Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants
• Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. • Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan...
Gespeichert in:
| Veröffentlicht in: | The New phytologist Jg. 225; H. 4; S. 1746 - 1761 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Wiley
01.02.2020
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0028-646X, 1469-8137, 1469-8137 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | • Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants.
• Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants.
• The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants.
• Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants. |
|---|---|
| AbstractList | Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants.Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants. Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants. • Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. • Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. • The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. • Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants. Summary Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy‐related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1‐mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy‐related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy‐mediated degradation of viral proteins through an exportin1‐dependent nuclear export pathway restricts virus infection in plants. Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy‐related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1‐mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy‐related genes (ATGs) ATG8h , ATG5 , or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy‐mediated degradation of viral proteins through an exportin1‐dependent nuclear export pathway restricts virus infection in plants. |
| Author | Zhang, Changwei Zhang, Mingzhen Li, Fangfang Zhou, Xueping |
| Author_xml | – sequence: 1 givenname: Fangfang surname: Li fullname: Li, Fangfang – sequence: 2 givenname: Mingzhen surname: Zhang fullname: Zhang, Mingzhen – sequence: 3 givenname: Changwei surname: Zhang fullname: Zhang, Changwei – sequence: 4 givenname: Xueping surname: Zhou fullname: Zhou, Xueping |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31621924$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uEzEUhS3UiqaFBQ8AssQGFtPaHsc_S1QVWqkqLEBiZ3mcO6mjiT3YHlDevg5JWFRF9cZX8neOjs89RUchBkDoDSXntJ6LMN6fU8GEeoFmlAvdKNrKIzQjhKlGcPHzBJ3mvCKE6LlgL9FJW2mqGZ-h1d3kBrAJ26nE8d4uN3gBy2QXkLHFS1j74H_7NGUc9uCYYgEfcIk4QS7Ju4IrYQfsQw-u-BjqhHMcbLAOYpWOdSz5FTru7ZDh9f4-Qz8-X32_vG5uv365ufx027g50arpBIXeOsVBa02sdpTLjhA-B-gFl9oC0x1xQjnJnZBO93LumOx6plpLJGnP0Iedb036a6oRzdpnB0MNsU1jGK9uXDJGn0dbIrjmkuuKvn-EruKUQv1INWy3TROiKvVuT03dGhZmTH5t08YcCq_AxQ5wKeacoDfOF7strSTrB0OJ2a7U1JWavyutio-PFAfTp9i9-x8_wOb_oLn7dn1QvN0pVrnE9E9Rn7SQSrcPnv259A |
| CitedBy_id | crossref_primary_10_1016_j_tim_2023_06_008 crossref_primary_10_1016_j_coviro_2020_12_001 crossref_primary_10_1631_jzus_B2300853 crossref_primary_10_1371_journal_ppat_1012960 crossref_primary_10_1371_journal_ppat_1009118 crossref_primary_10_3390_cells10061272 crossref_primary_10_1186_s12985_021_01612_1 crossref_primary_10_3389_fpls_2020_00164 crossref_primary_10_3390_ijms241612582 crossref_primary_10_1186_s42483_025_00360_2 crossref_primary_10_1007_s00018_022_04281_7 crossref_primary_10_1111_mpp_70012 crossref_primary_10_1007_s00299_021_02820_3 crossref_primary_10_1002_1873_3468_14412 crossref_primary_10_3389_fmicb_2023_1191403 crossref_primary_10_3389_fpls_2020_00840 crossref_primary_10_1093_plphys_kiad235 crossref_primary_10_3390_ijms241512300 crossref_primary_10_1007_s44154_023_00084_3 crossref_primary_10_1111_jipb_13452 crossref_primary_10_1007_s00705_021_05338_x crossref_primary_10_1111_nph_70564 crossref_primary_10_1016_j_plaphy_2023_107771 crossref_primary_10_1007_s00425_022_04004_z crossref_primary_10_1016_j_virol_2023_05_011 crossref_primary_10_3390_brainsci10090646 crossref_primary_10_3390_plants11212858 crossref_primary_10_3390_microorganisms13071589 crossref_primary_10_1002_biot_202300736 crossref_primary_10_1080_15548627_2021_1987674 crossref_primary_10_7554_eLife_97206_5 crossref_primary_10_1002_1873_3468_14349 crossref_primary_10_1111_nph_70478 crossref_primary_10_3390_v16020234 crossref_primary_10_3390_v13112189 crossref_primary_10_1002_1873_3468_14719 crossref_primary_10_1146_annurev_virology_010220_054709 crossref_primary_10_3390_ijms231911410 crossref_primary_10_3390_plants13202924 crossref_primary_10_3390_v15122324 crossref_primary_10_3390_plants13070927 crossref_primary_10_15252_embj_2021108713 crossref_primary_10_1002_advs_202400978 crossref_primary_10_1186_s42483_023_00209_6 crossref_primary_10_1042_EBC20210063 crossref_primary_10_1111_jipb_13313 crossref_primary_10_3390_antiox10111736 crossref_primary_10_1371_journal_ppat_1009370 crossref_primary_10_3389_fcimb_2021_786348 crossref_primary_10_3390_ijms21176321 crossref_primary_10_1007_s00299_022_02910_w crossref_primary_10_1038_s41467_023_39426_0 crossref_primary_10_1111_nph_16716 crossref_primary_10_3389_fpls_2023_1226498 crossref_primary_10_1080_15548627_2023_2252273 crossref_primary_10_1007_s00122_021_03783_5 crossref_primary_10_1360_TB_2024_0341 crossref_primary_10_1371_journal_ppat_1009963 crossref_primary_10_3390_v15020510 crossref_primary_10_3389_fmicb_2020_00736 crossref_primary_10_1146_annurev_arplant_060223_030224 crossref_primary_10_1111_jipb_13580 crossref_primary_10_1111_pbi_70168 crossref_primary_10_7554_eLife_97206 crossref_primary_10_1080_15592324_2021_1977527 |
| Cites_doi | 10.1146/annurev-phyto-082712-102234 10.1016/j.pbi.2018.09.004 10.1104/pp.17.01236 10.1111/j.1365-313X.2009.04048.x 10.1073/pnas.1201628109 10.1371/journal.ppat.1006213 10.1038/nrm3696 10.1105/tpc.18.00122 10.1006/viro.2002.1599 10.1016/j.bbrc.2011.08.031 10.1016/j.pbi.2017.08.011 10.1016/j.tplants.2017.06.007 10.1016/S0021-9258(17)37216-2 10.1080/15548627.2015.1100356 10.1371/journal.pbio.0030156 10.1128/MCB.17.9.5077 10.1371/journal.ppat.1006587 10.1080/15548627.2016.1217381 10.1371/journal.pone.0182591 10.1111/j.1365-313X.2005.02617.x 10.1093/jxb/ery070 10.3390/cells2010083 10.1074/jbc.M109.080796 10.1038/nrmicro3117 10.1371/journal.ppat.1003921 10.1099/vir.0.053181-0 10.4161/auto.28260 10.1371/journal.pone.0015650 10.1038/nature15548 10.1073/pnas.1610687114 10.1099/jgv.0.000738 10.1111/j.1364-3703.2004.00214.x 10.1016/j.pbi.2017.04.017 10.1016/j.molcel.2015.04.023 10.7554/eLife.10856 10.1016/j.cell.2011.03.024 10.1093/jxb/erz244 10.7554/eLife.23897 10.1146/annurev-arplant-042817-040606 10.1111/mpp.12032 10.1007/978-3-319-32919-2 10.1016/j.chom.2010.01.007 10.1038/s41467-018-03658-2 10.1159/000351979 10.3390/v9090256 10.1093/nar/gkl1088 10.1016/j.tplants.2016.11.015 10.1038/nature14506 10.1104/pp.17.01198 10.1104/pp.108.132787 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors © 2019 New Phytologist Trust 2019 The Authors New Phytologist © 2019 New Phytologist Research Trust 2019 The Authors New Phytologist © 2019 New Phytologist Research Trust. Copyright © 2020 New Phytologist Trust |
| Copyright_xml | – notice: 2019 The Authors © 2019 New Phytologist Trust – notice: 2019 The Authors New Phytologist © 2019 New Phytologist Research Trust – notice: 2019 The Authors New Phytologist © 2019 New Phytologist Research Trust. – notice: Copyright © 2020 New Phytologist Trust |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/nph.16268 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1469-8137 |
| EndPage | 1761 |
| ExternalDocumentID | 31621924 10_1111_nph_16268 NPH16268 26896789 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Central Public‐interest Scientific Institution Basal Research Fund of China funderid: #S2019XM16 – fundername: Chinese Academy of Agricultural Sciences – fundername: National Natural Science Foundation of China funderid: 31930089; 31972244 |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ABUFD ADXHL AGUYK CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5098-b61efac84e9990a9c147b0045eef6479ae29b0c68c74c67c9f75c27bf283a0703 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498333800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X 1469-8137 |
| IngestDate | Fri Sep 05 17:19:13 EDT 2025 Fri Sep 05 09:37:46 EDT 2025 Sun Jul 13 05:09:58 EDT 2025 Thu Apr 03 07:08:14 EDT 2025 Tue Nov 18 22:22:11 EST 2025 Sat Nov 29 03:44:25 EST 2025 Wed Jan 22 16:37:50 EST 2025 Thu Jul 03 21:56:10 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | solanaceous plants degradation nuclear autophagy autophagy pathway C1 protein geminivirus |
| Language | English |
| License | 2019 The Authors New Phytologist © 2019 New Phytologist Research Trust. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5098-b61efac84e9990a9c147b0045eef6479ae29b0c68c74c67c9f75c27bf283a0703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7695-7958 |
| OpenAccessLink | https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16268 |
| PMID | 31621924 |
| PQID | 2430028008 |
| PQPubID | 2026848 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2400447221 proquest_miscellaneous_2306494749 proquest_journals_2430028008 pubmed_primary_31621924 crossref_citationtrail_10_1111_nph_16268 crossref_primary_10_1111_nph_16268 wiley_primary_10_1111_nph_16268_NPH16268 jstor_primary_26896789 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Lancaster |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2020 |
| Publisher | Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
| References | 2017; 40 2011; 412 2017; 6 2015; 58 2019; 70 2015; 522 2017; 22 2010; 285 2015; 527 2009; 150 2013; 5 2017; 114 2017; 9 2007; 35 2018; 69 2016; 12 2010; 61 2012; 109 2018; 46 2016; 5 2018; 9 2018; 176 2018; 2 2013; 14 1994; 269 2006; 45 2013; 11 2017; 38 2013; 51 2013; 94 2017; 98 2017; 13 2017; 12 1999; 35 1997; 17 2002; 302 2016 2018; 30 2005; 3 2010; 5 2010; 7 2011; 145 2014; 10 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 Hanley‐Bowdoin L (e_1_2_7_17_1) 1999; 35 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 269 start-page: 8459 year: 1994 end-page: 8465 article-title: Interaction between a geminivirus replication protein and origin DNA is essential for viral replication publication-title: Journal of Biological Chemistry – volume: 35 start-page: 105 year: 1999 end-page: 140 article-title: Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation publication-title: Critical Reviews in Biochemistry and Molecular Biology – volume: 22 start-page: 646 year: 2017 end-page: 648 article-title: Autophagy: a double‐edged sword to fight plant viruses publication-title: Trends in Plant Science – volume: 13 year: 2017 article-title: The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome publication-title: PLoS Pathogens – volume: 5 year: 2016 article-title: An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor publication-title: eLife – volume: 17 start-page: 5077 year: 1997 end-page: 5086 article-title: and encode maize retinoblastoma‐related proteins that interact with a plant d‐type cyclin and geminivirus replication protein publication-title: Molecular and Cellular Biology – volume: 285 start-page: 10850 year: 2010 end-page: 10861 article-title: Dual role of 3‐methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3‐kinase publication-title: Journal of Biological Chemistry – volume: 30 start-page: 1582 year: 2018 end-page: 1595 article-title: γb protein subverts autophagy to promote viral infection by disrupting the ATG7–ATG8 interaction publication-title: Plant Cell – volume: 46 start-page: 113 year: 2018 end-page: 121 article-title: Plant autophagy: new flavors on the menu publication-title: Current Opinion Plant Biology – volume: 22 start-page: 204 year: 2016 end-page: 214 article-title: ATG8 expansion: a driver of selective autophagy diversification? publication-title: Trends in Plant Science – volume: 12 start-page: 1973 year: 2016 end-page: 1983 article-title: Nuclear autophagy: an evolutionarily conserved mechanism of nuclear degradation in the cytoplasm publication-title: Autophagy – volume: 150 start-page: 996 year: 2009 end-page: 1005 article-title: Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop publication-title: Plant Physiology – volume: 51 start-page: 357 year: 2013 end-page: 381 article-title: Advances in understanding begomovirus satellites publication-title: Annual Review of Phytopathology – volume: 5 start-page: 427 year: 2013 end-page: 433 article-title: The mechanism and physiological function of macroautophagy publication-title: Journal of Innate Immunity – volume: 11 start-page: 777 year: 2013 end-page: 788 article-title: Geminiviruses: masters at redirecting and reprogramming plant processes publication-title: Nature Reviews Microbiology – volume: 109 start-page: 10113 year: 2012 end-page: 10118 article-title: Tobacco calmodulin‐like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors publication-title: Proceedings of the National Academy of Sciences, USA – volume: 94 start-page: 1896 year: 2013 end-page: 1907 article-title: A recombinant begomovirus resulting from exchange of the gene publication-title: Journal of General Virology – volume: 98 start-page: 131 year: 2017 end-page: 133 article-title: ICTV virus taxonomy profile: publication-title: Journal of General Virology – volume: 13 year: 2017 article-title: A calmodulin‐like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in publication-title: PLoS Pathogens – volume: 7 start-page: 115 year: 2010 end-page: 127 article-title: Autophagy protects against Sindbis virus infection of the central nervous system publication-title: Cell Host & Microbe – volume: 35 start-page: 755 year: 2007 end-page: 770 article-title: The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of (MYMIV) by interacting with the viral Rep protein publication-title: Nucleic Acids Research – volume: 522 start-page: 359 year: 2015 end-page: 362 article-title: Receptor‐mediated selective autophagy degrades the endoplasmic reticulum and the nucleus publication-title: Nature – volume: 9 year: 2017 article-title: Geminiviruses and plant hosts: a closer examination of the molecular arms race publication-title: Viruses – volume: 412 start-page: 699 year: 2011 end-page: 703 article-title: The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h publication-title: Biochemical and Biophysical Research Communications – volume: 3 year: 2005 article-title: Subversion of cellular autophagosomal machinery by RNA viruses publication-title: PLoS Biology – volume: 6 year: 2017 article-title: Autophagy functions as an antiviral mechanism against geminiviruses in plants publication-title: eLife – volume: 176 start-page: 219 year: 2018 end-page: 229 article-title: Dynamics of autophagosome formation publication-title: Plant Physiology – volume: 145 start-page: 242 year: 2011 end-page: 256 article-title: Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development publication-title: Cell – volume: 58 start-page: 1053 year: 2015 end-page: 1066 article-title: Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in publication-title: Molecular Cell – volume: 2 start-page: 83 year: 2018 end-page: 104 article-title: Divergent roles of autophagy in virus infection publication-title: Cells – volume: 14 start-page: 759 year: 2013 end-page: 774 article-title: The autophagosome: origins unknown, biogenesis complex publication-title: Nature Reviews Molecular Cell Biology – volume: 61 start-page: 259 year: 2010 end-page: 270 article-title: Arabidopsis homolog of the yeast TREX‐2 mRNA export complex: components and anchoring nucleoporin publication-title: The Plant Journal – volume: 69 start-page: 173 year: 2018 end-page: 208 article-title: Autophagy: the master of bulk and selective recycling publication-title: Annual Review Plant Biology – volume: 38 start-page: 117 year: 2017 end-page: 123 article-title: Autophagy as an emerging arena for plant–pathogen interactions publication-title: Current Opinion Plant Biology – volume: 5 start-page: 149 year: 2010 end-page: 156 article-title: Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication publication-title: Molecular Plant Pathology – volume: 12 year: 2017 article-title: SnRK1 activates autophagy via the TOR signaling pathway in publication-title: PLoS ONE – volume: 70 start-page: 4657 year: 2019 end-page: 4670 article-title: Autophagy is involved in assisting the replication of in publication-title: Journal of Experimental Botany – year: 2016 – volume: 527 start-page: 105 year: 2015 end-page: 109 article-title: Autophagy mediates degradation of nuclear lamina publication-title: Nature – volume: 114 start-page: E2026 year: 2017 end-page: E2035 article-title: Selective autophagy limits cauliflower mosaic virus infection by NBR1‐mediated targeting of viral capsid protein and particles publication-title: Proceedings of the National Academy of Sciences, USA – volume: 5 year: 2010 article-title: Macroautophagy‐mediated degradation of whole nuclei in the filamentous fungus publication-title: PLoS ONE – volume: 14 start-page: 635 year: 2013 end-page: 649 article-title: Geminivirus protein structure and function publication-title: Molecular Plant Pathology – volume: 40 start-page: 122 year: 2017 end-page: 130 article-title: Autophagy as a mediator of life and death in plants publication-title: Current Opinion Plant Biology – volume: 45 start-page: 616 year: 2006 end-page: 629 article-title: Gateway‐compatible vectors for plant functional genomics and proteomics publication-title: The Plant Journal – volume: 176 start-page: 649 year: 2018 end-page: 662 article-title: Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HC‐pro publication-title: Plant Physiology – volume: 10 start-page: 913 year: 2014 end-page: 925 article-title: LIR: A web resource for prediction of Atg8‐family interacting proteins publication-title: Autophagy – volume: 12 start-page: 1 year: 2016 end-page: 222 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy publication-title: Autophagy – volume: 302 start-page: 83 year: 2002 end-page: 94 article-title: Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication publication-title: Virology – volume: 9 year: 2018 article-title: Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase publication-title: Nature Communication – volume: 10 year: 2014 article-title: Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin‐like protein to repress expression publication-title: PLoS Pathogens – volume: 69 start-page: 1281 year: 2018 end-page: 1285 article-title: Plant autophagy: mechanisms and functions publication-title: Journal of Experimental Botany – ident: e_1_2_7_51_1 doi: 10.1146/annurev-phyto-082712-102234 – ident: e_1_2_7_8_1 doi: 10.1016/j.pbi.2018.09.004 – ident: e_1_2_7_44_1 doi: 10.1104/pp.17.01236 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-313X.2009.04048.x – ident: e_1_2_7_37_1 doi: 10.1073/pnas.1201628109 – ident: e_1_2_7_30_1 doi: 10.1371/journal.ppat.1006213 – ident: e_1_2_7_27_1 doi: 10.1038/nrm3696 – ident: e_1_2_7_49_1 doi: 10.1105/tpc.18.00122 – ident: e_1_2_7_33_1 doi: 10.1006/viro.2002.1599 – ident: e_1_2_7_7_1 doi: 10.1016/j.bbrc.2011.08.031 – ident: e_1_2_7_45_1 doi: 10.1016/j.pbi.2017.08.011 – ident: e_1_2_7_5_1 doi: 10.1016/j.tplants.2017.06.007 – ident: e_1_2_7_12_1 doi: 10.1016/S0021-9258(17)37216-2 – ident: e_1_2_7_25_1 doi: 10.1080/15548627.2015.1100356 – ident: e_1_2_7_21_1 doi: 10.1371/journal.pbio.0030156 – ident: e_1_2_7_2_1 doi: 10.1128/MCB.17.9.5077 – ident: e_1_2_7_26_1 doi: 10.1371/journal.ppat.1006587 – ident: e_1_2_7_32_1 doi: 10.1080/15548627.2016.1217381 – ident: e_1_2_7_43_1 doi: 10.1371/journal.pone.0182591 – ident: e_1_2_7_10_1 doi: 10.1111/j.1365-313X.2005.02617.x – ident: e_1_2_7_3_1 doi: 10.1093/jxb/ery070 – ident: e_1_2_7_4_1 doi: 10.3390/cells2010083 – ident: e_1_2_7_47_1 doi: 10.1074/jbc.M109.080796 – volume: 35 start-page: 105 year: 1999 ident: e_1_2_7_17_1 article-title: Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation publication-title: Critical Reviews in Biochemistry and Molecular Biology – ident: e_1_2_7_15_1 doi: 10.1038/nrmicro3117 – ident: e_1_2_7_28_1 doi: 10.1371/journal.ppat.1003921 – ident: e_1_2_7_48_1 doi: 10.1099/vir.0.053181-0 – ident: e_1_2_7_22_1 doi: 10.4161/auto.28260 – ident: e_1_2_7_41_1 doi: 10.1371/journal.pone.0015650 – ident: e_1_2_7_9_1 doi: 10.1038/nature15548 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.1610687114 – ident: e_1_2_7_50_1 doi: 10.1099/jgv.0.000738 – ident: e_1_2_7_16_1 doi: 10.1111/j.1364-3703.2004.00214.x – ident: e_1_2_7_19_1 doi: 10.1016/j.pbi.2017.04.017 – ident: e_1_2_7_35_1 doi: 10.1016/j.molcel.2015.04.023 – ident: e_1_2_7_6_1 doi: 10.7554/eLife.10856 – ident: e_1_2_7_52_1 doi: 10.1016/j.cell.2011.03.024 – ident: e_1_2_7_20_1 doi: 10.1093/jxb/erz244 – ident: e_1_2_7_18_1 doi: 10.7554/eLife.23897 – ident: e_1_2_7_34_1 doi: 10.1146/annurev-arplant-042817-040606 – ident: e_1_2_7_11_1 doi: 10.1111/mpp.12032 – ident: e_1_2_7_46_1 doi: 10.1007/978-3-319-32919-2 – ident: e_1_2_7_38_1 doi: 10.1016/j.chom.2010.01.007 – ident: e_1_2_7_29_1 doi: 10.1038/s41467-018-03658-2 – ident: e_1_2_7_24_1 doi: 10.1159/000351979 – ident: e_1_2_7_39_1 doi: 10.3390/v9090256 – ident: e_1_2_7_42_1 doi: 10.1093/nar/gkl1088 – ident: e_1_2_7_23_1 doi: 10.1016/j.tplants.2016.11.015 – ident: e_1_2_7_36_1 doi: 10.1038/nature14506 – ident: e_1_2_7_14_1 doi: 10.1104/pp.17.01198 – ident: e_1_2_7_40_1 doi: 10.1104/pp.108.132787 |
| SSID | ssj0009562 |
| Score | 2.5546079 |
| Snippet | • Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However,... Summary Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens.... Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However,... |
| SourceID | proquest pubmed crossref wiley jstor |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1746 |
| SubjectTerms | Autophagy Autophagy - physiology autophagy pathway Begomovirus C1 protein cell nucleolus Cytoplasm Defence mechanisms Defense mechanisms Degradation Exports Geminiviridae Geminiviridae - metabolism geminivirus Gene Expression Regulation, Plant - immunology Genes Infections leaf curling Leaf-curl Mutation Nicotiana - virology Nicotiana benthamiana nuclear autophagy Nuclear Proteins - genetics Nuclear Proteins - metabolism Nuclear transport Nucleocapsid Proteins - metabolism Nucleoli Pathogenicity Pathogens Phagocytosis physiological transport Plant Diseases - virology plant diseases and disorders Plant Proteins - genetics Plant Proteins - metabolism plant viruses Protein transport Proteins solanaceous plants Solanum lycopersicum Solanum lycopersicum - virology Tomatoes Translocation Viral infections viral proteins Viruses |
| Title | Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants |
| URI | https://www.jstor.org/stable/26896789 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16268 https://www.ncbi.nlm.nih.gov/pubmed/31621924 https://www.proquest.com/docview/2430028008 https://www.proquest.com/docview/2306494749 https://www.proquest.com/docview/2400447221 |
| Volume | 225 |
| WOSCitedRecordID | wos000498333800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-8137 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SNIde-k67bbqopYdeXNa2VrLoqa8lhWBCaejejDyWky2LdlnvBvLvOyM_SCAthd6MPYKxpG_0SRp9Angbx3WCMapIYzKNJFoZlWgwkmmdVXWirCrDQeETnefZfG5O9-BDfxam1YcYFtwYGSFeM8Bt2VwDuV9fvI-JjvNB31gGUP78ll8T3FVJr8CspJp3qkKcxTOUvDEWtemItxHNm7w1DDyzB__l8kO43_FN8bHtII9gz_nHcPBpRZzw6gn8ylnO2G6E3bHAgD2_EhWrR1SuEVacB-GRy8Vm1wjfGQZdh4UX25XgWz0oim4F5wkvRZ_W5elJUI-23qJbUdH1knNtnsLZ7OuPz8dRd_tChFMWGS1V7GqLmXTEISfWYCw1Y3zqXK2kNtYlppygylBLVBpNraeY6LImwmI5kBzCvl959xyElESCXFZpnVZEv9DoyiostVa2lBOXjuBd3w4FdtLkfEPGsuinKFRzRai5EbwZTNetHsdtRoehMQcLemdoVDYjOOpbt-iw2hSJTMMG84TKvR4-E8p468R6rqkiTNSM1NL8xYbDIWtvxiN41vacwYGU_OKpLv1p6CB_9r3IT4_Dw4t_N30J9xJeBgjJ5Eewv93s3Cs4wMvtotmM4Y6eZ2O4--X77OxkHFDyG6QeEus |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STaC99J1227RVSw-9OKxtWbKgl76WLd2aUBLYm5HHcrpl8S77COTfd0Z-kEBaCr0JeQRjaWb0SRp9AngbhlWEIapAY5QEEq0MCjQYyLhKyypSVhX-ovBUZ1k6m5mTPXjf3YVp-CH6DTf2DB-v2cF5Q_qKl9ern8ch4fH0FuxLMqNkAPuff4zPpldId1XUsTArqWYtsxBn8vSNr81HTUriTWDzOnb1k8_43v-pfR_utqBTfGis5AHsufohHHxcEjC8fAS_MuY0tmthd8wyYM8vRckUEqXbCCvOPfvIxXy924i6FfTkDvNabJeCn_agULoVnCy8EF1uV00lQWZta4tuSU1XC064eQxn4y-nnyZB-wRDgAkzjRYqdJXFVDoCkiNrMJSaHT1xrlJSG-siU4xQpaglKo2m0glGuqgItViOJocwqJe1ewpCSkJCLi21jkvCYGh0aRUWWitbyJGLh_CuG4gcW35yfiZjkXfrFOq53PfcEN70oquGlOMmoUM_mr0E1Rmams0QjrrhzVuH3eSRjP0p84jave4_k6vx-Ymtuadyv1ozUkvzFxmOiUzAGQ7hSWM6vQIx6cXrXfpTbyF_1j3PTia-8OzfRV_B7cnp92k-_Zp9ew53It4X8NnlRzDYrnfuBRzgxXa-Wb9s3eQ3CUAVrw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SJJRemr7SbpO2aumhF5e1LUsW9JI0XVK6mKU0sDcjj-V0y-Jd9hHIv--M_CCBtBR6M_YIxpK-0Sdp9AngfRhWEYaoAo1REki0MijQYCDjKi2rSFlV-IPCY51l6XRqJjvwqTsL0-hD9AtujAwfrxngbllWN1BeL39-DImPp_dgTyZGESz3zr6PLsY3RHdV1KkwK6mmrbIQZ_L0hW-NR01K4l1k8zZ39YPP6OD_3H4ED1vSKU6aXvIYdlz9BPZPF0QMr5_Cr4w1je1K2C2rDNjLa1GyhETp1sKKS68-cjVbbdeibg29uMOsFpuF4Ks9KJRuBCcLz0WX21XTk6BubWuLbkFFl3NOuHkGF6MvPz6fB-0VDAEmrDRaqNBVFlPpiEgOrcFQagZ64lylpDbWRaYYokpRS1QaTaUTjHRREWuxHE0OYbde1O4FCCmJCbm01DouiYOh0aVVWGitbCGHLh7Ah64hcmz1yfmajHnezVOo5nJfcwN415suG1GOu4wOfWv2FvTO0NBsBnDcNW_eAnadRzL2u8xDKve2_0xQ4_0TW3NN5X62ZqSW5i82HBNZgDMcwPOm6_QOxOQXz3fpT30P-bPveTY59w8v_930DdyfnI3y8dfs2xE8iHhZwCeXH8PuZrV1r2Afrzaz9ep1i5LfdWoVKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+autophagy+degrades+a+geminivirus+nuclear+protein+to+restrict+viral+infection+in+solanaceous+plants&rft.jtitle=The+New+phytologist&rft.au=Li%2C+Fangfang&rft.au=Zhang%2C+Mingzhen&rft.au=Zhang%2C+Changwei&rft.au=Zhou%2C+Xueping&rft.date=2020-02-01&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=225&rft.issue=4&rft.spage=1746&rft.epage=1761&rft_id=info:doi/10.1111%2Fnph.16268&rft.externalDocID=26896789 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |