Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants

• Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. • Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist Jg. 225; H. 4; S. 1746 - 1761
Hauptverfasser: Li, Fangfang, Zhang, Mingzhen, Zhang, Changwei, Zhou, Xueping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Wiley 01.02.2020
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0028-646X, 1469-8137, 1469-8137
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract • Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. • Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. • The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. • Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants.
AbstractList Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants.Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants.
Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants.
• Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. • Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. • The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. • Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants.
Summary Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy‐related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1‐mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy‐related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy‐mediated degradation of viral proteins through an exportin1‐dependent nuclear export pathway restricts virus infection in plants.
Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy‐related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1‐mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy‐related genes (ATGs) ATG8h , ATG5 , or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy‐mediated degradation of viral proteins through an exportin1‐dependent nuclear export pathway restricts virus infection in plants.
Author Zhang, Changwei
Zhang, Mingzhen
Li, Fangfang
Zhou, Xueping
Author_xml – sequence: 1
  givenname: Fangfang
  surname: Li
  fullname: Li, Fangfang
– sequence: 2
  givenname: Mingzhen
  surname: Zhang
  fullname: Zhang, Mingzhen
– sequence: 3
  givenname: Changwei
  surname: Zhang
  fullname: Zhang, Changwei
– sequence: 4
  givenname: Xueping
  surname: Zhou
  fullname: Zhou, Xueping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31621924$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS3UiqaFBQ8AssQGFtPaHsc_S1QVWqkqLEBiZ3mcO6mjiT3YHlDevg5JWFRF9cZX8neOjs89RUchBkDoDSXntJ6LMN6fU8GEeoFmlAvdKNrKIzQjhKlGcPHzBJ3mvCKE6LlgL9FJW2mqGZ-h1d3kBrAJ26nE8d4uN3gBy2QXkLHFS1j74H_7NGUc9uCYYgEfcIk4QS7Ju4IrYQfsQw-u-BjqhHMcbLAOYpWOdSz5FTru7ZDh9f4-Qz8-X32_vG5uv365ufx027g50arpBIXeOsVBa02sdpTLjhA-B-gFl9oC0x1xQjnJnZBO93LumOx6plpLJGnP0Iedb036a6oRzdpnB0MNsU1jGK9uXDJGn0dbIrjmkuuKvn-EruKUQv1INWy3TROiKvVuT03dGhZmTH5t08YcCq_AxQ5wKeacoDfOF7strSTrB0OJ2a7U1JWavyutio-PFAfTp9i9-x8_wOb_oLn7dn1QvN0pVrnE9E9Rn7SQSrcPnv259A
CitedBy_id crossref_primary_10_1016_j_tim_2023_06_008
crossref_primary_10_1016_j_coviro_2020_12_001
crossref_primary_10_1631_jzus_B2300853
crossref_primary_10_1371_journal_ppat_1012960
crossref_primary_10_1371_journal_ppat_1009118
crossref_primary_10_3390_cells10061272
crossref_primary_10_1186_s12985_021_01612_1
crossref_primary_10_3389_fpls_2020_00164
crossref_primary_10_3390_ijms241612582
crossref_primary_10_1186_s42483_025_00360_2
crossref_primary_10_1007_s00018_022_04281_7
crossref_primary_10_1111_mpp_70012
crossref_primary_10_1007_s00299_021_02820_3
crossref_primary_10_1002_1873_3468_14412
crossref_primary_10_3389_fmicb_2023_1191403
crossref_primary_10_3389_fpls_2020_00840
crossref_primary_10_1093_plphys_kiad235
crossref_primary_10_3390_ijms241512300
crossref_primary_10_1007_s44154_023_00084_3
crossref_primary_10_1111_jipb_13452
crossref_primary_10_1007_s00705_021_05338_x
crossref_primary_10_1111_nph_70564
crossref_primary_10_1016_j_plaphy_2023_107771
crossref_primary_10_1007_s00425_022_04004_z
crossref_primary_10_1016_j_virol_2023_05_011
crossref_primary_10_3390_brainsci10090646
crossref_primary_10_3390_plants11212858
crossref_primary_10_3390_microorganisms13071589
crossref_primary_10_1002_biot_202300736
crossref_primary_10_1080_15548627_2021_1987674
crossref_primary_10_7554_eLife_97206_5
crossref_primary_10_1002_1873_3468_14349
crossref_primary_10_1111_nph_70478
crossref_primary_10_3390_v16020234
crossref_primary_10_3390_v13112189
crossref_primary_10_1002_1873_3468_14719
crossref_primary_10_1146_annurev_virology_010220_054709
crossref_primary_10_3390_ijms231911410
crossref_primary_10_3390_plants13202924
crossref_primary_10_3390_v15122324
crossref_primary_10_3390_plants13070927
crossref_primary_10_15252_embj_2021108713
crossref_primary_10_1002_advs_202400978
crossref_primary_10_1186_s42483_023_00209_6
crossref_primary_10_1042_EBC20210063
crossref_primary_10_1111_jipb_13313
crossref_primary_10_3390_antiox10111736
crossref_primary_10_1371_journal_ppat_1009370
crossref_primary_10_3389_fcimb_2021_786348
crossref_primary_10_3390_ijms21176321
crossref_primary_10_1007_s00299_022_02910_w
crossref_primary_10_1038_s41467_023_39426_0
crossref_primary_10_1111_nph_16716
crossref_primary_10_3389_fpls_2023_1226498
crossref_primary_10_1080_15548627_2023_2252273
crossref_primary_10_1007_s00122_021_03783_5
crossref_primary_10_1360_TB_2024_0341
crossref_primary_10_1371_journal_ppat_1009963
crossref_primary_10_3390_v15020510
crossref_primary_10_3389_fmicb_2020_00736
crossref_primary_10_1146_annurev_arplant_060223_030224
crossref_primary_10_1111_jipb_13580
crossref_primary_10_1111_pbi_70168
crossref_primary_10_7554_eLife_97206
crossref_primary_10_1080_15592324_2021_1977527
Cites_doi 10.1146/annurev-phyto-082712-102234
10.1016/j.pbi.2018.09.004
10.1104/pp.17.01236
10.1111/j.1365-313X.2009.04048.x
10.1073/pnas.1201628109
10.1371/journal.ppat.1006213
10.1038/nrm3696
10.1105/tpc.18.00122
10.1006/viro.2002.1599
10.1016/j.bbrc.2011.08.031
10.1016/j.pbi.2017.08.011
10.1016/j.tplants.2017.06.007
10.1016/S0021-9258(17)37216-2
10.1080/15548627.2015.1100356
10.1371/journal.pbio.0030156
10.1128/MCB.17.9.5077
10.1371/journal.ppat.1006587
10.1080/15548627.2016.1217381
10.1371/journal.pone.0182591
10.1111/j.1365-313X.2005.02617.x
10.1093/jxb/ery070
10.3390/cells2010083
10.1074/jbc.M109.080796
10.1038/nrmicro3117
10.1371/journal.ppat.1003921
10.1099/vir.0.053181-0
10.4161/auto.28260
10.1371/journal.pone.0015650
10.1038/nature15548
10.1073/pnas.1610687114
10.1099/jgv.0.000738
10.1111/j.1364-3703.2004.00214.x
10.1016/j.pbi.2017.04.017
10.1016/j.molcel.2015.04.023
10.7554/eLife.10856
10.1016/j.cell.2011.03.024
10.1093/jxb/erz244
10.7554/eLife.23897
10.1146/annurev-arplant-042817-040606
10.1111/mpp.12032
10.1007/978-3-319-32919-2
10.1016/j.chom.2010.01.007
10.1038/s41467-018-03658-2
10.1159/000351979
10.3390/v9090256
10.1093/nar/gkl1088
10.1016/j.tplants.2016.11.015
10.1038/nature14506
10.1104/pp.17.01198
10.1104/pp.108.132787
ContentType Journal Article
Copyright 2019 The Authors © 2019 New Phytologist Trust
2019 The Authors New Phytologist © 2019 New Phytologist Research Trust
2019 The Authors New Phytologist © 2019 New Phytologist Research Trust.
Copyright © 2020 New Phytologist Trust
Copyright_xml – notice: 2019 The Authors © 2019 New Phytologist Trust
– notice: 2019 The Authors New Phytologist © 2019 New Phytologist Research Trust
– notice: 2019 The Authors New Phytologist © 2019 New Phytologist Research Trust.
– notice: Copyright © 2020 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.16268
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1761
ExternalDocumentID 31621924
10_1111_nph_16268
NPH16268
26896789
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Central Public‐interest Scientific Institution Basal Research Fund of China
  funderid: #S2019XM16
– fundername: Chinese Academy of Agricultural Sciences
– fundername: National Natural Science Foundation of China
  funderid: 31930089; 31972244
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ABUFD
ADXHL
AGUYK
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5098-b61efac84e9990a9c147b0045eef6479ae29b0c68c74c67c9f75c27bf283a0703
IEDL.DBID WIN
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498333800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
1469-8137
IngestDate Fri Sep 05 17:19:13 EDT 2025
Fri Sep 05 09:37:46 EDT 2025
Sun Jul 13 05:09:58 EDT 2025
Thu Apr 03 07:08:14 EDT 2025
Tue Nov 18 22:22:11 EST 2025
Sat Nov 29 03:44:25 EST 2025
Wed Jan 22 16:37:50 EST 2025
Thu Jul 03 21:56:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords solanaceous plants
degradation
nuclear autophagy
autophagy pathway
C1 protein
geminivirus
Language English
License 2019 The Authors New Phytologist © 2019 New Phytologist Research Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5098-b61efac84e9990a9c147b0045eef6479ae29b0c68c74c67c9f75c27bf283a0703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7695-7958
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16268
PMID 31621924
PQID 2430028008
PQPubID 2026848
PageCount 16
ParticipantIDs proquest_miscellaneous_2400447221
proquest_miscellaneous_2306494749
proquest_journals_2430028008
pubmed_primary_31621924
crossref_citationtrail_10_1111_nph_16268
crossref_primary_10_1111_nph_16268
wiley_primary_10_1111_nph_16268_NPH16268
jstor_primary_26896789
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2020
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 40
2011; 412
2017; 6
2015; 58
2019; 70
2015; 522
2017; 22
2010; 285
2015; 527
2009; 150
2013; 5
2017; 114
2017; 9
2007; 35
2018; 69
2016; 12
2010; 61
2012; 109
2018; 46
2016; 5
2018; 9
2018; 176
2018; 2
2013; 14
1994; 269
2006; 45
2013; 11
2017; 38
2013; 51
2013; 94
2017; 98
2017; 13
2017; 12
1999; 35
1997; 17
2002; 302
2016
2018; 30
2005; 3
2010; 5
2010; 7
2011; 145
2014; 10
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
Hanley‐Bowdoin L (e_1_2_7_17_1) 1999; 35
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 269
  start-page: 8459
  year: 1994
  end-page: 8465
  article-title: Interaction between a geminivirus replication protein and origin DNA is essential for viral replication
  publication-title: Journal of Biological Chemistry
– volume: 35
  start-page: 105
  year: 1999
  end-page: 140
  article-title: Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation
  publication-title: Critical Reviews in Biochemistry and Molecular Biology
– volume: 22
  start-page: 646
  year: 2017
  end-page: 648
  article-title: Autophagy: a double‐edged sword to fight plant viruses
  publication-title: Trends in Plant Science
– volume: 13
  year: 2017
  article-title: The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome
  publication-title: PLoS Pathogens
– volume: 5
  year: 2016
  article-title: An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor
  publication-title: eLife
– volume: 17
  start-page: 5077
  year: 1997
  end-page: 5086
  article-title: and encode maize retinoblastoma‐related proteins that interact with a plant d‐type cyclin and geminivirus replication protein
  publication-title: Molecular and Cellular Biology
– volume: 285
  start-page: 10850
  year: 2010
  end-page: 10861
  article-title: Dual role of 3‐methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3‐kinase
  publication-title: Journal of Biological Chemistry
– volume: 30
  start-page: 1582
  year: 2018
  end-page: 1595
  article-title: γb protein subverts autophagy to promote viral infection by disrupting the ATG7–ATG8 interaction
  publication-title: Plant Cell
– volume: 46
  start-page: 113
  year: 2018
  end-page: 121
  article-title: Plant autophagy: new flavors on the menu
  publication-title: Current Opinion Plant Biology
– volume: 22
  start-page: 204
  year: 2016
  end-page: 214
  article-title: ATG8 expansion: a driver of selective autophagy diversification?
  publication-title: Trends in Plant Science
– volume: 12
  start-page: 1973
  year: 2016
  end-page: 1983
  article-title: Nuclear autophagy: an evolutionarily conserved mechanism of nuclear degradation in the cytoplasm
  publication-title: Autophagy
– volume: 150
  start-page: 996
  year: 2009
  end-page: 1005
  article-title: Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop
  publication-title: Plant Physiology
– volume: 51
  start-page: 357
  year: 2013
  end-page: 381
  article-title: Advances in understanding begomovirus satellites
  publication-title: Annual Review of Phytopathology
– volume: 5
  start-page: 427
  year: 2013
  end-page: 433
  article-title: The mechanism and physiological function of macroautophagy
  publication-title: Journal of Innate Immunity
– volume: 11
  start-page: 777
  year: 2013
  end-page: 788
  article-title: Geminiviruses: masters at redirecting and reprogramming plant processes
  publication-title: Nature Reviews Microbiology
– volume: 109
  start-page: 10113
  year: 2012
  end-page: 10118
  article-title: Tobacco calmodulin‐like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 94
  start-page: 1896
  year: 2013
  end-page: 1907
  article-title: A recombinant begomovirus resulting from exchange of the gene
  publication-title: Journal of General Virology
– volume: 98
  start-page: 131
  year: 2017
  end-page: 133
  article-title: ICTV virus taxonomy profile:
  publication-title: Journal of General Virology
– volume: 13
  year: 2017
  article-title: A calmodulin‐like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in
  publication-title: PLoS Pathogens
– volume: 7
  start-page: 115
  year: 2010
  end-page: 127
  article-title: Autophagy protects against Sindbis virus infection of the central nervous system
  publication-title: Cell Host & Microbe
– volume: 35
  start-page: 755
  year: 2007
  end-page: 770
  article-title: The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of (MYMIV) by interacting with the viral Rep protein
  publication-title: Nucleic Acids Research
– volume: 522
  start-page: 359
  year: 2015
  end-page: 362
  article-title: Receptor‐mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
  publication-title: Nature
– volume: 9
  year: 2017
  article-title: Geminiviruses and plant hosts: a closer examination of the molecular arms race
  publication-title: Viruses
– volume: 412
  start-page: 699
  year: 2011
  end-page: 703
  article-title: The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h
  publication-title: Biochemical and Biophysical Research Communications
– volume: 3
  year: 2005
  article-title: Subversion of cellular autophagosomal machinery by RNA viruses
  publication-title: PLoS Biology
– volume: 6
  year: 2017
  article-title: Autophagy functions as an antiviral mechanism against geminiviruses in plants
  publication-title: eLife
– volume: 176
  start-page: 219
  year: 2018
  end-page: 229
  article-title: Dynamics of autophagosome formation
  publication-title: Plant Physiology
– volume: 145
  start-page: 242
  year: 2011
  end-page: 256
  article-title: Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development
  publication-title: Cell
– volume: 58
  start-page: 1053
  year: 2015
  end-page: 1066
  article-title: Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in
  publication-title: Molecular Cell
– volume: 2
  start-page: 83
  year: 2018
  end-page: 104
  article-title: Divergent roles of autophagy in virus infection
  publication-title: Cells
– volume: 14
  start-page: 759
  year: 2013
  end-page: 774
  article-title: The autophagosome: origins unknown, biogenesis complex
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 61
  start-page: 259
  year: 2010
  end-page: 270
  article-title: Arabidopsis homolog of the yeast TREX‐2 mRNA export complex: components and anchoring nucleoporin
  publication-title: The Plant Journal
– volume: 69
  start-page: 173
  year: 2018
  end-page: 208
  article-title: Autophagy: the master of bulk and selective recycling
  publication-title: Annual Review Plant Biology
– volume: 38
  start-page: 117
  year: 2017
  end-page: 123
  article-title: Autophagy as an emerging arena for plant–pathogen interactions
  publication-title: Current Opinion Plant Biology
– volume: 5
  start-page: 149
  year: 2010
  end-page: 156
  article-title: Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication
  publication-title: Molecular Plant Pathology
– volume: 12
  year: 2017
  article-title: SnRK1 activates autophagy via the TOR signaling pathway in
  publication-title: PLoS ONE
– volume: 70
  start-page: 4657
  year: 2019
  end-page: 4670
  article-title: Autophagy is involved in assisting the replication of in
  publication-title: Journal of Experimental Botany
– year: 2016
– volume: 527
  start-page: 105
  year: 2015
  end-page: 109
  article-title: Autophagy mediates degradation of nuclear lamina
  publication-title: Nature
– volume: 114
  start-page: E2026
  year: 2017
  end-page: E2035
  article-title: Selective autophagy limits cauliflower mosaic virus infection by NBR1‐mediated targeting of viral capsid protein and particles
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 5
  year: 2010
  article-title: Macroautophagy‐mediated degradation of whole nuclei in the filamentous fungus
  publication-title: PLoS ONE
– volume: 14
  start-page: 635
  year: 2013
  end-page: 649
  article-title: Geminivirus protein structure and function
  publication-title: Molecular Plant Pathology
– volume: 40
  start-page: 122
  year: 2017
  end-page: 130
  article-title: Autophagy as a mediator of life and death in plants
  publication-title: Current Opinion Plant Biology
– volume: 45
  start-page: 616
  year: 2006
  end-page: 629
  article-title: Gateway‐compatible vectors for plant functional genomics and proteomics
  publication-title: The Plant Journal
– volume: 176
  start-page: 649
  year: 2018
  end-page: 662
  article-title: Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HC‐pro
  publication-title: Plant Physiology
– volume: 10
  start-page: 913
  year: 2014
  end-page: 925
  article-title: LIR: A web resource for prediction of Atg8‐family interacting proteins
  publication-title: Autophagy
– volume: 12
  start-page: 1
  year: 2016
  end-page: 222
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy
  publication-title: Autophagy
– volume: 302
  start-page: 83
  year: 2002
  end-page: 94
  article-title: Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication
  publication-title: Virology
– volume: 9
  year: 2018
  article-title: Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase
  publication-title: Nature Communication
– volume: 10
  year: 2014
  article-title: Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin‐like protein to repress expression
  publication-title: PLoS Pathogens
– volume: 69
  start-page: 1281
  year: 2018
  end-page: 1285
  article-title: Plant autophagy: mechanisms and functions
  publication-title: Journal of Experimental Botany
– ident: e_1_2_7_51_1
  doi: 10.1146/annurev-phyto-082712-102234
– ident: e_1_2_7_8_1
  doi: 10.1016/j.pbi.2018.09.004
– ident: e_1_2_7_44_1
  doi: 10.1104/pp.17.01236
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-313X.2009.04048.x
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.1201628109
– ident: e_1_2_7_30_1
  doi: 10.1371/journal.ppat.1006213
– ident: e_1_2_7_27_1
  doi: 10.1038/nrm3696
– ident: e_1_2_7_49_1
  doi: 10.1105/tpc.18.00122
– ident: e_1_2_7_33_1
  doi: 10.1006/viro.2002.1599
– ident: e_1_2_7_7_1
  doi: 10.1016/j.bbrc.2011.08.031
– ident: e_1_2_7_45_1
  doi: 10.1016/j.pbi.2017.08.011
– ident: e_1_2_7_5_1
  doi: 10.1016/j.tplants.2017.06.007
– ident: e_1_2_7_12_1
  doi: 10.1016/S0021-9258(17)37216-2
– ident: e_1_2_7_25_1
  doi: 10.1080/15548627.2015.1100356
– ident: e_1_2_7_21_1
  doi: 10.1371/journal.pbio.0030156
– ident: e_1_2_7_2_1
  doi: 10.1128/MCB.17.9.5077
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.ppat.1006587
– ident: e_1_2_7_32_1
  doi: 10.1080/15548627.2016.1217381
– ident: e_1_2_7_43_1
  doi: 10.1371/journal.pone.0182591
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-313X.2005.02617.x
– ident: e_1_2_7_3_1
  doi: 10.1093/jxb/ery070
– ident: e_1_2_7_4_1
  doi: 10.3390/cells2010083
– ident: e_1_2_7_47_1
  doi: 10.1074/jbc.M109.080796
– volume: 35
  start-page: 105
  year: 1999
  ident: e_1_2_7_17_1
  article-title: Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation
  publication-title: Critical Reviews in Biochemistry and Molecular Biology
– ident: e_1_2_7_15_1
  doi: 10.1038/nrmicro3117
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.ppat.1003921
– ident: e_1_2_7_48_1
  doi: 10.1099/vir.0.053181-0
– ident: e_1_2_7_22_1
  doi: 10.4161/auto.28260
– ident: e_1_2_7_41_1
  doi: 10.1371/journal.pone.0015650
– ident: e_1_2_7_9_1
  doi: 10.1038/nature15548
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.1610687114
– ident: e_1_2_7_50_1
  doi: 10.1099/jgv.0.000738
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1364-3703.2004.00214.x
– ident: e_1_2_7_19_1
  doi: 10.1016/j.pbi.2017.04.017
– ident: e_1_2_7_35_1
  doi: 10.1016/j.molcel.2015.04.023
– ident: e_1_2_7_6_1
  doi: 10.7554/eLife.10856
– ident: e_1_2_7_52_1
  doi: 10.1016/j.cell.2011.03.024
– ident: e_1_2_7_20_1
  doi: 10.1093/jxb/erz244
– ident: e_1_2_7_18_1
  doi: 10.7554/eLife.23897
– ident: e_1_2_7_34_1
  doi: 10.1146/annurev-arplant-042817-040606
– ident: e_1_2_7_11_1
  doi: 10.1111/mpp.12032
– ident: e_1_2_7_46_1
  doi: 10.1007/978-3-319-32919-2
– ident: e_1_2_7_38_1
  doi: 10.1016/j.chom.2010.01.007
– ident: e_1_2_7_29_1
  doi: 10.1038/s41467-018-03658-2
– ident: e_1_2_7_24_1
  doi: 10.1159/000351979
– ident: e_1_2_7_39_1
  doi: 10.3390/v9090256
– ident: e_1_2_7_42_1
  doi: 10.1093/nar/gkl1088
– ident: e_1_2_7_23_1
  doi: 10.1016/j.tplants.2016.11.015
– ident: e_1_2_7_36_1
  doi: 10.1038/nature14506
– ident: e_1_2_7_14_1
  doi: 10.1104/pp.17.01198
– ident: e_1_2_7_40_1
  doi: 10.1104/pp.108.132787
SSID ssj0009562
Score 2.5546079
Snippet • Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However,...
Summary Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens....
Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However,...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1746
SubjectTerms Autophagy
Autophagy - physiology
autophagy pathway
Begomovirus
C1 protein
cell nucleolus
Cytoplasm
Defence mechanisms
Defense mechanisms
Degradation
Exports
Geminiviridae
Geminiviridae - metabolism
geminivirus
Gene Expression Regulation, Plant - immunology
Genes
Infections
leaf curling
Leaf-curl
Mutation
Nicotiana - virology
Nicotiana benthamiana
nuclear autophagy
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nuclear transport
Nucleocapsid Proteins - metabolism
Nucleoli
Pathogenicity
Pathogens
Phagocytosis
physiological transport
Plant Diseases - virology
plant diseases and disorders
Plant Proteins - genetics
Plant Proteins - metabolism
plant viruses
Protein transport
Proteins
solanaceous plants
Solanum lycopersicum
Solanum lycopersicum - virology
Tomatoes
Translocation
Viral infections
viral proteins
Viruses
Title Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants
URI https://www.jstor.org/stable/26896789
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16268
https://www.ncbi.nlm.nih.gov/pubmed/31621924
https://www.proquest.com/docview/2430028008
https://www.proquest.com/docview/2306494749
https://www.proquest.com/docview/2400447221
Volume 225
WOSCitedRecordID wos000498333800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SNIde-k67bbqopYdeXNa2VrLoqa8lhWBCaejejDyWky2LdlnvBvLvOyM_SCAthd6MPYKxpG_0SRp9Angbx3WCMapIYzKNJFoZlWgwkmmdVXWirCrDQeETnefZfG5O9-BDfxam1YcYFtwYGSFeM8Bt2VwDuV9fvI-JjvNB31gGUP78ll8T3FVJr8CspJp3qkKcxTOUvDEWtemItxHNm7w1DDyzB__l8kO43_FN8bHtII9gz_nHcPBpRZzw6gn8ylnO2G6E3bHAgD2_EhWrR1SuEVacB-GRy8Vm1wjfGQZdh4UX25XgWz0oim4F5wkvRZ_W5elJUI-23qJbUdH1knNtnsLZ7OuPz8dRd_tChFMWGS1V7GqLmXTEISfWYCw1Y3zqXK2kNtYlppygylBLVBpNraeY6LImwmI5kBzCvl959xyElESCXFZpnVZEv9DoyiostVa2lBOXjuBd3w4FdtLkfEPGsuinKFRzRai5EbwZTNetHsdtRoehMQcLemdoVDYjOOpbt-iw2hSJTMMG84TKvR4-E8p468R6rqkiTNSM1NL8xYbDIWtvxiN41vacwYGU_OKpLv1p6CB_9r3IT4_Dw4t_N30J9xJeBgjJ5Eewv93s3Cs4wMvtotmM4Y6eZ2O4--X77OxkHFDyG6QeEus
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STaC99J1227RVSw-9OKxtWbKgl76WLd2aUBLYm5HHcrpl8S77COTfd0Z-kEBaCr0JeQRjaWb0SRp9AngbhlWEIapAY5QEEq0MCjQYyLhKyypSVhX-ovBUZ1k6m5mTPXjf3YVp-CH6DTf2DB-v2cF5Q_qKl9ern8ch4fH0FuxLMqNkAPuff4zPpldId1XUsTArqWYtsxBn8vSNr81HTUriTWDzOnb1k8_43v-pfR_utqBTfGis5AHsufohHHxcEjC8fAS_MuY0tmthd8wyYM8vRckUEqXbCCvOPfvIxXy924i6FfTkDvNabJeCn_agULoVnCy8EF1uV00lQWZta4tuSU1XC064eQxn4y-nnyZB-wRDgAkzjRYqdJXFVDoCkiNrMJSaHT1xrlJSG-siU4xQpaglKo2m0glGuqgItViOJocwqJe1ewpCSkJCLi21jkvCYGh0aRUWWitbyJGLh_CuG4gcW35yfiZjkXfrFOq53PfcEN70oquGlOMmoUM_mr0E1Rmams0QjrrhzVuH3eSRjP0p84jave4_k6vx-Ymtuadyv1ozUkvzFxmOiUzAGQ7hSWM6vQIx6cXrXfpTbyF_1j3PTia-8OzfRV_B7cnp92k-_Zp9ew53It4X8NnlRzDYrnfuBRzgxXa-Wb9s3eQ3CUAVrw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SJJRemr7SbpO2aumhF5e1LUsW9JI0XVK6mKU0sDcjj-V0y-Jd9hHIv--M_CCBtBR6M_YIxpK-0Sdp9AngfRhWEYaoAo1REki0MijQYCDjKi2rSFlV-IPCY51l6XRqJjvwqTsL0-hD9AtujAwfrxngbllWN1BeL39-DImPp_dgTyZGESz3zr6PLsY3RHdV1KkwK6mmrbIQZ_L0hW-NR01K4l1k8zZ39YPP6OD_3H4ED1vSKU6aXvIYdlz9BPZPF0QMr5_Cr4w1je1K2C2rDNjLa1GyhETp1sKKS68-cjVbbdeibg29uMOsFpuF4Ks9KJRuBCcLz0WX21XTk6BubWuLbkFFl3NOuHkGF6MvPz6fB-0VDAEmrDRaqNBVFlPpiEgOrcFQagZ64lylpDbWRaYYokpRS1QaTaUTjHRREWuxHE0OYbde1O4FCCmJCbm01DouiYOh0aVVWGitbCGHLh7Ah64hcmz1yfmajHnezVOo5nJfcwN415suG1GOu4wOfWv2FvTO0NBsBnDcNW_eAnadRzL2u8xDKve2_0xQ4_0TW3NN5X62ZqSW5i82HBNZgDMcwPOm6_QOxOQXz3fpT30P-bPveTY59w8v_930DdyfnI3y8dfs2xE8iHhZwCeXH8PuZrV1r2Afrzaz9ep1i5LfdWoVKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+autophagy+degrades+a+geminivirus+nuclear+protein+to+restrict+viral+infection+in+solanaceous+plants&rft.jtitle=The+New+phytologist&rft.au=Li%2C+Fangfang&rft.au=Zhang%2C+Mingzhen&rft.au=Zhang%2C+Changwei&rft.au=Zhou%2C+Xueping&rft.date=2020-02-01&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=225&rft.issue=4&rft.spage=1746&rft.epage=1761&rft_id=info:doi/10.1111%2Fnph.16268&rft.externalDocID=26896789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon