Diffusion‐time dependence of diffusional kurtosis in the mouse brain

Purpose To investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient spin‐echo (OGSE) sequences. Methods 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone‐treated, and age...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 84; no. 3; pp. 1564 - 1578
Main Authors: Aggarwal, Manisha, Smith, Matthew D., Calabresi, Peter A.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.09.2020
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient spin‐echo (OGSE) sequences. Methods 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone‐treated, and age‐matched control mice with diffusion‐time (tD) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b‐values up to 4000 s/mm2. Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency‐dependence of kurtosis with both diffusion‐encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms. Results Kurtosis and diffusivity maps exhibited significant region‐specific changes with diffusion time/frequency across both gray and white matter areas. PGSE‐ and OGSE‐based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency‐dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone‐treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed‐ and oscillating‐gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non‐zero permeability. Conclusion The results show significant time/frequency‐dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.
AbstractList To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences. 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (t ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to t = 30 ms with b-values up to 4000 s/mm . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms. Kurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability. The results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.
PurposeTo investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient spin‐echo (OGSE) sequences.Methods3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone‐treated, and age‐matched control mice with diffusion‐time (tD) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b‐values up to 4000 s/mm2. Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency‐dependence of kurtosis with both diffusion‐encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms.ResultsKurtosis and diffusivity maps exhibited significant region‐specific changes with diffusion time/frequency across both gray and white matter areas. PGSE‐ and OGSE‐based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency‐dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone‐treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed‐ and oscillating‐gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non‐zero permeability.ConclusionThe results show significant time/frequency‐dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.
Purpose To investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient spin‐echo (OGSE) sequences. Methods 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone‐treated, and age‐matched control mice with diffusion‐time (tD) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b‐values up to 4000 s/mm2. Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency‐dependence of kurtosis with both diffusion‐encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms. Results Kurtosis and diffusivity maps exhibited significant region‐specific changes with diffusion time/frequency across both gray and white matter areas. PGSE‐ and OGSE‐based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency‐dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone‐treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed‐ and oscillating‐gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non‐zero permeability. Conclusion The results show significant time/frequency‐dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.
To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences.PURPOSETo investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences.3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (tD ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b-values up to 4000 s/mm2 . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms.METHODS3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (tD ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b-values up to 4000 s/mm2 . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms.Kurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability.RESULTSKurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability.The results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.CONCLUSIONThe results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.
Author Aggarwal, Manisha
Smith, Matthew D.
Calabresi, Peter A.
AuthorAffiliation 2 Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
AuthorAffiliation_xml – name: 2 Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
– name: 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Author_xml – sequence: 1
  givenname: Manisha
  orcidid: 0000-0001-5951-3271
  surname: Aggarwal
  fullname: Aggarwal, Manisha
  email: maggarw2@jhu.edu
  organization: Johns Hopkins University School of Medicine
– sequence: 2
  givenname: Matthew D.
  surname: Smith
  fullname: Smith, Matthew D.
  organization: Johns Hopkins University School of Medicine
– sequence: 3
  givenname: Peter A.
  surname: Calabresi
  fullname: Calabresi, Peter A.
  organization: Johns Hopkins University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32022313$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKcDC14ARWIDi7TXP3HiDRIqFJBaISFYW45zTV0Se7ATUHc8As_Ik-AyMwgqkBde3O8cX59zRA5CDEjIQwrHFICdTGk6Zh3t1B2yog1jNWuUOCAraAXUnCpxSI5yvgIApVpxjxxyBoxxylfk7IV3bsk-hh_fvs9-wmrADYYBg8UqumrYj81YfVrSHLPPlQ_VfInVFJeMVZ-MD_fJXWfGjA9295p8OHv5_vR1ff721ZvT5-e1bcrbdSMZItKOUqqG3nKKDmxjmbI4MNcwq5SRzMEg-1aCk45JS1XHATrZc9PyNXm29d0s_YSDxTAnM-pN8pNJ1zoar_-eBH-pP8YvumWSq3LW5MnOIMXPC-ZZTz5bHEcTsHxHM95Q0VEhb9DHt9CruKQSRKEEtJ2ArhGFevTnRr9X2UdcgJMtYFPMOaHT1s9mLpGWBf2oKeibEnUpUf8qsSie3lLsTf_F7ty_-hGv_w_qi3cXW8VPcT6spA
CitedBy_id crossref_primary_10_1016_j_mri_2021_10_001
crossref_primary_10_1162_IMAG_a_35
crossref_primary_10_1016_j_neuroimage_2025_121141
crossref_primary_10_7554_eLife_95873_3
crossref_primary_10_7554_eLife_95873
crossref_primary_10_1016_j_neuroimage_2022_118976
crossref_primary_10_1002_nbm_4496
crossref_primary_10_1371_journal_pone_0255711
crossref_primary_10_1002_mrm_29473
crossref_primary_10_7554_eLife_90465_3
crossref_primary_10_1631_jzus_A2400139
crossref_primary_10_1016_j_neuroimage_2023_120409
crossref_primary_10_7554_eLife_90465
crossref_primary_10_1109_JBHI_2024_3417259
crossref_primary_10_1016_j_cobeha_2024_101353
crossref_primary_10_1016_j_heliyon_2024_e26391
crossref_primary_10_1162_imag_a_00123
crossref_primary_10_1016_j_neuroimage_2023_120328
crossref_primary_10_1016_j_neuroimage_2022_119277
crossref_primary_10_1016_j_neuroimage_2023_120124
crossref_primary_10_1002_mrm_30298
crossref_primary_10_1016_j_neuroimage_2023_119930
crossref_primary_10_1002_mrm_30510
crossref_primary_10_1002_mrm_30335
crossref_primary_10_1002_mrm_30435
crossref_primary_10_1002_mrm_30635
crossref_primary_10_1002_mrm_30429
crossref_primary_10_1002_nbm_70011
crossref_primary_10_3390_math9141688
crossref_primary_10_1088_1361_6560_acbde0
crossref_primary_10_1016_j_neuroimage_2021_118424
crossref_primary_10_3389_fphy_2021_793966
crossref_primary_10_1002_mrm_29720
crossref_primary_10_1038_s41598_025_93084_4
crossref_primary_10_1016_j_neuroimage_2020_117054
crossref_primary_10_1162_imag_a_00335
crossref_primary_10_1063_5_0213252
crossref_primary_10_1002_mrm_29926
crossref_primary_10_1162_imag_a_00055
Cites_doi 10.1002/cne.902910110
10.1002/mrm.25865
10.1002/nbm.1577
10.1002/mrm.24325
10.1146/annurev.bioeng.4.092101.125733
10.1109/TMI.2009.2015756
10.1002/nbm.3998
10.1560/E0WU-7FFH-31M6-VLYT
10.1016/j.neuroscience.2009.05.070
10.1007/978-3-662-02728-8
10.1002/mrm.22981
10.1016/j.neuroimage.2017.08.039
10.1016/j.dib.2015.08.022
10.1016/0921-4526(93)90124-O
10.1103/PhysRevB.47.8565
10.1016/j.jmr.2013.06.016
10.1097/NEN.0b013e3182482590
10.1016/j.neuroimage.2014.04.013
10.1002/nbm.783
10.1002/mrm.24987
10.1016/j.neuroimage.2016.08.022
10.1002/mrm.22426
10.1016/j.neuroimage.2011.07.050
10.1016/j.neuroimage.2015.10.052
10.1002/mrm.10385
10.1002/mrm.24632
10.1016/j.neuroimage.2012.12.036
10.1002/mrm.1910350319
10.1002/mrm.20508
10.1089/neu.2011.1763
10.1006/jmra.1995.9959
10.1002/mrm.26356
10.1002/mrm.24921
10.1002/nbm.1506
10.1007/s10334-013-0371-x
10.1002/nbm.1531
10.54294/fgfrtv
10.1002/mrm.22655
10.1016/j.neuroimage.2018.06.046
10.1073/pnas.91.4.1229
10.1002/mrm.25724
10.1002/mrm.20732
10.1016/j.jmr.2010.05.017
10.1016/j.jmr.2012.11.021
10.1016/j.neuroimage.2015.09.028
10.1002/nbm.3917
10.1007/978-94-007-1333-8_31
10.1016/j.neuroimage.2017.02.013
10.1002/nbm.3140
10.1093/med/9780195369779.003.0010
10.1016/j.jmr.2011.02.011
10.1161/STROKEAHA.114.006782
10.1002/nbm.1518
10.1016/S0079-6123(07)63001-5
10.1371/journal.pone.0179276
10.1161/STROKEAHA.112.657742
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
10.1002/mrm.24956
10.1002/mrm.1910370115
10.1002/nbm.778
10.1016/0001-8686(85)80018-X
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28189
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biochemistry Abstracts 1

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1578
ExternalDocumentID PMC7263939
32022313
10_1002_mrm_28189
MRM28189
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01AG057991; R21NS096249
– fundername: NIA NIH HHS
  grantid: R01 AG057991
– fundername: NINDS NIH HHS
  grantid: R01 NS082347
– fundername: NINDS NIH HHS
  grantid: R21 NS096249
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c5099-562eee181119dbc31ef0c5c29ced2f52c99a62f0d6b760f6f26c19830086b3a73
IEDL.DBID WIN
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511006100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 13:23:10 EDT 2025
Fri Jul 11 15:57:41 EDT 2025
Sat Nov 29 14:43:37 EST 2025
Mon Jul 21 05:59:28 EDT 2025
Sat Nov 29 02:37:49 EST 2025
Tue Nov 18 22:37:41 EST 2025
Wed Jan 22 16:33:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords pulsed gradient
permeability
oscillating gradient
diffusion time
brain
kurtosis
non-Gaussian diffusion
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5099-562eee181119dbc31ef0c5c29ced2f52c99a62f0d6b760f6f26c19830086b3a73
Notes Funding information
p
This study was supported by the National Institutes of Health (NIH) grants R21NS096249 (to M.A.) and R01AG057991 (to M.A.)
Correction added after online publication 18 February, 2020. Due to publisher's error, the authors have corrected the permeablity values from “P” to
]
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5951-3271
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7263939
PMID 32022313
PQID 2407840854
PQPubID 1016391
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7263939
proquest_miscellaneous_2351481469
proquest_journals_2407840854
pubmed_primary_32022313
crossref_citationtrail_10_1002_mrm_28189
crossref_primary_10_1002_mrm_28189
wiley_primary_10_1002_mrm_28189_MRM28189
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 15
2013; 26
2013; 69
2014; 27
2016; 76
2016; 75
2013; 70
2017; 150
1999; 42
2012; 59
1996; 35
1985; 23
2016; 142
2010; 23
2015; 46
2012; 71
2010; 64
2017; 78
1990; 291
2003; 49
2011; 65
2013; 234
2012; 29
2009; 162
2012; 67
2018; 31
2003; 43
2014; 97
1993; 47
2018; 182
2015; 5
2010; 206
2010
2019; 32
2006; 55
2007; 163
2013; 227
2016; 124
1993; 183
2009
1995; 117
2002; 4
2006
2016; 125
1991
2011; 210
2009; 28
1997; 37
2017; 12
2005; 53
2013
1994; 91
2014; 72
2014; 71
2012; 43
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 76
  start-page: 237
  year: 2016
  end-page: 247
  article-title: Surface‐to‐volume ratio mapping of tumor microstructure using oscillating gradient diffusion weighted imaging
  publication-title: Magn Reson Med
– volume: 206
  start-page: 41
  year: 2010
  end-page: 51
  article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion‐weighted MR
  publication-title: J Magn Reson
– year: 2009
– volume: 117
  start-page: 118
  year: 1995
  end-page: 122
  article-title: Frequency‐domain analysis of spin motion using modulated‐gradient NMR
  publication-title: J Magn Reson A
– volume: 46
  start-page: 545
  year: 2015
  end-page: 550
  article-title: Diffusional kurtosis and diffusion tensor imaging reveal different time‐sensitive stroke‐induced microstructural changes
  publication-title: Stroke
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 291
  start-page: 147
  year: 1990
  end-page: 161
  article-title: Maturation of the corpus callosum of the rat: II. Influence of thyroid hormones on the number and maturation of axons
  publication-title: J Comp Neurol
– volume: 163
  start-page: 3
  year: 2007
  end-page: 22
  article-title: The dentate gyrus: fundamental neuroanatomical organization
  publication-title: Prog Brain Res
– volume: 125
  start-page: 363
  year: 2016
  end-page: 377
  article-title: Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination
  publication-title: NeuroImage
– volume: 210
  start-page: 141
  year: 2011
  end-page: 145
  article-title: Surface‐to‐volume ratio with oscillating gradients
  publication-title: J Magn Reson
– volume: 162
  start-page: 1339
  year: 2009
  end-page: 1350
  article-title: Magnetic resonance imaging and micro‐computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery
  publication-title: Neuroscience
– volume: 124
  start-page: 612
  issue: Pt A
  year: 2016
  end-page: 626
  article-title: Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains
  publication-title: NeuroImage
– volume: 43
  start-page: 33
  year: 2003
  end-page: 44
  article-title: Diffusion MR in biological systems: tissue compartments and exchange
  publication-title: Isr J Chem
– volume: 142
  start-page: 381
  year: 2016
  end-page: 393
  article-title: Fast imaging of mean, axial and radial diffusion kurtosis
  publication-title: NeuroImage
– volume: 182
  start-page: 39
  year: 2018
  end-page: 61
  article-title: Physical and numerical phantoms for the validation of brain microstructural MRI: a cookbook
  publication-title: NeuroImage
– volume: 97
  start-page: 363
  year: 2014
  end-page: 373
  article-title: Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology
  publication-title: NeuroImage
– volume: 150
  start-page: 119
  year: 2017
  end-page: 135
  article-title: Machine learning based compartment models with permeability for white matter microstructure imaging
  publication-title: NeuroImage
– volume: 72
  start-page: 492
  year: 2014
  end-page: 500
  article-title: Relationship between the diffusion time and the diffusion MRI signal observed at 17.2 Tesla in the healthy rat brain cortex
  publication-title: Magn Reson Med
– volume: 71
  start-page: 83
  year: 2014
  end-page: 94
  article-title: In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding
  publication-title: Magn Reson Med
– volume: 12
  year: 2017
  article-title: Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms
  publication-title: PLoS ONE
– start-page: 765
  year: 2013
  end-page: 791
– volume: 75
  start-page: 1927
  year: 2016
  end-page: 1934
  article-title: Time‐dependent influence of cell membrane permeability on MR Diffusion measurements
  publication-title: Magn Reson Med
– volume: 23
  start-page: 698
  year: 2010
  end-page: 710
  article-title: MRI quantification of non‐Gaussian water diffusion by kurtosis analysis
  publication-title: NMR Biomed
– volume: 182
  start-page: 329
  year: 2018
  end-page: 342
  article-title: Diffusion time dependence of microstructural parameters in fixed spinal cord
  publication-title: NeuroImage
– volume: 47
  start-page: 8565
  issue: 14
  year: 1993
  end-page: 8574
  article-title: Short‐time behavior of the diffusion coefficient as a geometrical probe of porous media
  publication-title: Phys Rev B Condens Matter
– volume: 43
  start-page: 2968
  issue: 11
  year: 2012
  end-page: 2973
  article-title: Stroke assessment with diffusional kurtosis imaging
  publication-title: Stroke
– volume: 23
  start-page: 711
  year: 2010
  end-page: 724
  article-title: Monte Carlo study of a two‐compartment exchange model of diffusion
  publication-title: NMR Biomed
– volume: 32
  year: 2019
  article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation
  publication-title: NMR Biomed
– volume: 55
  start-page: 75
  year: 2006
  end-page: 84
  article-title: Temporal diffusion spectroscopy: theory and implementation in restricted systems using oscillating gradients
  publication-title: Magn Reson Med
– volume: 59
  start-page: 467
  year: 2012
  end-page: 477
  article-title: Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury
  publication-title: NeuroImage
– volume: 64
  start-page: 249
  year: 2010
  end-page: 261
  article-title: Three‐dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain
  publication-title: Magn Reson Med
– volume: 71
  start-page: 198
  year: 2012
  end-page: 210
  article-title: Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury
  publication-title: J Neuropathol Exp Neurol
– volume: 72
  start-page: 726
  year: 2014
  end-page: 736
  article-title: Oscillating gradient spin‐echo (OGSE) diffusion tensor imaging of the human brain
  publication-title: Magn Reson Med
– volume: 234
  start-page: 135
  year: 2013
  end-page: 140
  article-title: Exact analytical results for ADC with oscillating diffusion sensitizing gradients
  publication-title: J Magn Reson
– volume: 31
  year: 2018
  article-title: Oscillating gradient diffusion kurtosis imaging of normal and injured mouse brains
  publication-title: NMR Biomed
– volume: 23
  start-page: 836
  year: 2010
  end-page: 848
  article-title: MR diffusion kurtosis imaging for neural tissue characterization
  publication-title: NMR Biomed
– volume: 26
  start-page: 345
  year: 2013
  end-page: 370
  article-title: The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter
  publication-title: MAGMA
– volume: 227
  start-page: 25
  year: 2013
  end-page: 34
  article-title: Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI
  publication-title: J Magn Reson
– volume: 27
  start-page: 948
  year: 2014
  end-page: 957
  article-title: Histological correlation of diffusional kurtosis and white matter modeling metrics in cuprizone‐induced corpus callosum demyelination
  publication-title: NMR Biomed
– volume: 53
  start-page: 1432
  year: 2005
  end-page: 1440
  article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 70
  start-page: 10
  year: 2013
  end-page: 20
  article-title: Systematic changes to the apparent diffusion tensor of in vivo rat brain measured with an oscillating‐gradient spin‐echo sequence
  publication-title: NeuroImage
– volume: 29
  start-page: 2318
  issue: 13
  year: 2012
  end-page: 2327
  article-title: Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study
  publication-title: J Neurotrauma
– volume: 28
  start-page: 1354
  year: 2009
  end-page: 1364
  article-title: Convergence and parameter choice for Monte‐Carlo simulations of diffusion MRI
  publication-title: IEEE Trans Med Imaging
– year: 2010
– volume: 72
  start-page: 829
  year: 2014
  end-page: 840
  article-title: Imaging neurodegeneration in the mouse hippocampus after neonatal hypoxia‐ischemia using oscillating gradient diffusion MRI
  publication-title: Magn Reson Med
– volume: 183
  start-page: 343
  year: 1993
  end-page: 350
  article-title: Time‐dependent self‐diffusion by NMR spin‐echo
  publication-title: Physica B Condens Matter
– volume: 5
  start-page: 124
  year: 2015
  end-page: 128
  article-title: Quantitative analysis of mouse corpus callosum from electron microscopy images
  publication-title: Data Brief
– volume: 4
  start-page: 375
  year: 2002
  end-page: 405
  article-title: On the metrics and euler‐lagrange equations of computational anatomy
  publication-title: Annu Rev Biomed Eng
– volume: 15
  start-page: 456
  year: 2002
  end-page: 467
  article-title: Diffusion‐tensor MRI: theory, experimental design and data analysis ‐ a technical review
  publication-title: NMR Biomed
– volume: 23
  start-page: 745
  year: 2010
  end-page: 756
  article-title: Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy
  publication-title: NMR Biomed
– year: 2006
– volume: 23
  start-page: 129
  year: 1985
  end-page: 148
  article-title: NMR self‐diffusion studies in heterogeneous systems
  publication-title: Adv Colloid Interface Sci
– volume: 91
  start-page: 1229
  year: 1994
  end-page: 1233
  article-title: Time‐dependent diffusion of water in a biological model system
  publication-title: Proc Natl Acad Sci USA
– volume: 65
  start-page: 823
  year: 2011
  end-page: 836
  article-title: Estimation of tensors and tensor‐derived measures in diffusional kurtosis imaging
  publication-title: Magn Reson Med
– volume: 35
  start-page: 399
  year: 1996
  end-page: 412
  article-title: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results
  publication-title: Magn Reson Med
– volume: 67
  start-page: 98
  year: 2012
  end-page: 109
  article-title: Probing mouse brain microstructure using oscillating gradient diffusion MRI
  publication-title: Magn Reson Med
– volume: 49
  start-page: 206
  year: 2003
  end-page: 215
  article-title: Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain
  publication-title: Magn Reson Med
– volume: 78
  start-page: 156
  year: 2017
  end-page: 164
  article-title: In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1131
  year: 2013
  end-page: 1145
  article-title: Oscillating and pulsed gradient diffusion magnetic resonance microscopy over an extended b‐value range: implications for the characterization of tissue microstructure
  publication-title: Magn Reson Med
– year: 1991
– volume: 37
  start-page: 103
  year: 1997
  end-page: 111
  article-title: An analytical model of restricted diffusion in bovine optic nerve
  publication-title: Magn Reson Med
– volume: 15
  start-page: 516
  year: 2002
  end-page: 542
  article-title: High b‐value q‐space analyzed diffusion‐weighted MRS and MRI in neuronal tissues ‐ a technical review
  publication-title: NMR Biomed
– ident: e_1_2_6_58_1
  doi: 10.1002/cne.902910110
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.25865
– ident: e_1_2_6_40_1
– ident: e_1_2_6_31_1
  doi: 10.1002/nbm.1577
– ident: e_1_2_6_32_1
  doi: 10.1002/mrm.24325
– ident: e_1_2_6_42_1
  doi: 10.1146/annurev.bioeng.4.092101.125733
– ident: e_1_2_6_45_1
  doi: 10.1109/TMI.2009.2015756
– ident: e_1_2_6_18_1
  doi: 10.1002/nbm.3998
– ident: e_1_2_6_46_1
  doi: 10.1560/E0WU-7FFH-31M6-VLYT
– ident: e_1_2_6_43_1
  doi: 10.1016/j.neuroscience.2009.05.070
– ident: e_1_2_6_49_1
  doi: 10.1007/978-3-662-02728-8
– ident: e_1_2_6_23_1
  doi: 10.1002/mrm.22981
– ident: e_1_2_6_34_1
  doi: 10.1016/j.neuroimage.2017.08.039
– ident: e_1_2_6_55_1
  doi: 10.1016/j.dib.2015.08.022
– ident: e_1_2_6_16_1
  doi: 10.1016/0921-4526(93)90124-O
– ident: e_1_2_6_51_1
  doi: 10.1103/PhysRevB.47.8565
– ident: e_1_2_6_63_1
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jmr.2013.06.016
– ident: e_1_2_6_57_1
  doi: 10.1097/NEN.0b013e3182482590
– ident: e_1_2_6_10_1
  doi: 10.1016/j.neuroimage.2014.04.013
– ident: e_1_2_6_2_1
  doi: 10.1002/nbm.783
– ident: e_1_2_6_25_1
  doi: 10.1002/mrm.24987
– ident: e_1_2_6_62_1
  doi: 10.1016/j.neuroimage.2016.08.022
– ident: e_1_2_6_35_1
  doi: 10.1002/mrm.22426
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuroimage.2011.07.050
– ident: e_1_2_6_12_1
  doi: 10.1016/j.neuroimage.2015.10.052
– ident: e_1_2_6_22_1
  doi: 10.1002/mrm.10385
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.24632
– ident: e_1_2_6_27_1
  doi: 10.1016/j.neuroimage.2012.12.036
– ident: e_1_2_6_39_1
  doi: 10.1002/mrm.1910350319
– ident: e_1_2_6_3_1
  doi: 10.1002/mrm.20508
– ident: e_1_2_6_8_1
  doi: 10.1089/neu.2011.1763
– ident: e_1_2_6_61_1
  doi: 10.1006/jmra.1995.9959
– ident: e_1_2_6_29_1
  doi: 10.1002/mrm.26356
– ident: e_1_2_6_33_1
  doi: 10.1002/mrm.24921
– ident: e_1_2_6_15_1
  doi: 10.1002/nbm.1506
– ident: e_1_2_6_19_1
  doi: 10.1007/s10334-013-0371-x
– ident: e_1_2_6_20_1
  doi: 10.1002/nbm.1531
– ident: e_1_2_6_44_1
  doi: 10.54294/fgfrtv
– ident: e_1_2_6_41_1
  doi: 10.1002/mrm.22655
– ident: e_1_2_6_64_1
  doi: 10.1016/j.neuroimage.2018.06.046
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.91.4.1229
– ident: e_1_2_6_30_1
  doi: 10.1002/mrm.25724
– ident: e_1_2_6_37_1
  doi: 10.1002/mrm.20732
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jmr.2010.05.017
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jmr.2012.11.021
– ident: e_1_2_6_13_1
  doi: 10.1016/j.neuroimage.2015.09.028
– ident: e_1_2_6_60_1
  doi: 10.1002/nbm.3917
– ident: e_1_2_6_48_1
  doi: 10.1007/978-94-007-1333-8_31
– ident: e_1_2_6_59_1
  doi: 10.1016/j.neuroimage.2017.02.013
– ident: e_1_2_6_14_1
  doi: 10.1002/nbm.3140
– ident: e_1_2_6_6_1
  doi: 10.1093/med/9780195369779.003.0010
– ident: e_1_2_6_53_1
  doi: 10.1016/j.jmr.2011.02.011
– ident: e_1_2_6_11_1
  doi: 10.1161/STROKEAHA.114.006782
– ident: e_1_2_6_4_1
  doi: 10.1002/nbm.1518
– ident: e_1_2_6_50_1
  doi: 10.1016/S0079-6123(07)63001-5
– ident: e_1_2_6_47_1
  doi: 10.1371/journal.pone.0179276
– ident: e_1_2_6_9_1
  doi: 10.1161/STROKEAHA.112.657742
– ident: e_1_2_6_38_1
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– ident: e_1_2_6_26_1
  doi: 10.1002/mrm.24956
– ident: e_1_2_6_56_1
  doi: 10.1002/mrm.1910370115
– ident: e_1_2_6_5_1
  doi: 10.1002/nbm.778
– ident: e_1_2_6_54_1
  doi: 10.1016/0001-8686(85)80018-X
SSID ssj0009974
Score 2.5234091
Snippet Purpose To investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient...
To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo...
PurposeTo investigate diffusion‐time dependency of diffusional kurtosis in the mouse brain using pulsed‐gradient spin‐echo (PGSE) and oscillating‐gradient...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1564
SubjectTerms Animals
Brain
Brain - diagnostic imaging
Cerebellum
Cerebral cortex
Computer simulation
Corpus Callosum
Cuprizone
Data acquisition
Demyelination
Diffusion
Diffusion Magnetic Resonance Imaging
diffusion time
Heterogeneity
Kurtosis
Mathematical analysis
Mice
non‐Gaussian diffusion
oscillating gradient
Permeability
pulsed gradient
Sensitivity
Simulation
Substantia alba
Substantia grisea
Tensors
Time dependence
Waveforms
White Matter
Title Diffusion‐time dependence of diffusional kurtosis in the mouse brain
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28189
https://www.ncbi.nlm.nih.gov/pubmed/32022313
https://www.proquest.com/docview/2407840854
https://www.proquest.com/docview/2351481469
https://pubmed.ncbi.nlm.nih.gov/PMC7263939
Volume 84
WOSCitedRecordID wos000511006100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VAhWXAoXClrIyiAOXbRPb64d6QpQVSOwKVVTsLXIcW0TQLNrscuYn8Bv5JfU4j7IqSEjcIs3EccYez8P2NwAvpE0SwwoTYpOg5NxpN1Jc0xHjqhCFpCqnJhabkLOZms_1hy046e7CNPgQfcINNSOu16jgJq-Pr0BDL5YXRwhlhJf3Uh6V8tO72RXgrm4QmCXHdUbzDlUoocf9m5u26JqDef2c5O_-azRAk7v_1fV7sNv6neRVM1Huw5ar9mBn2u6s78HteBTU1g9gclp6v8Yk2q8fP7H0POkK5VpHFp4UHTk092W9XC3qsiZlRYInSTCP4EiOZScewvnkzcfXb0dttYWRHSNMZ3CEnHPB4KepLnLLUucTO7ZUW1dQP6ZWayOoTwqRS5F44amwqVYMg6KcGcn2YbtaVO4xkNz5YPK4cgXn3OZKWQzcqBFMmNQLPYCXndwz20KRY0WMr1kDokyzIKEsSmgAz3vWbw3-xp-YDrvBy1oVrDMMVRXit_EBPOvJQXlwR8RULggko3iPAZOgoYlHzVj3X8HC8sH5ZQOQG7OgZ0Bg7k1KVX6OAN2SBr-P4W_GWfD3jmfTs2l8OPh31idwh2LMH8-5HcL2arl2T-GW_b4q6-UQbsi5GsLN07PJ-fthVIlLJeoNlQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLRQuFEqhCwUM4sBlaWJ7HVvqBVFWrdhdoaqVerMSxxYRNIs2u5x5hD5jn6Qe56ddFSQkbpE8cZzxjOfH9jcA7xITRSnLUx-beCXnVtmB5IoOGJe5yBMqM5qGYhPJdCrPztTXNdhv78LU-BBdwg01I6zXqOCYkN67Rg09n59_QCwjdQfWuRejYQ_WD45Hp-Nr0F1VozAnHNcaxVtkoYjudS-v2qNbTubts5I3fdhghEab_zf8R_CwcT7Jx1paHsOaLbdgY9Jsr2_BvXAe1FRPYHRQOLfETNrl7wusP0_aarnGkpkjedvsu_u-nC9mVVGRoiTenSSYTLAkw9oT23A6-nzy6XDQlFwYmCFidXpvyFrrrX4cqzwzLLYuMkNDlbE5dUNqlEoFdVEuskRETjgqTKwkw8goY2nCnkKvnJV2B0hmnbd7XNqcc24yKQ1GbzQVTKSxE6oP71vGa9PgkWNZjB-6RlKm2nNIBw714W1H-rMG4fgT0W47e7rRw0pjvCoRxI334U3X7DUIt0XS0nqGaIqXGTAT6rt4Vk929xWsLu89YNaHZEUMOgJE515tKYtvAaU7od75Y_ibQQz-PnA9OZ6Eh-f_Tvoa7h-eTMZ6fDT98gIeUEwChINvu9BbzJf2Jdw1vxZFNX_V6MQVYtAQWQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiouPMproYBBHLgsTWyvY0tcEEsEoruqKir1ZiV-iAiarTa7nPkJ_EZ-CR7nUVYFCYlbpJk4ztjjedj-BuBFZpKkYLYIsUlQcu6UG0uu6JhxaYXNqCxpEYtNZPO5PD1VR1vwur8L0-JDDAk31Iy4XqOCu3PrDy5QQ8-WZ68Qy0hdgR0-USKo5c70OD85vADdVS0Kc8ZxrVG8RxZK6MHw8qY9uuRkXj4r-bsPG41QfvP_un8LbnTOJ3nTzpbbsOXqPdidddvre3Atngc1zR3Ip5X3a8yk_fz-A-vPk75arnFk4YntyaG5L-vlatFUDalqEtxJgskER0qsPXEXTvJ3n96-H3clF8ZmglidwRtyzgWrn6bKloalzidmYqgyzlI_oUapQlCfWFFmIvHCU2FSJRlGRiUrMnYPtutF7R4AKZ0Pdo9LZznnppTSYPRGC8FEkXqhRvCyF7w2HR45lsX4qlskZaqDhHSU0AieD6znLQjHn5j2-9HTnR42GuNViSBufATPBnLQINwWKWoXBKIpXmbATGho4n472MNXsLp88IDZCLKNaTAwIDr3JqWuPkeU7owG54_hb8Zp8PeO69nxLD48_HfWp7B7NM314Yf5x0dwnWIOIJ5724ft1XLtHsNV821VNcsnnUr8AtgCD9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion%E2%80%90time+dependence+of+diffusional+kurtosis+in+the+mouse+brain&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Aggarwal%2C+Manisha&rft.au=Smith%2C+Matthew+D.&rft.au=Calabresi%2C+Peter+A.&rft.date=2020-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=84&rft.issue=3&rft.spage=1564&rft.epage=1578&rft_id=info:doi/10.1002%2Fmrm.28189&rft.externalDBID=10.1002%252Fmrm.28189&rft.externalDocID=MRM28189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon