Deep learning‐based model for diagnosing Alzheimer's disease and tauopathies
Aims This study aimed to develop a deep learning‐based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau‐immunostained digital slide images. Methods We trai...
Uloženo v:
| Vydáno v: | Neuropathology and applied neurobiology Ročník 48; číslo 1; s. e12759 - n/a |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Subscription Services, Inc
01.02.2022
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0305-1846, 1365-2990, 1365-2990 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Aims
This study aimed to develop a deep learning‐based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau‐immunostained digital slide images.
Methods
We trained the YOLOv3 object detection algorithm to detect five tau lesion types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and coiled bodies. We used 2522 digital slide images of CP13‐immunostained slides of the motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation was performed to increase the size of the training dataset. We next constructed random forest classifiers using the quantitative burdens of each tau lesion from motor cortex, caudate nucleus and superior frontal gyrus, ascertained from the object detection model. We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test (30 cases) sets to train random forest classifiers.
Results
The resultant random forest classifier achieved an average test score of 0.97, indicating that 29 out of 30 cases were correctly diagnosed. A validation study using hold‐out datasets of CP13‐ and AT8‐stained slides from 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data augmentation) diagnostic accuracy in both CP13‐ and AT8‐stained slides.
Conclusion
Our diagnostic model trained with CP13 also works for AT8; therefore, our diagnostic tool can be potentially used by other investigators and may assist medical decision‐making in neuropathological diagnoses of tauopathies.
We developed a deep learning‐based tool for diagnosing Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick’s disease (PiD), based on tau‐immunostained digital slide images. Combining an object detection model that could recognize and count five tau lesion types and a random forest classifier could successfully differentiate four tauopathies. A validation study using hold‐out datasets of CP13‐ and AT8‐stained slides from 50 cases showed >95% diagnostic accuracy in both CP13‐ and AT8‐stained slides. |
|---|---|
| AbstractList | AimsThis study aimed to develop a deep learning‐based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau‐immunostained digital slide images.MethodsWe trained the YOLOv3 object detection algorithm to detect five tau lesion types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and coiled bodies. We used 2522 digital slide images of CP13‐immunostained slides of the motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation was performed to increase the size of the training dataset. We next constructed random forest classifiers using the quantitative burdens of each tau lesion from motor cortex, caudate nucleus and superior frontal gyrus, ascertained from the object detection model. We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test (30 cases) sets to train random forest classifiers.ResultsThe resultant random forest classifier achieved an average test score of 0.97, indicating that 29 out of 30 cases were correctly diagnosed. A validation study using hold‐out datasets of CP13‐ and AT8‐stained slides from 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data augmentation) diagnostic accuracy in both CP13‐ and AT8‐stained slides.ConclusionOur diagnostic model trained with CP13 also works for AT8; therefore, our diagnostic tool can be potentially used by other investigators and may assist medical decision‐making in neuropathological diagnoses of tauopathies. Aims This study aimed to develop a deep learning‐based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau‐immunostained digital slide images. Methods We trained the YOLOv3 object detection algorithm to detect five tau lesion types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and coiled bodies. We used 2522 digital slide images of CP13‐immunostained slides of the motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation was performed to increase the size of the training dataset. We next constructed random forest classifiers using the quantitative burdens of each tau lesion from motor cortex, caudate nucleus and superior frontal gyrus, ascertained from the object detection model. We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test (30 cases) sets to train random forest classifiers. Results The resultant random forest classifier achieved an average test score of 0.97, indicating that 29 out of 30 cases were correctly diagnosed. A validation study using hold‐out datasets of CP13‐ and AT8‐stained slides from 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data augmentation) diagnostic accuracy in both CP13‐ and AT8‐stained slides. Conclusion Our diagnostic model trained with CP13 also works for AT8; therefore, our diagnostic tool can be potentially used by other investigators and may assist medical decision‐making in neuropathological diagnoses of tauopathies. We developed a deep learning‐based tool for diagnosing Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick’s disease (PiD), based on tau‐immunostained digital slide images. Combining an object detection model that could recognize and count five tau lesion types and a random forest classifier could successfully differentiate four tauopathies. A validation study using hold‐out datasets of CP13‐ and AT8‐stained slides from 50 cases showed >95% diagnostic accuracy in both CP13‐ and AT8‐stained slides. We developed a deep learning‐based tool for diagnosing Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick’s disease (PiD), based on tau‐immunostained digital slide images. Combining an object detection model that could recognize and count five tau lesion types and a random forest classifier could successfully differentiate four tauopathies. A validation study using hold‐out datasets of CP13‐ and AT8‐stained slides from 50 cases showed >95% diagnostic accuracy in both CP13‐ and AT8‐stained slides. This study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau-immunostained digital slide images. We trained the YOLOv3 object detection algorithm to detect five tau lesion types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and coiled bodies. We used 2522 digital slide images of CP13-immunostained slides of the motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation was performed to increase the size of the training dataset. We next constructed random forest classifiers using the quantitative burdens of each tau lesion from motor cortex, caudate nucleus and superior frontal gyrus, ascertained from the object detection model. We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test (30 cases) sets to train random forest classifiers. The resultant random forest classifier achieved an average test score of 0.97, indicating that 29 out of 30 cases were correctly diagnosed. A validation study using hold-out datasets of CP13- and AT8-stained slides from 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data augmentation) diagnostic accuracy in both CP13- and AT8-stained slides. Our diagnostic model trained with CP13 also works for AT8; therefore, our diagnostic tool can be potentially used by other investigators and may assist medical decision-making in neuropathological diagnoses of tauopathies. This study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau-immunostained digital slide images.AIMSThis study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau-immunostained digital slide images.We trained the YOLOv3 object detection algorithm to detect five tau lesion types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and coiled bodies. We used 2522 digital slide images of CP13-immunostained slides of the motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation was performed to increase the size of the training dataset. We next constructed random forest classifiers using the quantitative burdens of each tau lesion from motor cortex, caudate nucleus and superior frontal gyrus, ascertained from the object detection model. We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test (30 cases) sets to train random forest classifiers.METHODSWe trained the YOLOv3 object detection algorithm to detect five tau lesion types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and coiled bodies. We used 2522 digital slide images of CP13-immunostained slides of the motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation was performed to increase the size of the training dataset. We next constructed random forest classifiers using the quantitative burdens of each tau lesion from motor cortex, caudate nucleus and superior frontal gyrus, ascertained from the object detection model. We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test (30 cases) sets to train random forest classifiers.The resultant random forest classifier achieved an average test score of 0.97, indicating that 29 out of 30 cases were correctly diagnosed. A validation study using hold-out datasets of CP13- and AT8-stained slides from 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data augmentation) diagnostic accuracy in both CP13- and AT8-stained slides.RESULTSThe resultant random forest classifier achieved an average test score of 0.97, indicating that 29 out of 30 cases were correctly diagnosed. A validation study using hold-out datasets of CP13- and AT8-stained slides from 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data augmentation) diagnostic accuracy in both CP13- and AT8-stained slides.Our diagnostic model trained with CP13 also works for AT8; therefore, our diagnostic tool can be potentially used by other investigators and may assist medical decision-making in neuropathological diagnoses of tauopathies.CONCLUSIONOur diagnostic model trained with CP13 also works for AT8; therefore, our diagnostic tool can be potentially used by other investigators and may assist medical decision-making in neuropathological diagnoses of tauopathies. |
| Author | Koga, Shunsuke Dickson, Dennis W. Ikeda, Akihiro |
| AuthorAffiliation | 1 Department of Neuroscience Mayo Clinic Jacksonville FL USA 2 School of Medicine Osaka City University Osaka Japan |
| AuthorAffiliation_xml | – name: 2 School of Medicine Osaka City University Osaka Japan – name: 1 Department of Neuroscience Mayo Clinic Jacksonville FL USA |
| Author_xml | – sequence: 1 givenname: Shunsuke orcidid: 0000-0001-8868-9700 surname: Koga fullname: Koga, Shunsuke email: koga.shunsuke@mayo.edu organization: Mayo Clinic – sequence: 2 givenname: Akihiro orcidid: 0000-0002-6158-130X surname: Ikeda fullname: Ikeda, Akihiro organization: Osaka City University – sequence: 3 givenname: Dennis W. orcidid: 0000-0001-7189-7917 surname: Dickson fullname: Dickson, Dennis W. organization: Mayo Clinic |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34402107$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1OGzEUha2KqgTaRV-gGqkL6GLAP2O73iBFFNpKKGzateV47iRGHju1Z6joqo_AM_IkGBKqgsAbS77fOTrXZwdthRgAofcEH5ByDoMJB4RKrl6hCWGC11QpvIUmmGFek8-N2EY7OV9gjLkU6g3aZk2DKcFygmZfAFaVB5OCC4ubv9dzk6Gt-tiCr7qYqtaZRYi5DKup_7ME10Pay-U5QyErE9pqMGNcmWHpIL9FrzvjM7zb3Lvo5-nJj-Nv9dn51-_H07PacqxUTTgWChqwTJlOzKVl0jYEqLBClD0a1iplVcM6yuRcgiTAOEgDrMNFCcB20dHadzXOe2gthCEZr1fJ9SZd6WicfjwJbqkX8VIrqhimvBjsbwxS_DVCHnTvsgXvTYA4Zk25oJRxeY9-fIJexDGFsp6mgmJMGkxkoT78n-hflIevLsDhGrAp5pyg09YNZnDxLqDzmmB9V6YuZer7Movi0xPFg-lz7Mb9t_Nw9TKoZ9PZWnELZJ-ulQ |
| CitedBy_id | crossref_primary_10_1111_neup_12880 crossref_primary_10_1111_bpa_13207 crossref_primary_10_3390_app12010013 crossref_primary_10_1007_s11845_024_03721_6 crossref_primary_10_1136_jnnp_2021_328586 crossref_primary_10_1002_alz_14628 crossref_primary_10_1093_jnen_nlac127 crossref_primary_10_1002_alz_14626 crossref_primary_10_1007_s13042_025_02748_0 crossref_primary_10_1002_nbm_5323 crossref_primary_10_1080_19768354_2023_2285826 crossref_primary_10_1186_s40478_023_01584_z crossref_primary_10_1002_mp_16218 crossref_primary_10_1016_j_heliyon_2024_e41137 crossref_primary_10_3390_brainsci15050486 crossref_primary_10_3390_s22124609 crossref_primary_10_1093_jnen_nlae048 crossref_primary_10_1093_jnen_nlaf098 crossref_primary_10_1002_nop2_1429 crossref_primary_10_1007_s40120_023_00526_0 crossref_primary_10_1016_j_ajpath_2024_12_018 crossref_primary_10_1111_bpa_13175 crossref_primary_10_1186_s40478_024_01827_7 crossref_primary_10_1007_s11831_022_09870_0 crossref_primary_10_1016_j_labinv_2023_100127 crossref_primary_10_1038_s41598_022_25385_x crossref_primary_10_1093_jnen_nlaf108 crossref_primary_10_1093_jnen_nlaf047 crossref_primary_10_1111_nan_12997 crossref_primary_10_1038_s41598_023_28081_6 crossref_primary_10_1093_jnen_nlac094 crossref_primary_10_3389_fbinf_2025_1567219 crossref_primary_10_1097_ICU_0000000000000881 crossref_primary_10_1016_j_anndiagpath_2024_152392 crossref_primary_10_1038_s41598_023_45972_w crossref_primary_10_1038_s41582_021_00562_0 crossref_primary_10_1016_j_asoc_2023_110804 crossref_primary_10_1186_s40478_023_01674_y crossref_primary_10_1038_s42003_023_05031_6 crossref_primary_10_1111_bcpt_14003 |
| Cites_doi | 10.1093/jnen/61.11.935 10.1097/00005072-199710000-00002 10.1186/s13195-014-0085-y 10.1038/s41380-018-0342-8 10.1212/WNL.58.12.1791 10.1002/prot.24988 10.1093/brain/awm104 10.1212/WNL.44.11.2015 10.1002/mds.26809 10.1002/mds.27198 10.3389/fmed.2019.00185 10.2174/15672050113109990002 10.1007/s12031-011-9589-0 10.1007/s00401-019-02080-2 10.1371/journal.pone.0218808 10.1093/jnen/nlab005 10.1038/s41374-019-0202-4 10.1186/s40478-020-00927-4 10.1001/jamanetworkopen.2019.4337 10.3390/diagnostics9030072 10.1016/j.jalz.2011.04.011 10.1016/j.csbj.2018.01.001 10.1038/s41467-019-10212-1 10.1007/s00401-013-1171-0 10.1111/nan.12710 10.1001/archneur.58.11.1803 10.1186/s40478-020-01035-z 10.1007/s13246-020-00913-z 10.1097/00005072-199601000-00010 10.1016/j.ajpath.2019.05.007 10.1007/BF00308809 10.1111/nan.12208 10.1016/j.jalz.2018.06.3063 10.1007/s00401-020-02158-2 10.1007/s00702-017-1702-2 10.1007/s00401-018-1878-z 10.1093/brain/awx328 10.1038/s41551-020-0593-y 10.1109/CVPR.2016.91 10.4103/2153-3539.186902 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Neuropathological Society. 2021 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Neuropathological Society. – notice: 2021 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
| DOI | 10.1111/nan.12759 |
| DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley - Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | Deep learning‐based diagnostic model for tauopathies |
| EISSN | 1365-2990 |
| EndPage | n/a |
| ExternalDocumentID | PMC9293025 34402107 10_1111_nan_12759 NAN12759 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Rainwater Charitable Trust – fundername: Jaye F. and Betty F. Dyer Foundation – fundername: CurePSP Foundation – fundername: National Institutes of Health funderid: UG3 NS104095; R01 AG062348; U54 NS100693 – fundername: Mayo Clinic Foundation for Medical Research – fundername: NIH HHS grantid: U54 NS100693 – fundername: NIH HHS grantid: UG3 NS104095 – fundername: NIH HHS grantid: R01 AG062348 – fundername: ; – fundername: ; grantid: UG3 NS104095; R01 AG062348; U54 NS100693 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29N 31~ 33P 36B 3SF 3UE 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA GSXLS H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c5099-15069e4ec39af6b7c37c41e26c6627543d99c943f237b7e71e35e7ae3f0506ee3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693183200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-1846 1365-2990 |
| IngestDate | Tue Nov 04 02:00:53 EST 2025 Thu Oct 02 07:00:04 EDT 2025 Sat Nov 29 14:52:36 EST 2025 Mon Jul 21 05:59:05 EDT 2025 Sat Nov 29 06:09:48 EST 2025 Tue Nov 18 21:43:04 EST 2025 Wed Jan 22 16:26:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Pick's disease random forest classifier corticobasal degeneration object detection machine learning Alzheimer's disease progressive supranuclear palsy |
| Language | English |
| License | Attribution 2021 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5099-15069e4ec39af6b7c37c41e26c6627543d99c943f237b7e71e35e7ae3f0506ee3 |
| Notes | Funding information Jaye F. and Betty F. Dyer Foundation; Rainwater Charitable Trust; CurePSP Foundation; National Institutes of Health, Grant/Award Numbers: UG3 NS104095, R01 AG062348, U54 NS100693; Mayo Clinic Foundation for Medical Research ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Correction added on 23 September 2021, after first online publication: Peer review history statement has been added. Funding information Jaye F. and Betty F. Dyer Foundation; Rainwater Charitable Trust; CurePSP Foundation; National Institutes of Health, Grant/Award Numbers: UG3 NS104095, R01 AG062348, U54 NS100693; Mayo Clinic Foundation for Medical Research |
| ORCID | 0000-0002-6158-130X 0000-0001-7189-7917 0000-0001-8868-9700 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnan.12759 |
| PMID | 34402107 |
| PQID | 2620014017 |
| PQPubID | 1096364 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9293025 proquest_miscellaneous_2562235725 proquest_journals_2620014017 pubmed_primary_34402107 crossref_citationtrail_10_1111_nan_12759 crossref_primary_10_1111_nan_12759 wiley_primary_10_1111_nan_12759_NAN12759 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
| PublicationTitle | Neuropathology and applied neurobiology |
| PublicationTitleAlternate | Neuropathol Appl Neurobiol |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2018; 141 2002; 58 2019; 9 2019; 6 2020; 140 2019; 2 2019; 99 2019; 10 2013; 126 2019; 15 2019; 14 1994; 44 1991; 82 2011; 12 2011; 7 2019; 189 1996; 55 2020; 8 2016; 7 2020; 4 2013; 10 2002; 61 2021 2019; 24 2015; 41 2017; 32 2007; 130 1997; 56 2018; 136 2019 2020; 139 2018 2016; 84 2017; 140 2011; 45 2015 2020; 43 2017; 124 2001; 58 2014; 6 2018; 16 2021; 80 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 Pedregosa F (e_1_2_11_30_1) 2011; 12 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 Ono M (e_1_2_11_6_1) 2017; 140 e_1_2_11_39_1 e_1_2_11_19_1 34475569 - Nat Rev Neurol. 2021 Oct;17(10):595 |
| References_xml | – volume: 99 start-page: 1019 issue: 7 year: 2019 end-page: 1029 article-title: Artificial intelligence in neuropathology: deep learning‐based assessment of tauopathy publication-title: Lab Invest – volume: 140 start-page: 764 issue: 3 year: 2017 end-page: 780 article-title: Distinct binding of PET ligands PBB3 and AV‐1451 to tau fibril strains in neurodegenerative tauopathies publication-title: Brain – volume: 130 start-page: 1566 issue: 6 year: 2007 end-page: 1576 article-title: Pathological tau burden and distribution distinguishes progressive supranuclear palsy‐parkinsonism from Richardson's syndrome publication-title: Brain – volume: 6 start-page: 185 year: 2019 article-title: Translational AI and deep learning in diagnostic pathology publication-title: Front Med (Lausanne) – volume: 24 start-page: 1112 issue: 8 year: 2019 end-page: 1134 article-title: Tau PET imaging in neurodegenerative tauopathies‐still a challenge publication-title: Mol Psychiatry – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in Python publication-title: J Mach Learn Res – volume: 80 start-page: 306 issue: 4 year: 2021 end-page: 312 article-title: Deep learning‐based image classification in differentiating tufted astrocytes, astrocytic plaques, and neuritic plaques publication-title: J Neuropathol Exp Neurol – volume: 140 start-page: 99 issue: 2 year: 2020 end-page: 119 article-title: Distribution patterns of tau pathology in progressive supranuclear palsy publication-title: Acta Neuropathol – volume: 136 start-page: 389 issue: 3 year: 2018 end-page: 404 article-title: Corticobasal degeneration with TDP‐43 pathology presenting with progressive supranuclear palsy syndrome: a distinct clinicopathologic subtype publication-title: Acta Neuropathol – volume: 7 start-page: 486 issue: 4 year: 2011 end-page: 489 article-title: How golden is the gold standard of neuropathology in dementia? publication-title: Alzheimers Dement – volume: 189 start-page: 1686 issue: 9 year: 2019 end-page: 1698 article-title: Pathology image analysis using segmentation deep learning algorithms publication-title: Am J Pathol – volume: 2 issue: 5 year: 2019 article-title: Trends in the US and Canadian Pathologist Workforces From 2007 to 2017 publication-title: JAMA Netw Open – year: 2021 article-title: Machine learning‐based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration publication-title: Neuropathol Appl Neurobiol – volume: 10 start-page: 569 issue: 6 year: 2013 end-page: 577 article-title: Neuropathological correlates of cerebral multimorbidity publication-title: Curr Alzheimer Res – volume: 8 start-page: 59 issue: 1 year: 2020 article-title: Validation of machine learning models to detect amyloid pathologies across institutions publication-title: Acta Neuropathol Commun – volume: 4 start-page: 787 issue: 8 year: 2020 end-page: 800 article-title: Defining and predicting transdiagnostic categories of neurodegenerative disease publication-title: Nat Biomed Eng – volume: 58 start-page: 1803 issue: 11 year: 2001 end-page: 1809 article-title: Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease publication-title: Arch Neurol – volume: 14 issue: 6 year: 2019 article-title: Deep learning approach to peripheral leukocyte recognition publication-title: PLoS One – volume: 55 start-page: 97 issue: 1 year: 1996 end-page: 105 article-title: Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders publication-title: J Neuropathol Exp Neurol – year: 2018 – volume: 16 start-page: 34 year: 2018 end-page: 42 article-title: Machine learning methods for histopathological image analysis publication-title: Comput Struct Biotechnol J – volume: 32 start-page: 246 issue: 2 year: 2017 end-page: 255 article-title: Distribution and characteristics of transactive response DNA binding protein 43 kDa pathology in progressive supranuclear palsy publication-title: Mov Disord – volume: 8 start-page: 162 issue: 1 year: 2020 article-title: Associations of mitochondrial genomic variation with corticobasal degeneration, progressive supranuclear palsy, and neuropathological tau measures publication-title: Acta Neuropathol Commun – volume: 9 start-page: 72 year: 2019 article-title: Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut Algorithm publication-title: Diagnostics (Basel) – volume: 32 start-page: 1772 issue: 12 year: 2017 end-page: 1779 article-title: Cognitive impairment in progressive supranuclear palsy is associated with tau burden publication-title: Mov Disord – volume: 41 start-page: 3 issue: 1 year: 2015 end-page: 23 article-title: Invited review: neuropathology of tauopathies: principles and practice publication-title: Neuropathol Appl Neurobiol – volume: 84 start-page: 427 issue: 4 year: 2016 end-page: 434 article-title: Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti‐tau antibody AT8 publication-title: Proteins – volume: 139 start-page: 63 issue: 1 year: 2020 end-page: 77 article-title: 4‐Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration publication-title: Acta Neuropathol – volume: 56 start-page: 1095 issue: 10 year: 1997 end-page: 1097 article-title: Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease publication-title: J Neuropathol Exp Neurol – volume: 45 start-page: 384 issue: 3 year: 2011 end-page: 389 article-title: Neuropathology of frontotemporal lobar degeneration‐tau (FTLD‐tau) publication-title: J Mol Neurosci – volume: 6 start-page: 85 issue: 9 year: 2014 article-title: Quantitative neuropathological assessment to investigate cerebral multi‐morbidity publication-title: Alzheimers Res Ther – volume: 58 start-page: 1791 issue: 12 year: 2002 end-page: 1800 article-title: Phases of A beta‐deposition in the human brain and its relevance for the development of AD publication-title: Neurology – volume: 61 start-page: 935 issue: 11 year: 2002 end-page: 946 article-title: Office of rare diseases neuropathologic criteria for corticobasal degeneration publication-title: J Neuropathol Exp Neurol – volume: 7 start-page: 29 issue: 1 year: 2016 article-title: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases publication-title: J Pathol Inform – volume: 10 start-page: 2173 issue: 1 year: 2019 article-title: Interpretable classification of Alzheimer's disease pathologies with a convolutional neural network pipeline publication-title: Nat Commun – volume: 82 start-page: 239 issue: 4 year: 1991 end-page: 259 article-title: Neuropathological stageing of Alzheimer‐related changes publication-title: Acta Neuropathol – volume: 15 start-page: 17 issue: 1 year: 2019 end-page: 24 article-title: Racial and ethnic estimates of Alzheimer's disease and related dementias in the United States (2015‐2060) in adults aged >/=65 years publication-title: Alzheimers Dement – volume: 43 start-page: 1135 issue: 3 year: 2020 end-page: 1136 article-title: Hands‐on machine learning with Scikit‐Learn, Keras, and Tensorflow, 2nd edition publication-title: Phys Eng Sci Med – year: 2019 – volume: 126 start-page: 537 issue: 4 year: 2013 end-page: 544 article-title: Globular glial tauopathies (GGT): consensus recommendations publication-title: Acta Neuropathol – volume: 141 start-page: 521 issue: 2 year: 2018 end-page: 534 article-title: Retiring the term FTDP‐17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies publication-title: Brain – year: 2015 – volume: 124 start-page: 671 issue: 6 year: 2017 end-page: 683 article-title: Quantitative neuropathology: an update on automated methodologies and implications for large scale cohorts publication-title: J Neural Transm (Vienna) – volume: 44 start-page: 2015 issue: 11 year: 1994 end-page: 2019 article-title: Preliminary NINDS neuropathologic criteria for Steele‐Richardson‐Olszewski syndrome (progressive supranuclear palsy) publication-title: Neurology – ident: e_1_2_11_7_1 doi: 10.1093/jnen/61.11.935 – ident: e_1_2_11_9_1 doi: 10.1097/00005072-199710000-00002 – ident: e_1_2_11_35_1 doi: 10.1186/s13195-014-0085-y – ident: e_1_2_11_4_1 doi: 10.1038/s41380-018-0342-8 – ident: e_1_2_11_22_1 doi: 10.1212/WNL.58.12.1791 – ident: e_1_2_11_33_1 doi: 10.1002/prot.24988 – ident: e_1_2_11_37_1 doi: 10.1093/brain/awm104 – ident: e_1_2_11_8_1 doi: 10.1212/WNL.44.11.2015 – ident: e_1_2_11_43_1 doi: 10.1002/mds.26809 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_11_30_1 article-title: Scikit‐learn: machine learning in Python publication-title: J Mach Learn Res – ident: e_1_2_11_40_1 doi: 10.1002/mds.27198 – ident: e_1_2_11_42_1 doi: 10.3389/fmed.2019.00185 – ident: e_1_2_11_34_1 doi: 10.2174/15672050113109990002 – ident: e_1_2_11_10_1 doi: 10.1007/s12031-011-9589-0 – ident: e_1_2_11_5_1 doi: 10.1007/s00401-019-02080-2 – ident: e_1_2_11_28_1 doi: 10.1371/journal.pone.0218808 – ident: e_1_2_11_19_1 doi: 10.1093/jnen/nlab005 – ident: e_1_2_11_17_1 doi: 10.1038/s41374-019-0202-4 – ident: e_1_2_11_12_1 doi: 10.1186/s40478-020-00927-4 – ident: e_1_2_11_15_1 doi: 10.1001/jamanetworkopen.2019.4337 – ident: e_1_2_11_27_1 doi: 10.3390/diagnostics9030072 – volume: 140 start-page: 764 issue: 3 year: 2017 ident: e_1_2_11_6_1 article-title: Distinct binding of PET ligands PBB3 and AV‐1451 to tau fibril strains in neurodegenerative tauopathies publication-title: Brain – ident: e_1_2_11_13_1 doi: 10.1016/j.jalz.2011.04.011 – ident: e_1_2_11_16_1 doi: 10.1016/j.csbj.2018.01.001 – ident: e_1_2_11_18_1 doi: 10.1038/s41467-019-10212-1 – ident: e_1_2_11_23_1 doi: 10.1007/s00401-013-1171-0 – ident: e_1_2_11_20_1 doi: 10.1111/nan.12710 – ident: e_1_2_11_24_1 doi: 10.1001/archneur.58.11.1803 – ident: e_1_2_11_39_1 doi: 10.1186/s40478-020-01035-z – ident: e_1_2_11_32_1 doi: 10.1007/s13246-020-00913-z – ident: e_1_2_11_14_1 doi: 10.1097/00005072-199601000-00010 – ident: e_1_2_11_29_1 doi: 10.1016/j.ajpath.2019.05.007 – ident: e_1_2_11_31_1 – ident: e_1_2_11_21_1 doi: 10.1007/BF00308809 – ident: e_1_2_11_2_1 doi: 10.1111/nan.12208 – ident: e_1_2_11_3_1 doi: 10.1016/j.jalz.2018.06.3063 – ident: e_1_2_11_38_1 doi: 10.1007/s00401-020-02158-2 – ident: e_1_2_11_25_1 – ident: e_1_2_11_41_1 doi: 10.1007/s00702-017-1702-2 – ident: e_1_2_11_44_1 doi: 10.1007/s00401-018-1878-z – ident: e_1_2_11_45_1 doi: 10.1093/brain/awx328 – ident: e_1_2_11_36_1 doi: 10.1038/s41551-020-0593-y – ident: e_1_2_11_26_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_11_11_1 doi: 10.4103/2153-3539.186902 – reference: 34475569 - Nat Rev Neurol. 2021 Oct;17(10):595 |
| SSID | ssj0005769 |
| Score | 2.5401819 |
| Snippet | Aims
This study aimed to develop a deep learning‐based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear... This study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy... AimsThis study aimed to develop a deep learning‐based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy... We developed a deep learning‐based tool for diagnosing Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e12759 |
| SubjectTerms | Alzheimer Disease - diagnosis Alzheimer Disease - pathology Alzheimer's disease Astrocytes Caudate nucleus Cortex (motor) corticobasal degeneration Decision making Deep Learning Degeneration Frontal gyrus Humans machine learning Neurodegenerative diseases Niemann-Pick disease object detection Original Paralysis Pick Disease of the Brain - pathology Pick's disease Progressive supranuclear palsy random forest classifier Senile plaques Supranuclear Palsy, Progressive - pathology Tau protein tau Proteins Tauopathies - diagnosis Tauopathies - pathology |
| Title | Deep learning‐based model for diagnosing Alzheimer's disease and tauopathies |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnan.12759 https://www.ncbi.nlm.nih.gov/pubmed/34402107 https://www.proquest.com/docview/2620014017 https://www.proquest.com/docview/2562235725 https://pubmed.ncbi.nlm.nih.gov/PMC9293025 |
| Volume | 48 |
| WOSCitedRecordID | wos000693183200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2990 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005769 issn: 0305-1846 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7xJ8QFWmjLAkUuQoJLqiR21htxWgGrHiBCCKS9RY4zhpVoFm12OXDiEfqMfRI8TjawAqRKvUSJPE4se8aeicffB7Af-cK0M869jooyT-g88DpGC88IFeTKJ8Ju48gmZJJ0-v34Yg6OpmdhKnyI5ocbWYabr8nAVVa-MvJCFT8JnTyeh8Ug4JJUOhQXL_kd0vHZkUJ7Noxp17BClMbTVJ1djN54mG8TJV87sG4F6q39V9s_wWrteLJupSmfYQ6LdVg-r7fWNyA5QbxnNYnEzd-nP7S-5cwx5TDr2bK8Ssqzhax793iLg984OihZvcPDVJGzsZoMHcUxll_gund6dfzLq8kWPB0RSichDcYoUPNY2dGTmkstAgzb2kHEC57HsY4FNyGXmUQZII9QKuTGtzUR-VdYKIYFbgLLfBMaK0FzhVBh2z7zKDC-DrXRJhItOJz2eqprJHIixLhLpxGJ7Z_U9U8L9hrR-wp-4z2hnenQpbUFlikB7bvoUbbgR1NsbYc2RFSBw4mVsc4fwf2EUQu-VSPdfIULQeGwrS1ndKARIFzu2ZJicOvwua3HyX1656HTgY8bnibdxN1s_bvoNqyEdALDJY7vwMJ4NMHvsKQfxoNytOtMwF5lv7MLiyeXveuzZ36QDMk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7BUlEuFAqFpfy4FVK5pEpiZ72RelmVrqi6RFUFErfI64zLSpBF-9NDT32EPiNPgsfxpqygEhK3RB4nlj1jz9jj7wM4TEJhWn3Og7ZK-oHQRRS0jRaBESoqVEiE3caRTcgsa19cpN8X4NPsLkyFD1FvuJFluPmaDJw2pO9ZeanKjwRPni7CkrBqlDRg6fhH97z3L8VDOko70unARjItjyxEmTx15fn16IGT-TBX8r4P6xah7qvnNX8NVr3zyTqVtqzDApavYfnUH69vQHaMeMM8kcTP2z9_aY0rmGPLYda7ZUWVmGcLWefq9yUOrnH0Ycz8KQ9TZcEmajp0NMc43oTz7pezzyeBJ1wIdEJInYQ2mKJAzVNlR1BqLrWIMG5pBxMveJGmOhXcxFz2JcoIeYJSITehrYnI30CjHJa4DawfmthYCZovhIpb9p0nkQl1rI02iWjC0azbc-3RyIkU4yqfRSW2f3LXP014X4veVBAcjwntzsYu91Y4zgls30WQsgnv6mJrP3QookocTq2MdQAJ8idOmrBVDXX9Fy4EhcS2tpxTglqAsLnnS8rBpcPotl4nD-mbR04J_t_wPOtk7mHn6aIH8PLk7LSX975m397CSkw3Mlwi-S40JqMp7sEL_WsyGI_2vUXcAYaLD74 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED91DCFexoAxCgwMmgQvQUns1I3ES7WuAgFRH0DiLXKdM1RiadU_e-CJj7DPuE-Cz0kDFUNC2lsinxPLvrPv7PPvB_A98oVp9Dj3mirqeUJngdc0WnhGqCBTPhF2G0c2IZOkeXMTd2twMrsLU-BDVBtuZBluviYDx2FmXlh5rvJjgiePP8BHEdk5lnCdRfc5wUM6QjvSaM_GMY0SV4jyeKqq86vRKxfzdabkSw_WLUGdlf9r_Gf4VLqerFXoyirUMF-DpcvycH0dkjbikJU0Erd_H__QCpcxx5XDrG_LsiItzxay1v3DHfZ_4ehwzMozHqbyjE3UdOBIjnH8Ba47P69-nHol3YKnI8LpJKzBGAVqHis7flJzqUWAYUM7kHjBszjWseAm5LInUQbII5QKufFtTUS-AQv5IMdNYD3fhMZK0GwhVNiw7zwKjK9DbbSJRB2OZt2e6hKLnCgx7tNZTGL7J3X9U4eDSnRYAHD8S2hnNnZpaYPjlKD2Xfwo67BfFVvroSMRleNgamWs-0eAP2FUh6_FUFd_4UJQQGxryzklqAQImXu-JO_fOYRu63Nyn7555JTg7YanSStxD1vvF92DpW67k16cJefbsBzSdQyXRb4DC5PRFL_Bov496Y9Hu84cngAwXQ2n |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+model+for+diagnosing+Alzheimer%27s+disease+and+tauopathies&rft.jtitle=Neuropathology+and+applied+neurobiology&rft.au=Koga%2C+Shunsuke&rft.au=Ikeda%2C+Akihiro&rft.au=Dickson%2C+Dennis+W&rft.date=2022-02-01&rft.eissn=1365-2990&rft.volume=48&rft.issue=1&rft.spage=e12759&rft_id=info:doi/10.1111%2Fnan.12759&rft_id=info%3Apmid%2F34402107&rft.externalDocID=34402107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1846&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1846&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1846&client=summon |