10.1016/j.neuroimage.2012.12.036 – ident: e_1_2_6_39_1 doi: 10.1002/mrm.1910350319 – ident: e_1_2_6_3_1 doi: 10.1002/mrm.20508 – ident: e_1_2_6_8_1 doi: 10.1089/neu.2011.1763 – ident: e_1_2_6_61_1 doi: 10.1006/jmra.1995.9959 – ident: e_1_2_6_29_1 doi: 10.1002/mrm.26356 – ident: e_1_2_6_33_1 doi: 10.1002/mrm.24921 – ident: e_1_2_6_15_1 doi: 10.1002/nbm.1506 – ident: e_1_2_6_19_1 doi: 10.1007/s10334-013-0371-x – ident: e_1_2_6_20_1 doi: 10.1002/nbm.1531 – ident: e_1_2_6_44_1 doi: 10.54294/fgfrtv – ident: e_1_2_6_41_1 doi: 10.1002/mrm.22655 – ident: e_1_2_6_64_1 doi: 10.1016/j.neuroimage.2018.06.046 – ident: e_1_2_6_17_1 doi: 10.1073/pnas.91.4.1229 – ident: e_1_2_6_30_1 doi: 10.1002/mrm.25724 – ident: e_1_2_6_37_1 doi: 10.1002/mrm.20732 – ident: e_1_2_6_21_1 doi: 10.1016/j.jmr.2010.05.017 – ident: e_1_2_6_36_1 doi: 10.1016/j.jmr.2012.11.021 – ident: e_1_2_6_13_1 doi: 10.1016/j.neuroimage.2015.09.028 – ident: e_1_2_6_60_1 doi: 10.1002/nbm.3917 – ident: e_1_2_6_48_1 doi: 10.1007/978-94-007-1333-8_31 – ident: e_1_2_6_59_1 doi: 10.1016/j.neuroimage.2017.02.013 – ident: e_1_2_6_14_1 doi: 10.1002/nbm.3140 – ident: e_1_2_6_6_1 doi: 10.1093/med/9780195369779.003.0010 – ident: e_1_2_6_53_1 doi: 10.1016/j.jmr.2011.02.011 – ident: e_1_2_6_11_1 doi: 10.1161/STROKEAHA.114.006782 – ident: e_1_2_6_4_1 doi: 10.1002/nbm.1518 – ident: e_1_2_6_50_1 doi: 10.1016/S0079-6123(07)63001-5 – ident: e_1_2_6_47_1 doi: 10.1371/journal.pone.0179276 – ident: e_1_2_6_9_1 doi: 10.1161/STROKEAHA.112.657742 – ident: e_1_2_6_38_1 doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – ident: e_1_2_6_26_1 doi: 10.1002/mrm.24956 – ident: e_1_2_6_56_1 doi: 10.1002/mrm.1910370115 – ident: e_1_2_6_5_1 doi: 10.1002/nbm.778 – ident: e_1_2_6_54_1 doi: 10.1016/0001-8686(85)80018-X |
| SSID | ssj0009974 |
| Score | 2.5234091 |
| Snippet | Purpose
To investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient... To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo... PurposeTo investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1564 |
| SubjectTerms | Animals Brain Brain - diagnostic imaging Cerebellum Cerebral cortex Computer simulation Corpus Callosum Cuprizone Data acquisition Demyelination Diffusion Diffusion Magnetic Resonance Imaging diffusion time Heterogeneity Kurtosis Mathematical analysis Mice non‐Gaussian diffusion oscillating gradient Permeability pulsed gradient Sensitivity Simulation Substantia alba Substantia grisea Tensors Time dependence Waveforms White Matter |
| Title | Diffusion‐time dependence of diffusional kurtosis in the mouse brain |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28189 https://www.ncbi.nlm.nih.gov/pubmed/32022313 https://www.proquest.com/docview/2407840854 https://www.proquest.com/docview/2351481469 https://pubmed.ncbi.nlm.nih.gov/PMC7263939 |
| Volume | 84 |
| WOSCitedRecordID | wos000511006100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VAhWXAoXClrIyiAOXbRPb64d6QpQVSOwKVVTsLXIcW0TQLNrscuYn8Bv5JfU4j7IqSEjcIs3EccYez8P2NwAvpE0SwwoTYpOg5NxpN1Jc0xHjqhCFpCqnJhabkLOZms_1hy046e7CNPgQfcINNSOu16jgJq-Pr0BDL5YXRwhlhJf3Uh6V8tO72RXgrm4QmCXHdUbzDlUoocf9m5u26JqDef2c5O_-azRAk7v_1fV7sNv6neRVM1Huw5ar9mBn2u6s78HteBTU1g9gclp6v8Yk2q8fP7H0POkK5VpHFp4UHTk092W9XC3qsiZlRYInSTCP4EiOZScewvnkzcfXb0dttYWRHSNMZ3CEnHPB4KepLnLLUucTO7ZUW1dQP6ZWayOoTwqRS5F44amwqVYMg6KcGcn2YbtaVO4xkNz5YPK4cgXn3OZKWQzcqBFMmNQLPYCXndwz20KRY0WMr1kDokyzIKEsSmgAz3vWbw3-xp-YDrvBy1oVrDMMVRXit_EBPOvJQXlwR8RULggko3iPAZOgoYlHzVj3X8HC8sH5ZQOQG7OgZ0Bg7k1KVX6OAN2SBr-P4W_GWfD3jmfTs2l8OPh31idwh2LMH8-5HcL2arl2T-GW_b4q6-UQbsi5GsLN07PJ-fthVIlLJeoNlQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLRQuFEqhCwUM4sBlaWJ7HVvqBVFWrdhdoaqVerMSxxYRNIs2u5x5hD5jn6Qe56ddFSQkbpE8cZzxjOfH9jcA7xITRSnLUx-beCXnVtmB5IoOGJe5yBMqM5qGYhPJdCrPztTXNdhv78LU-BBdwg01I6zXqOCYkN67Rg09n59_QCwjdQfWuRejYQ_WD45Hp-Nr0F1VozAnHNcaxVtkoYjudS-v2qNbTubts5I3fdhghEab_zf8R_CwcT7Jx1paHsOaLbdgY9Jsr2_BvXAe1FRPYHRQOLfETNrl7wusP0_aarnGkpkjedvsu_u-nC9mVVGRoiTenSSYTLAkw9oT23A6-nzy6XDQlFwYmCFidXpvyFrrrX4cqzwzLLYuMkNDlbE5dUNqlEoFdVEuskRETjgqTKwkw8goY2nCnkKvnJV2B0hmnbd7XNqcc24yKQ1GbzQVTKSxE6oP71vGa9PgkWNZjB-6RlKm2nNIBw714W1H-rMG4fgT0W47e7rRw0pjvCoRxI334U3X7DUIt0XS0nqGaIqXGTAT6rt4Vk929xWsLu89YNaHZEUMOgJE515tKYtvAaU7od75Y_ibQQz-PnA9OZ6Eh-f_Tvoa7h-eTMZ6fDT98gIeUEwChINvu9BbzJf2Jdw1vxZFNX_V6MQVYtAQWQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiouPMproYBBHLgsTWyvY0tcEEsEoruqKir1ZiV-iAiarTa7nPkJ_EZ-CR7nUVYFCYlbpJk4ztjjedj-BuBFZpKkYLYIsUlQcu6UG0uu6JhxaYXNqCxpEYtNZPO5PD1VR1vwur8L0-JDDAk31Iy4XqOCu3PrDy5QQ8-WZ68Qy0hdgR0-USKo5c70OD85vADdVS0Kc8ZxrVG8RxZK6MHw8qY9uuRkXj4r-bsPG41QfvP_un8LbnTOJ3nTzpbbsOXqPdidddvre3Atngc1zR3Ip5X3a8yk_fz-A-vPk75arnFk4YntyaG5L-vlatFUDalqEtxJgskER0qsPXEXTvJ3n96-H3clF8ZmglidwRtyzgWrn6bKloalzidmYqgyzlI_oUapQlCfWFFmIvHCU2FSJRlGRiUrMnYPtutF7R4AKZ0Pdo9LZznnppTSYPRGC8FEkXqhRvCyF7w2HR45lsX4qlskZaqDhHSU0AieD6znLQjHn5j2-9HTnR42GuNViSBufATPBnLQINwWKWoXBKIpXmbATGho4n472MNXsLp88IDZCLKNaTAwIDr3JqWuPkeU7owG54_hb8Zp8PeO69nxLD48_HfWp7B7NM314Yf5x0dwnWIOIJ5724ft1XLtHsNV821VNcsnnUr8AtgCD9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion%E2%80%90time+dependence+of+diffusional+kurtosis+in+the+mouse+brain&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Aggarwal%2C+Manisha&rft.au=Smith%2C+Matthew+D.&rft.au=Calabresi%2C+Peter+A.&rft.date=2020-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=84&rft.issue=3&rft.spage=1564&rft.epage=1578&rft_id=info:doi/10.1002%2Fmrm.28189&rft.externalDBID=10.1002%252Fmrm.28189&rft.externalDocID=MRM28189 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |