Carbon‐Based Microbial‐Fuel‐Cell Electrodes: From Conductive Supports to Active Catalysts

Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials ha...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 29; no. 8; pp. np - n/a
Main Authors: Li, Shuang, Cheng, Chong, Thomas, Arne
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01.02.2017
Subjects:
ISSN:0935-9648, 1521-4095, 1521-4095
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast‐emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon‐based materials can function as catalysts for the oxygen‐reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon‐based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon‐electrode‐based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described. Carbon‐based electrodes with different morphologies and structures are widely used in microbial fuel cells from conductive supports (anode) to active catalysts (cathode). Recent advancements in the design of carbon materials for anodes (conductivity, biofilm formation, interaction) and cathodes (catalytic activity) are discussed separately. The future perspectives and emerging challenges of this area are also highlighted.
AbstractList Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described. Carbon-based electrodes with different morphologies and structures are widely used in microbial fuel cells from conductive supports (anode) to active catalysts (cathode). Recent advancements in the design of carbon materials for anodes (conductivity, biofilm formation, interaction) and cathodes (catalytic activity) are discussed separately. The future perspectives and emerging challenges of this area are also highlighted.
Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.
Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast‐emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon‐based materials can function as catalysts for the oxygen‐reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon‐based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon‐electrode‐based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described. Carbon‐based electrodes with different morphologies and structures are widely used in microbial fuel cells from conductive supports (anode) to active catalysts (cathode). Recent advancements in the design of carbon materials for anodes (conductivity, biofilm formation, interaction) and cathodes (catalytic activity) are discussed separately. The future perspectives and emerging challenges of this area are also highlighted.
Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.
Author Thomas, Arne
Cheng, Chong
Li, Shuang
Author_xml – sequence: 1
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
  organization: Technische Universität Berlin
– sequence: 2
  givenname: Chong
  surname: Cheng
  fullname: Cheng, Chong
  organization: Freie Universität Berlin
– sequence: 3
  givenname: Arne
  surname: Thomas
  fullname: Thomas, Arne
  email: arne.thomas@tu-berlin.de
  organization: Technische Universität Berlin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27991684$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFq3DAQhkVJaDZprz0GQy-5eCPJki31tnV200CWHJqehSyPQcG2NpLcsLc-Qp8xTxKbzaYQKAkIBobvGzTzH6OD3vWA0BeC5wRjeq7rTs8pJjmmnBUf0IxwSlKGJT9AMywznsqciSN0HMIdxljmOP-IjmghJckFmyFVal-5_vHP3-86QJ2srfGusrodO6sBplJC2ybLFkz0robwLVl51yWl6-vBRPsbkp_DZuN8DEl0yWLXKnXU7TbE8AkdNroN8Pm5nqBfq-Vt-SO9vrm8KhfXqeFYFmlVVJnOas455IIDbkwGvAYqGyEoF6LRhlaGaCp4JYDwogE-bUqYpqZoquwEne3mbry7HyBE1dlgxp_rHtwQFBGCEVLkDL8D5YTKjGX5iH59hd65wffjIopIitn0xEidPlND1UGtNt522m_V_sojwHbAeNsQPDTK2KijdX302raKYDWFqaYw1UuYozZ_pe0n_1eQO-HBtrB9g1aLi_Xin_sEQGCzPg
CitedBy_id crossref_primary_10_1007_s41918_018_0020_1
crossref_primary_10_1016_j_watres_2020_115493
crossref_primary_10_1039_D3NR00742A
crossref_primary_10_1002_smll_202100165
crossref_primary_10_1016_j_jpowsour_2018_12_041
crossref_primary_10_1016_j_biortech_2021_125604
crossref_primary_10_1016_j_fuel_2023_129921
crossref_primary_10_1016_j_jpowsour_2024_235623
crossref_primary_10_1002_cey2_113
crossref_primary_10_1016_j_electacta_2019_03_194
crossref_primary_10_1002_smll_202304663
crossref_primary_10_1016_j_jece_2025_117756
crossref_primary_10_1002_adma_201800618
crossref_primary_10_1016_j_surfin_2024_104228
crossref_primary_10_1016_j_watres_2023_120578
crossref_primary_10_1016_j_jece_2025_115451
crossref_primary_10_1016_j_envres_2021_111054
crossref_primary_10_1016_j_polymer_2024_127048
crossref_primary_10_1016_j_cej_2025_164918
crossref_primary_10_3390_en13246596
crossref_primary_10_1007_s13762_021_03635_1
crossref_primary_10_1016_j_jpcs_2019_02_007
crossref_primary_10_1016_j_scitotenv_2021_151314
crossref_primary_10_1039_D4RA07323A
crossref_primary_10_1557_jmr_2017_372
crossref_primary_10_1016_j_jiec_2024_07_031
crossref_primary_10_1016_j_seta_2025_104284
crossref_primary_10_3390_pr8040424
crossref_primary_10_1016_j_mser_2023_100736
crossref_primary_10_4028_www_scientific_net_AMM_875_14
crossref_primary_10_1016_j_ijhydene_2020_10_087
crossref_primary_10_1016_j_apcatb_2017_08_069
crossref_primary_10_1016_j_rechem_2025_102627
crossref_primary_10_1016_j_apenergy_2019_114391
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_14710_ijred_2024_58977
crossref_primary_10_1016_j_memsci_2019_04_006
crossref_primary_10_1016_j_resconrec_2022_106781
crossref_primary_10_1016_j_seppur_2019_115769
crossref_primary_10_1016_j_bios_2019_111444
crossref_primary_10_1038_s41598_022_11472_6
crossref_primary_10_3390_ma18102336
crossref_primary_10_1016_j_seppur_2021_118971
crossref_primary_10_1039_D5TA04072H
crossref_primary_10_1016_j_biortech_2022_128177
crossref_primary_10_1016_j_apmt_2019_07_006
crossref_primary_10_1038_s41598_025_91889_x
crossref_primary_10_1016_j_cej_2024_158276
crossref_primary_10_1016_j_jpowsour_2022_232366
crossref_primary_10_3390_en14030553
crossref_primary_10_1016_j_cej_2021_130008
crossref_primary_10_1016_j_matchar_2022_112273
crossref_primary_10_1002_adfm_202308084
crossref_primary_10_3390_catal11020278
crossref_primary_10_3390_app13126874
crossref_primary_10_1016_j_jpowsour_2021_230491
crossref_primary_10_1186_s12302_025_01123_8
crossref_primary_10_1016_j_jece_2021_105441
crossref_primary_10_1039_C9RA07671A
crossref_primary_10_1016_j_cej_2025_167254
crossref_primary_10_1016_j_jpowsour_2020_228582
crossref_primary_10_1016_j_cej_2021_129704
crossref_primary_10_1016_j_bios_2022_114895
crossref_primary_10_1016_j_ijhydene_2020_03_177
crossref_primary_10_3390_ma17030565
crossref_primary_10_3390_bioengineering12060635
crossref_primary_10_1016_j_cej_2018_02_083
crossref_primary_10_1007_s11051_021_05333_y
crossref_primary_10_1186_s40643_018_0201_0
crossref_primary_10_3390_su12166538
crossref_primary_10_1016_j_bioelechem_2020_107459
crossref_primary_10_1016_j_mtener_2020_100385
crossref_primary_10_1002_smll_201801983
crossref_primary_10_1002_apj_2558
crossref_primary_10_1002_ente_202200824
crossref_primary_10_1007_s41918_022_00135_9
crossref_primary_10_3390_su151310640
crossref_primary_10_1016_j_ijhydene_2021_08_102
crossref_primary_10_1016_j_jenvman_2024_121633
crossref_primary_10_1016_j_nanoen_2019_04_056
crossref_primary_10_1016_j_ces_2023_118906
crossref_primary_10_1007_s00449_024_03115_z
crossref_primary_10_1016_j_jwpe_2025_107881
crossref_primary_10_3390_en16062760
crossref_primary_10_1002_smll_202400962
crossref_primary_10_32604_jrm_2022_015806
crossref_primary_10_1016_j_cej_2019_04_067
crossref_primary_10_1039_D3CY01510F
crossref_primary_10_1002_ange_201710852
crossref_primary_10_1016_j_ijhydene_2022_09_300
crossref_primary_10_1007_s40843_018_9368_y
crossref_primary_10_3390_catal15010093
crossref_primary_10_1016_j_colsurfb_2023_113383
crossref_primary_10_1109_ACCESS_2020_3044354
crossref_primary_10_1016_j_cej_2021_129279
crossref_primary_10_1002_admt_201900079
crossref_primary_10_1016_j_apenergy_2019_114475
crossref_primary_10_1016_j_procbio_2021_03_032
crossref_primary_10_1007_s13399_024_06134_8
crossref_primary_10_1016_j_scitotenv_2021_152078
crossref_primary_10_3390_polym14183739
crossref_primary_10_1111_1751_7915_14236
crossref_primary_10_1016_j_bej_2023_108856
crossref_primary_10_1016_j_jpowsour_2021_230482
crossref_primary_10_1155_2021_5465680
crossref_primary_10_1016_j_jpowsour_2021_230000
crossref_primary_10_1002_cben_201900023
crossref_primary_10_1007_s12649_019_00817_4
crossref_primary_10_1007_s40820_019_0319_4
crossref_primary_10_1002_aelm_202300019
crossref_primary_10_1002_anie_201710852
crossref_primary_10_1002_cctc_201901084
crossref_primary_10_3390_su13168796
crossref_primary_10_1002_advs_202308040
crossref_primary_10_3390_w13040445
crossref_primary_10_1016_j_bios_2018_09_005
crossref_primary_10_1016_j_cej_2024_154540
crossref_primary_10_1002_tcr_202300216
crossref_primary_10_3389_fmicb_2022_868220
crossref_primary_10_1016_j_carbon_2021_05_003
crossref_primary_10_3389_fbioe_2021_622994
crossref_primary_10_1002_bab_1928
crossref_primary_10_1002_vjch_202300407
crossref_primary_10_1039_D5GC01001B
crossref_primary_10_3390_nano12091496
crossref_primary_10_1016_j_electacta_2020_136388
crossref_primary_10_1002_aic_16897
crossref_primary_10_1073_pnas_1913463117
crossref_primary_10_1002_smll_202005060
crossref_primary_10_1016_j_jece_2025_116148
crossref_primary_10_1039_D5TB00105F
crossref_primary_10_1007_s13762_023_05348_z
crossref_primary_10_1061_JHTRBP_HZENG_1357
crossref_primary_10_3390_bios11060170
crossref_primary_10_1016_j_jallcom_2022_166076
crossref_primary_10_1016_j_jwpe_2025_107533
crossref_primary_10_1080_17597269_2023_2215625
crossref_primary_10_1016_j_arabjc_2020_07_016
crossref_primary_10_1002_adfm_201705708
crossref_primary_10_1007_s10562_023_04481_1
crossref_primary_10_3389_fenrg_2019_00091
crossref_primary_10_3390_molecules27030761
crossref_primary_10_3390_su17114758
crossref_primary_10_1080_00986445_2025_2512795
crossref_primary_10_1016_j_cej_2023_145891
crossref_primary_10_1016_j_electacta_2021_137745
crossref_primary_10_1002_smll_202101518
crossref_primary_10_1002_cctc_201901667
crossref_primary_10_1007_s11706_023_0642_z
crossref_primary_10_1002_adma_201802669
crossref_primary_10_1016_j_jtice_2022_104668
crossref_primary_10_1002_chem_202005020
crossref_primary_10_1002_chem_201801302
crossref_primary_10_1016_j_renene_2025_123850
crossref_primary_10_1016_j_chemosphere_2021_133184
crossref_primary_10_3390_polym10070759
crossref_primary_10_1016_j_energy_2021_120702
crossref_primary_10_1007_s13204_021_01885_6
crossref_primary_10_1016_j_jelechem_2022_116948
crossref_primary_10_1002_smll_201804710
crossref_primary_10_1016_j_jenvman_2024_121422
crossref_primary_10_1002_adma_201700707
crossref_primary_10_1007_s40974_025_00366_8
crossref_primary_10_1016_j_bios_2019_111727
crossref_primary_10_1007_s11157_020_09545_x
crossref_primary_10_1016_j_jclepro_2024_142554
crossref_primary_10_1021_acs_energyfuels_4c05967
crossref_primary_10_3390_nano10081472
crossref_primary_10_1016_j_apsusc_2025_164598
crossref_primary_10_1016_j_apsusc_2020_147174
crossref_primary_10_1007_s12678_017_0393_7
crossref_primary_10_1016_j_ces_2022_118124
crossref_primary_10_1002_adfm_201900143
crossref_primary_10_1016_j_cej_2025_166352
crossref_primary_10_1007_s13399_025_06650_1
crossref_primary_10_1039_D1SE00896J
crossref_primary_10_1002_cite_201800214
crossref_primary_10_1080_09593330_2020_1829088
crossref_primary_10_3390_molecules27217483
crossref_primary_10_1039_D2RA02038F
crossref_primary_10_1016_j_bios_2018_09_044
crossref_primary_10_1016_j_jece_2023_111201
crossref_primary_10_25159_3005_2602_16430
crossref_primary_10_1080_10643389_2022_2040327
crossref_primary_10_1002_adma_201808021
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1016_j_indcrop_2023_116488
crossref_primary_10_1016_j_pmatsci_2020_100656
crossref_primary_10_1007_s41742_025_00786_8
crossref_primary_10_1007_s13201_024_02355_4
crossref_primary_10_1016_j_jpowsour_2025_237581
crossref_primary_10_1002_smll_202105831
crossref_primary_10_3390_molecules27238594
crossref_primary_10_1002_ese3_833
crossref_primary_10_4028_p_3QcQuv
crossref_primary_10_1002_adfm_201707408
crossref_primary_10_1002_adma_202004051
crossref_primary_10_1002_admi_201801107
crossref_primary_10_1016_j_bios_2019_111630
crossref_primary_10_1002_smll_201905240
crossref_primary_10_1002_adma_201705452
crossref_primary_10_1016_j_jcis_2020_01_122
crossref_primary_10_1016_j_apcato_2024_206924
crossref_primary_10_3390_batteries4020014
crossref_primary_10_1002_aelm_201900320
crossref_primary_10_1016_j_bioelechem_2023_108486
crossref_primary_10_1016_j_fuel_2022_123560
crossref_primary_10_3390_molecules30051167
crossref_primary_10_1016_j_ijhydene_2019_05_196
crossref_primary_10_1016_j_nantod_2019_03_003
crossref_primary_10_1039_D5MH00344J
crossref_primary_10_1002_chem_202202002
crossref_primary_10_1016_j_envres_2020_110212
crossref_primary_10_1016_j_gee_2020_11_010
crossref_primary_10_3390_en15062283
crossref_primary_10_1016_j_jpowsour_2020_229133
crossref_primary_10_1007_s13399_024_05636_9
crossref_primary_10_1038_s41598_024_67759_3
crossref_primary_10_1016_j_jpowsour_2020_228822
crossref_primary_10_4491_eer_2022_666
crossref_primary_10_1016_j_jpowsour_2021_229779
crossref_primary_10_1038_s41467_020_14866_0
crossref_primary_10_1016_j_energy_2022_124163
crossref_primary_10_1016_j_apenergy_2020_115913
crossref_primary_10_1002_cssc_201801538
crossref_primary_10_1016_j_biotechadv_2021_107728
crossref_primary_10_1039_D3RA05084J
crossref_primary_10_1007_s10853_022_07029_7
crossref_primary_10_1016_j_jclepro_2020_125597
crossref_primary_10_1038_s41598_021_87118_w
crossref_primary_10_1016_j_nanoen_2019_05_001
crossref_primary_10_1039_C9NR03778K
crossref_primary_10_1016_j_psep_2024_04_066
crossref_primary_10_3390_su151813767
crossref_primary_10_1002_admt_202200238
crossref_primary_10_1016_S1872_2067_21_63932_3
crossref_primary_10_1155_2023_2425735
Cites_doi 10.1016/j.biortech.2010.07.007
10.1039/c2cp40760d
10.1016/j.bios.2014.02.044
10.1039/C2EE23350A
10.1021/es062644y
10.1021/ja506553r
10.1039/c0ee00793e
10.1016/j.jpowsour.2009.10.030
10.1021/nl302175j
10.1016/j.jpowsour.2015.02.088
10.1021/es0512071
10.1021/es500720g
10.1021/es034923g
10.1016/j.jpowsour.2015.03.014
10.1021/cr5006217
10.1021/nn700102s
10.1002/bit.23204
10.1166/jnn.2015.8404
10.1002/advs.201500265
10.1039/c1ee01477c
10.1063/1.3529310
10.1128/AEM.02766-10
10.1016/j.jpowsour.2012.02.005
10.5796/electrochemistry.78.814
10.1002/adma.201503609
10.1002/adma.201504766
10.1038/nrmicro3161
10.1039/C2CS35335K
10.1016/j.biomaterials.2013.07.048
10.1016/j.jpowsour.2009.10.084
10.1016/j.elecom.2006.01.010
10.1166/jnn.2010.2347
10.1385/1-59259-224-4:331
10.1039/B703627M
10.1016/j.bej.2009.06.013
10.1038/30694
10.1038/ncomms3809
10.1002/smll.201203252
10.1002/chem.201501772
10.1002/anie.201306871
10.1002/adma.201500472
10.1016/j.jpowsour.2012.02.036
10.1002/cssc.201100084
10.1021/sc500244f
10.1002/adma.201505086
10.1039/C4TA06500J
10.1039/c3ta12947k
10.1021/nn504898p
10.1016/j.ijhydene.2014.05.008
10.1039/C1EE02122B
10.1039/C4EE03268C
10.1073/pnas.1011699107
10.1039/C5RA06064H
10.1002/anie.201400463
10.1021/es401722j
10.1002/adma.201505045
10.1021/ie502399y
10.1039/c3ra22569k
10.1016/j.ijhydene.2011.12.154
10.1016/j.biortech.2015.02.108
10.1002/fuce.200800115
10.1016/j.ijhydene.2012.12.016
10.1039/C6TA00992A
10.1016/j.copbio.2015.02.014
10.1021/ja3085934
10.1016/j.bej.2007.02.021
10.1002/chem.201400272
10.1007/s10529-014-1565-7
10.1016/j.biortech.2011.07.019
10.1039/c2jm33733a
10.1016/j.polymer.2012.11.024
10.1039/c3ee40441b
10.1038/srep28588
10.4028/www.scientific.net/AMR.860-863.816
10.1016/j.electacta.2008.03.032
10.1002/adma.201204880
10.1016/j.elecom.2006.09.025
10.1038/srep26514
10.1039/C4NR05637J
10.1016/j.elecom.2004.04.006
10.1021/am500624k
10.1016/j.jpowsour.2014.06.115
10.1039/C1EE02391H
10.1016/j.jpowsour.2016.05.078
10.1039/C2TB00025C
10.1021/es8003969
10.1002/adma.201204271
10.1038/nrmicro2113
10.1073/pnas.1004880107
10.1021/nl103905t
10.1073/pnas.0604517103
10.1016/j.jbiosc.2011.03.014
10.1002/anie.200602021
10.1039/C3CS60210A
10.1016/j.jpowsour.2012.09.091
10.1016/j.jpowsour.2015.01.098
10.1039/C3EE43106A
10.1016/j.biortech.2015.06.012
10.1021/es900997w
10.1016/j.jpowsour.2015.03.033
10.1021/bm3014999
10.1039/C4RA05940A
10.1016/j.bios.2011.04.018
10.1021/am5008547
10.1016/j.apcatb.2015.07.010
10.1016/j.bios.2006.10.028
10.1021/es8001822
10.1016/j.elecom.2005.09.032
10.1002/smll.201203155
10.1039/C5EE00866B
10.1039/C5TA06673E
10.1002/adma.201501643
10.1007/s11368-012-0537-6
10.1021/cr500077e
10.1038/nchem.2085
10.1002/adma.201303115
10.1002/adma.201503211
10.1016/j.jpowsour.2009.08.092
10.1016/j.jpowsour.2011.07.077
10.1016/j.bios.2013.02.033
10.1039/b810642h
10.1021/nn203115u
10.1016/j.biortech.2012.07.067
10.1021/nn202906f
10.1002/adma.201404314
10.1038/nnano.2014.236
10.1039/C5TB02072G
10.1038/ncomms9618
10.1002/aenm.201501778
10.1016/j.jpowsour.2011.10.134
10.1002/asia.201100565
10.1038/am.2014.1
10.1002/adma.201500493
10.1039/C4CS00306C
10.1021/nn204656d
10.1166/jnn.2015.9317
10.1002/jctb.3764
10.4028/www.scientific.net/AMM.217-219.956
10.1002/cssc.201100783
10.1126/science.aaf1525
10.1016/j.jpowsour.2013.03.115
10.1002/adma.201202424
10.5012/bkcs.2008.29.7.1344
10.1039/B707504A
10.1021/acs.nanolett.6b00771
10.1039/c3ta14531j
10.1021/nn402103q
10.1016/j.nanoen.2015.05.031
10.1021/es404163g
10.1016/j.memsci.2015.03.006
10.1039/C6TA02891H
10.1016/j.colsurfa.2011.08.056
10.1016/j.matlet.2013.04.044
10.1016/j.jpowsour.2009.05.018
10.1021/ja8076704
10.1016/j.bios.2015.02.014
10.1021/es0499344
10.1016/j.jpowsour.2011.01.012
10.1016/j.enzmictec.2011.02.006
10.1021/nn303091t
10.1021/acs.nanolett.5b02256
10.1039/c3ee00071k
10.1007/s10800-008-9653-9
10.1038/srep07562
10.1021/am506360x
10.1021/acsami.5b00297
10.1016/j.ijhydene.2014.07.136
10.1002/adma.201601406
10.1039/c2ee03583a
10.1038/ncomms10667
10.1021/am4018225
10.1002/adma.201600829
10.7763/JOCET.2013.V1.47
10.1002/cssc.201402680
10.1038/nnano.2016.32
10.1007/s00253-007-1027-4
10.1039/c3ee00052d
10.1016/j.biortech.2015.01.078
10.1016/j.jpowsour.2007.03.048
10.4491/eer.2008.13.2.051
10.1016/j.surfcoat.2014.01.027
10.1126/science.1222453
10.1002/anie.201602631
10.1021/ie4003766
10.1002/adma.201104392
10.2166/wst.2012.956
10.1002/aenm.201502518
10.1039/b806498a
10.1007/s10853-014-8677-2
10.1039/C5AY00976F
10.1016/j.colsurfa.2014.04.030
10.1016/j.jpowsour.2013.01.146
10.1016/j.bios.2012.09.054
10.1039/c0ee00447b
10.1002/cssc.201600573
10.1126/science.1217412
10.1021/ja209206c
10.1021/ar3001475
10.1039/C5CS00903K
10.4028/www.scientific.net/AMR.881-883.310
10.1021/es5047765
10.3390/en3010023
10.1021/mz500568k
10.1039/b819866g
10.1016/j.bej.2009.11.014
10.1016/j.jpowsour.2014.10.035
10.1039/c0ee00446d
10.1039/C2TA00392A
10.1002/adma.201502725
10.1021/cr5003563
10.1021/am501844p
10.1021/acsami.5b05144
10.1016/j.jpowsour.2012.03.040
10.1021/es0480668
10.1016/j.biomaterials.2006.07.019
10.1016/j.pnsc.2008.04.001
10.1016/j.jpowsour.2010.08.112
10.1186/2191-0855-2-21
10.1002/ente.201300085
10.1039/c2cp42526b
10.1021/acsami.5b05273
10.1016/j.apsusc.2014.08.044
10.1016/j.ijhydene.2014.05.057
10.1016/j.bios.2015.02.021
10.1002/fuce.201500120
10.1016/j.jpowsour.2015.04.058
10.1016/j.jpowsour.2014.04.005
10.1039/c3nr03487a
10.1038/nature13774
10.1038/nbt867
10.1021/am300048v
10.1016/j.bioelechem.2009.11.001
10.1016/j.jpowsour.2011.03.096
10.1016/j.copbio.2013.12.003
10.1016/j.electacta.2013.08.022
10.1016/j.bios.2015.11.026
10.1038/nature03661
10.1039/C6CP00159A
10.1016/j.bios.2009.02.010
10.1016/j.jpowsour.2014.09.165
10.1002/adma.201302786
10.1080/10643389.2011.592744
10.1002/jctb.4004
10.1002/chem.200903486
10.1016/j.biortech.2010.05.063
10.1149/1.3190477
10.1002/anie.201309171
10.1016/j.bios.2006.04.029
10.1038/ncomms9850
10.1016/j.nanoen.2015.05.030
10.1002/cssc.201300109
10.1016/j.bios.2010.02.014
10.1039/C4TA03101F
10.1039/b717773a
10.1021/es4032216
10.1016/j.jhazmat.2016.06.041
10.1002/adma.201204461
10.1166/jnn.2011.3311
10.1016/j.biortech.2015.06.054
10.1016/j.bios.2011.07.017
10.1002/elan.200603628
10.1073/pnas.1303897110
10.1002/cssc.201100836
10.1016/j.biotechadv.2007.05.004
10.1002/adma.201502866
10.1016/j.jpowsour.2014.01.117
10.1002/aenm.201501535
10.1039/c3ee41056k
10.1016/j.electacta.2014.03.011
10.1021/es803531g
10.1016/j.jallcom.2013.05.094
10.1039/c1ee01153g
10.1016/j.bios.2009.10.009
10.1039/b613899c
10.1002/adma.201301975
10.1002/aenm.201301415
10.1021/ef100825h
10.1002/adma.201502696
10.1002/marc.201400332
10.1002/adma.201600012
10.1039/c1cp21813a
10.1021/la202907f
10.1002/adma.201102182
10.1021/nl203801h
10.1016/j.bios.2013.10.012
10.1016/j.jpowsour.2011.02.067
10.1021/ef070160x
10.1016/j.bios.2012.12.029
10.1002/chem.201300319
10.1016/j.bios.2014.06.050
10.1016/S1872-2067(14)60023-1
10.1080/15583724.2014.881372
10.1021/es048927c
10.1039/C1CC16207A
10.1016/j.ijhydene.2015.01.119
10.1021/es0605016
10.1016/j.bios.2012.12.048
10.1039/C5RA09771A
10.1039/b809009b
10.1149/2.049205jes
10.1016/j.bios.2011.02.046
10.1016/j.elecom.2006.10.023
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201602547
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 27991684
10_1002_adma_201602547
ADMA201602547
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: DFG‐Unifying Concepts in Catalysis
  funderid: EXC 314
– fundername: Berlin Graduate School of Natural Sciences and Engineering
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c5097-b7b3a3d555e685e0fc3e5de29f882588fac2bc1a285b8e157fe5152114a2c7fb3
IEDL.DBID DRFUL
ISICitedReferencesCount 441
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395187900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:58:42 EDT 2025
Sun Nov 09 09:09:02 EST 2025
Fri Jul 25 04:54:06 EDT 2025
Mon Jul 21 05:41:51 EDT 2025
Tue Nov 18 20:55:40 EST 2025
Sat Nov 29 07:19:05 EST 2025
Sun Sep 21 06:23:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords carbon-based electrodes
electron-transfer conductors
microbial fuel cells
oxygen-reduction-reaction catalysts
bacterial adhesion
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5097-b7b3a3d555e685e0fc3e5de29f882588fac2bc1a285b8e157fe5152114a2c7fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 27991684
PQID 1920420428
PQPubID 2045203
PageCount 30
ParticipantIDs proquest_miscellaneous_1884117640
proquest_miscellaneous_1851293436
proquest_journals_1920420428
pubmed_primary_27991684
crossref_citationtrail_10_1002_adma_201602547
crossref_primary_10_1002_adma_201602547
wiley_primary_10_1002_adma_201602547_ADMA201602547
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 6
2009; 194
2012; 14
2012; 13
2012; 12
1998; 393
2011; 112
2016; 318
2013; 54
2004; 38
2007; 170
2008; 29
2013; 239
2013; 52
2013; 111
2013; 234
2010; 195
2013; 110
2010; 3
2012; 24
2012; 22
2016; 45
2007; 17
2014; 317
2013; 88
2013; 105
2015; 484
2013; 224
2013; 580
2016; 324
2012; 37
2008; 53
2011; 4
2016; 18
2016; 16
2011; 5
2011; 133
2016; 11
2016; 4
2016; 6
2016; 7
2016; 3
2015; 115
2013; 339
2014; 860–863
2005; 7
2008; 42
2012; 48
2016; 28
2012; 42
2016; 9
2006; 103
2015; 185
2015; 182
2013; 25
2012; 201
2008; 1
2014; 62
2008; 2
2007; 36
2012; 208
2013; 19
2014; 4
2015; 290
2010; 69
2010; 1251
2014; 3
2014; 2
2000
2014; 58
2016; 352
2012; 213
2014; 9
2014; 8
2007; 21
2007; 22
2014; 7
2012; 337
2014; 6
2007; 25
2014; 54
2014; 53
2014; 514
2015; 284
2010; 78
2015; 283
2015; 6
2015; 280
2013; 47
2015; 5
2010; 79
2015; 3
2013; 43
2013; 46
2015; 287
2013; 42
2013; 41
2008
2006; 18
2015; 8
2015; 7
2015; 273
2011; 102
2011; 108
2013; 38
2013; 34
2015; 274
2009; 9
2009; 7
2007; 41
2012; 217–219
2014; 881–883
2010; 10
2010; 16
2013; 3
2013; 4
2013; 1
2012; 124
2010; 107
2014; 27
2014; 26
2011; 196
2013; 7
2007; 76
2014; 130
2013; 5
2013; 6
2014; 136
2014; 257
2013; 9
2014; 20
2014; 256
2010; 25
2012; 134
2010; 24
2006; 27
2007; 9
2014; 12
2015; 50
2014; 48
2011; 77
2014; 43
2015; 195
2015; 69
2010; 48
2006; 40
2006; 45
2014; 36
2014; 35
2014; 39
2014; 265
2003; 21
2014; 269
2009; 47
2009; 43
2015; 33
2009; 156
2011; 11
2011; 390
2011; 13
2016; 181
2014; 455
2016; 78
2015; 49
2015; 40
2015; 44
2011; 23
2011; 26
2011; 28
2011; 27
2005; 39
2012; 65
2015; 15
2009; 24
2015; 16
2009; 21
2008; 18
2005; 435
2008; 14
2006; 8
2008; 13
2009; 131
2014; 114
2016; 55
2012; 396
2012; 2
2015; 27
2015; 21
2011; 48
2012; 6
2012; 159
2012; 7
2012; 4
2012; 5
2009; 38
2012; 87
2009; 39
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_152_1
e_1_2_6_175_1
e_1_2_6_198_1
e_1_2_6_306_1
e_1_2_6_212_1
e_1_2_6_250_1
e_1_2_6_296_1
e_1_2_6_273_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_235_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_148_1
e_1_2_6_41_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_102_1
e_1_2_6_186_1
e_1_2_6_200_1
e_1_2_6_223_1
e_1_2_6_246_1
e_1_2_6_269_1
e_1_2_6_5_1
e_1_2_6_208_1
e_1_2_6_261_1
e_1_2_6_284_1
e_1_2_6_49_1
e_1_2_6_26_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_159_1
e_1_2_6_92_1
e_1_2_6_305_1
e_1_2_6_174_1
e_1_2_6_151_1
e_1_2_6_113_1
e_1_2_6_197_1
e_1_2_6_211_1
e_1_2_6_234_1
e_1_2_6_257_1
e_1_2_6_272_1
e_1_2_6_295_1
e_1_2_6_219_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_162_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_185_1
e_1_2_6_222_1
e_1_2_6_268_1
e_1_2_6_6_1
e_1_2_6_260_1
e_1_2_6_207_1
e_1_2_6_283_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_245_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_158_1
e_1_2_6_150_1
e_1_2_6_173_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_196_1
e_1_2_6_304_1
e_1_2_6_233_1
e_1_2_6_279_1
e_1_2_6_210_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_271_1
e_1_2_6_218_1
e_1_2_6_294_1
e_1_2_6_256_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_169_1
e_1_2_6_108_1
e_1_2_6_270_1
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_184_1
e_1_2_6_123_1
e_1_2_6_221_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_206_1
e_1_2_6_229_1
e_1_2_6_282_1
e_1_2_6_244_1
e_1_2_6_267_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_119_1
e_1_2_6_281_1
e_1_2_6_90_1
Mao Y. (e_1_2_6_258_1) 2009; 21
e_1_2_6_172_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_195_1
e_1_2_6_303_1
e_1_2_6_134_1
e_1_2_6_232_1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_293_1
e_1_2_6_217_1
e_1_2_6_255_1
e_1_2_6_278_1
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_107_1
e_1_2_6_292_1
e_1_2_6_40_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_183_1
e_1_2_6_220_1
e_1_2_6_171_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_228_1
e_1_2_6_205_1
e_1_2_6_243_1
e_1_2_6_289_1
e_1_2_6_266_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_280_1
e_1_2_6_72_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_179_1
e_1_2_6_194_1
e_1_2_6_302_1
e_1_2_6_19_1
e_1_2_6_182_1
e_1_2_6_231_1
e_1_2_6_239_1
e_1_2_6_11_1
e_1_2_6_216_1
e_1_2_6_254_1
e_1_2_6_57_1
e_1_2_6_277_1
e_1_2_6_106_1
e_1_2_6_291_1
e_1_2_6_129_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_167_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_193_1
e_1_2_6_170_1
e_1_2_6_1_1
e_1_2_6_22_1
e_1_2_6_204_1
e_1_2_6_227_1
e_1_2_6_242_1
e_1_2_6_265_1
e_1_2_6_288_1
e_1_2_6_45_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_50_1
e_1_2_6_301_1
e_1_2_6_132_1
e_1_2_6_178_1
e_1_2_6_155_1
e_1_2_6_181_1
e_1_2_6_230_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_238_1
e_1_2_6_253_1
e_1_2_6_276_1
e_1_2_6_299_1
e_1_2_6_215_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_61_1
e_1_2_6_290_1
e_1_2_6_120_1
e_1_2_6_189_1
e_1_2_6_143_1
e_1_2_6_166_1
e_1_2_6_192_1
e_1_2_6_249_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_241_1
e_1_2_6_226_1
e_1_2_6_264_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_203_1
e_1_2_6_287_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_300_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
Das S. (e_1_2_6_31_1) 2010; 69
e_1_2_6_131_1
e_1_2_6_308_1
e_1_2_6_154_1
e_1_2_6_177_1
e_1_2_6_180_1
Li D. (e_1_2_6_34_1) 2008; 14
e_1_2_6_252_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_237_1
e_1_2_6_275_1
e_1_2_6_214_1
e_1_2_6_298_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_142_1
e_1_2_6_188_1
e_1_2_6_165_1
e_1_2_6_191_1
e_1_2_6_248_1
e_1_2_6_7_1
e_1_2_6_240_1
e_1_2_6_263_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_202_1
e_1_2_6_225_1
e_1_2_6_286_1
e_1_2_6_115_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_153_1
e_1_2_6_199_1
e_1_2_6_307_1
e_1_2_6_130_1
e_1_2_6_176_1
e_1_2_6_259_1
e_1_2_6_251_1
e_1_2_6_274_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_236_1
e_1_2_6_297_1
e_1_2_6_79_1
e_1_2_6_213_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_21_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_187_1
e_1_2_6_190_1
e_1_2_6_8_1
e_1_2_6_201_1
e_1_2_6_247_1
Zhang E. (e_1_2_6_168_1) 2012; 396
e_1_2_6_209_1
e_1_2_6_285_1
e_1_2_6_262_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_224_1
References_xml – volume: 284
  start-page: 252
  year: 2015
  publication-title: J. Power Sources
– volume: 48
  start-page: 7151
  year: 2014
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 4201
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 7696
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 50968
  year: 2015
  publication-title: Rsc Adv.
– volume: 43
  start-page: 264
  year: 2013
  publication-title: Biosens. Bioelectron.
– volume: 4
  start-page: 44065
  year: 2014
  publication-title: RSC Adv.
– volume: 2
  start-page: 2283
  year: 2014
  publication-title: ACS Sustainable Chem. Eng.
– volume: 45
  start-page: 2847
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 7464
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 697
  year: 2015
  publication-title: Nano Energy
– volume: 194
  start-page: 199
  year: 2009
  publication-title: J. Power Sources
– volume: 52
  start-page: 13818
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 196
  start-page: 1103
  year: 2011
  publication-title: J. Power Sources
– volume: 4
  start-page: 1422
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 4480
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 8349
  year: 2012
  publication-title: ACS Nano
– volume: 102
  start-page: 9335
  year: 2011
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 694
  year: 2016
  publication-title: J. Mater. Chem. B
– volume: 6
  start-page: 13438
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2082
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 76
  start-page: 485
  year: 2007
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 195
  start-page: 2586
  year: 2010
  publication-title: J. Power Sources
– volume: 25
  start-page: 5838
  year: 2013
  publication-title: Adv. Mater.
– volume: 42
  start-page: 3828
  year: 2008
  publication-title: Environ. Sci. Technol.
– volume: 390
  start-page: 56
  year: 2011
  publication-title: Colloids Surf., A
– volume: 37
  start-page: 5992
  year: 2012
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  start-page: 1173
  year: 2013
  publication-title: Small
– volume: 170
  start-page: 79
  year: 2007
  publication-title: J. Power Sources
– volume: 6
  start-page: 1901
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 39
  start-page: 197
  year: 2009
  publication-title: J. Appl. Electrochem.
– volume: 21
  start-page: 2984
  year: 2007
  publication-title: Energy Fuels
– volume: 88
  start-page: 508
  year: 2013
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 12
  start-page: 1197
  year: 2012
  publication-title: J. Soils Sediments
– volume: 134
  start-page: 19528
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 770
  year: 2014
  publication-title: Chin. J. Catal.
– volume: 6
  start-page: 571
  year: 2004
  publication-title: Electrochem. Commun.
– volume: 69
  start-page: 8
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 239
  start-page: 169
  year: 2013
  publication-title: J. Power Sources
– volume: 5
  start-page: 8943
  year: 2011
  publication-title: ACS Nano
– volume: 7
  start-page: 20657
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 39
  start-page: 11250
  year: 2014
  publication-title: Int. J. Hydrogen Energy
– volume: 105
  start-page: 24
  year: 2013
  publication-title: Mater. Lett.
– volume: 18
  start-page: 1049
  year: 2008
  publication-title: Prog. Nat. Sci.
– volume: 5
  start-page: 5540
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 5265
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 7204
  year: 2015
  publication-title: Adv. Mater.
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 41
  start-page: 3341
  year: 2007
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 2226
  year: 2016
  publication-title: ChemSusChem
– volume: 27
  start-page: 5755
  year: 2006
  publication-title: Biomaterials
– volume: 318
  start-page: 9
  year: 2016
  publication-title: J. Hazard. Mater.
– volume: 107
  start-page: 18127
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 7862
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 364
  year: 2006
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 489
  year: 2006
  publication-title: Electrochem. Commun.
– volume: 14
  start-page: 12221
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 113
  year: 2008
  publication-title: ACS Nano
– volume: 36
  start-page: 1987
  year: 2014
  publication-title: Biotechnol. Lett.
– volume: 7
  start-page: 8539
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 3868
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 115
  start-page: 4823
  year: 2015
  publication-title: Chem. Rev.
– volume: 24
  start-page: 5897
  year: 2010
  publication-title: Energy Fuels
– volume: 182
  start-page: 34
  year: 2015
  publication-title: Bioresour. Technol.
– volume: 87
  start-page: 1436
  year: 2012
  publication-title: J. Chem. Technol. Biotechnol.
– start-page: 2055
  year: 2008
  publication-title: Chem. Commun.
– volume: 3
  start-page: 1500265
  year: 2016
  publication-title: Adv. Sci.
– volume: 22
  start-page: 1224
  year: 2007
  publication-title: Biosens. Bioelectron.
– volume: 4
  start-page: 6342
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 1
  year: 2015
  publication-title: Nano Energy
– volume: 124
  start-page: 199
  year: 2012
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 4054
  year: 2015
  publication-title: Adv. Mater.
– volume: 881–883
  start-page: 310
  year: 2014
  publication-title: Adv. Mater. Res.
– volume: 41
  start-page: 582
  year: 2013
  publication-title: Biosens. Bioelectron.
– volume: 283
  start-page: 46
  year: 2015
  publication-title: J. Power Sources
– start-page: 331
  year: 2000
– volume: 455
  start-page: 92
  year: 2014
  publication-title: Colloids Surf., A
– volume: 195
  start-page: 180
  year: 2015
  publication-title: Bioresour. Technol.
– volume: 33
  start-page: 149
  year: 2015
  publication-title: Curr. Opin. Biotechnol.
– volume: 7
  start-page: 6921
  year: 2013
  publication-title: ACS Nano
– volume: 5
  start-page: 1059
  year: 2012
  publication-title: ChemSusChem
– volume: 2
  year: 2012
  publication-title: AMB Express
– volume: 484
  start-page: 27
  year: 2015
  publication-title: J. Membr. Sci.
– volume: 108
  start-page: 2339
  year: 2011
  publication-title: Biotechnol. Bioeng.
– volume: 7
  start-page: 18672
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 387
  year: 2012
  publication-title: Chem. Asian J.
– volume: 14
  start-page: 147
  year: 2008
  publication-title: Chin. J. Appl. Environ. Biol.
– volume: 317
  start-page: 84
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 44
  start-page: 4672
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 492
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 196
  start-page: 9317
  year: 2011
  publication-title: J. Power Sources
– volume: 2
  start-page: 13093
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 195
  start-page: 1130
  year: 2010
  publication-title: J. Power Sources
– volume: 103
  start-page: 11358
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  start-page: 4040
  year: 2004
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 5181
  year: 2006
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 458
  year: 2011
  publication-title: Enzyme Microb. Technol.
– volume: 69
  start-page: 135
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 337
  start-page: 686
  year: 2012
  publication-title: Science
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 15016
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 47
  start-page: 14525
  year: 2013
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 1344
  year: 2008
  publication-title: Bull. Korean Chem. Soc.
– volume: 62
  start-page: 182
  year: 2014
  publication-title: Biosens. Bioelectron.
– volume: 102
  start-page: 395
  year: 2011
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 28588
  year: 2016
  publication-title: Sci. Rep.
– volume: 1251
  start-page: 316
  year: 2010
  publication-title: AIP Conf. Proc.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 24
  start-page: 1399
  year: 2012
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3271
  year: 2010
  publication-title: J. Nanosci. Nanotechnol.
– volume: 217–219
  start-page: 956
  year: 2012
  publication-title: Appl. Mech. Mater.
– volume: 256
  start-page: 52
  year: 2014
  publication-title: Surf. Coat. Technol.
– volume: 17
  start-page: 2992
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 435
  start-page: 1098
  year: 2005
  publication-title: Nature
– volume: 79
  start-page: 50
  year: 2010
  publication-title: Bioelectrochem.
– volume: 24
  start-page: 2825
  year: 2009
  publication-title: Biosens. Bioelectron.
– volume: 195
  start-page: 147
  year: 2015
  publication-title: Bioresour. Technol.
– volume: 77
  start-page: 1541
  year: 2011
  publication-title: Appl. Environ. Microbiol.
– volume: 273
  start-page: 823
  year: 2015
  publication-title: J. Power Sources
– volume: 34
  start-page: 8018
  year: 2013
  publication-title: Biomaterials
– volume: 25
  start-page: 1666
  year: 2013
  publication-title: Adv. Mater.
– volume: 102
  start-page: 235
  year: 2011
  publication-title: Bioresour. Technol.
– volume: 28
  start-page: 1668
  year: 2016
  publication-title: Adv. Mater.
– volume: 50
  start-page: 1214
  year: 2015
  publication-title: J. Mater. Sci.
– volume: 27
  start-page: 4113
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 4169
  year: 2011
  publication-title: Biosens. Bioelectron.
– volume: 28
  start-page: 2337
  year: 2016
  publication-title: Adv. Mater.
– volume: 43
  start-page: 461
  year: 2013
  publication-title: Biosens. Bioelectron.
– volume: 47
  start-page: 50
  year: 2013
  publication-title: Biosens. Bioelectron.
– volume: 28
  start-page: 215
  year: 2016
  publication-title: Adv. Mater.
– volume: 43
  start-page: 3953
  year: 2009
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 6762
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 2394
  year: 2012
  publication-title: ACS Nano
– volume: 4
  start-page: 2809
  year: 2013
  publication-title: Nat. Commun.
– volume: 58
  start-page: 75
  year: 2014
  publication-title: Biosens. Bioelectron.
– volume: 6
  start-page: 1510
  year: 2013
  publication-title: ChemSusChem
– volume: 195
  start-page: 1841
  year: 2010
  publication-title: J. Power Sources
– volume: 27
  start-page: 6834
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6879
  year: 2013
  publication-title: Adv. Mater.
– volume: 4
  start-page: 913
  year: 2011
  publication-title: ChemSusChem
– volume: 287
  start-page: 269
  year: 2015
  publication-title: J. Power Sources
– volume: 196
  start-page: 5402
  year: 2011
  publication-title: J. Power Sources
– volume: 28
  start-page: 181
  year: 2011
  publication-title: Biosens. Bioelectron.
– volume: 12
  start-page: 4738
  year: 2012
  publication-title: Nano Lett.
– volume: 42
  start-page: 2824
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: e89
  year: 2014
  publication-title: NPG Asia Mater.
– volume: 15
  start-page: 6051
  year: 2015
  publication-title: Nano Lett.
– volume: 6
  start-page: 217
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8158
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 65
  start-page: 1208
  year: 2012
  publication-title: Water Sci. Technol.
– volume: 47
  start-page: 6704
  year: 2013
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 417
  year: 2008
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 6076
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 18
  start-page: 2009
  year: 2006
  publication-title: Electroanalysis
– volume: 43
  start-page: 6870
  year: 2009
  publication-title: Environ. Sci. Technol.
– volume: 133
  start-page: 20116
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 269
  start-page: 212
  year: 2014
  publication-title: J. Power Sources
– volume: 21
  start-page: 1229
  year: 2003
  publication-title: Nat. Biotechnol.
– volume: 7
  start-page: 3002
  year: 2014
  publication-title: ChemSusChem
– volume: 5
  start-page: 10283
  year: 2013
  publication-title: Nanoscale
– volume: 12
  start-page: 49
  year: 2014
  publication-title: Nat. Rev. Microbiol.
– volume: 4
  start-page: 1632
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 400
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 4982
  year: 2010
  publication-title: Chem. – Eur. J.
– volume: 9
  start-page: 349
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 15
  start-page: 484
  year: 2015
  publication-title: J. Nanosci. Nanotechnol.
– volume: 7
  start-page: 911
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 51
  year: 2008
  publication-title: Environ. Eng. Res.
– volume: 131
  start-page: 826
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1672
  year: 2009
  publication-title: Prog. Chem.
– volume: 39
  start-page: 10724
  year: 2014
  publication-title: Int. J. Hydrogen Energy
– volume: 69
  start-page: 727
  year: 2010
  publication-title: J. Sci. Ind. Res.
– volume: 17
  start-page: 1819
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 114
  start-page: 8720
  year: 2014
  publication-title: Chem. Rev.
– volume: 580
  start-page: 245
  year: 2013
  publication-title: J. Alloys Compd.
– volume: 280
  start-page: 159
  year: 2015
  publication-title: J. Power Sources
– volume: 38
  start-page: 1926
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 290
  start-page: 80
  year: 2015
  publication-title: J. Power Sources
– volume: 1
  start-page: 1450
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 111
  start-page: 366
  year: 2013
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 265
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 47
  start-page: 13889
  year: 2013
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 8618
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 270
  year: 2016
  publication-title: Adv. Mater.
– volume: 25
  start-page: 464
  year: 2007
  publication-title: Biotechnol. Adv.
– volume: 21
  start-page: 10634
  year: 2015
  publication-title: Chem. – Eur. J.
– volume: 2
  start-page: 2794
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 291
  year: 2011
  publication-title: Nano Lett.
– volume: 514
  start-page: 218
  year: 2014
  publication-title: Nature
– volume: 27
  start-page: 277
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2181
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  start-page: 23
  year: 2010
  publication-title: Energies
– volume: 9
  start-page: 1012
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 38
  start-page: 2281
  year: 2004
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 9525
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 72699
  year: 2015
  publication-title: RSC Adv.
– volume: 25
  start-page: 1516
  year: 2010
  publication-title: Biosens. Bioelectron.
– volume: 7
  start-page: 10667
  year: 2016
  publication-title: Nat. Commun.
– volume: 20
  start-page: 7091
  year: 2014
  publication-title: Chem. – Eur. J.
– volume: 1
  start-page: 206
  year: 2013
  publication-title: J. Clean Energy Technol.
– volume: 78
  start-page: 814
  year: 2010
  publication-title: Electrochemistry
– volume: 185
  start-page: 426
  year: 2015
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 1301415
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 78
  start-page: 229
  year: 2016
  publication-title: Biosens. Bioelectron.
– volume: 8
  start-page: 2048
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 274
  start-page: 170
  year: 2015
  publication-title: J. Power Sources
– volume: 159
  start-page: B497
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 324
  start-page: 113
  year: 2016
  publication-title: J. Power Sources
– volume: 25
  start-page: 2156
  year: 2010
  publication-title: Biosens. Bioelectron.
– volume: 339
  start-page: 535
  year: 2013
  publication-title: Science
– volume: 42
  start-page: 3401
  year: 2008
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 6862
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 4236
  year: 2012
  publication-title: Biomacromolecules
– volume: 48
  start-page: 49
  year: 2012
  publication-title: Chem. Commun.
– volume: 22
  start-page: 18609
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 49
  start-page: 3267
  year: 2015
  publication-title: Environ. Sci. Technol.
– volume: 20
  start-page: 7091
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 1
  start-page: 648
  year: 2013
  publication-title: Energy Technol.
– volume: 39
  start-page: 5037
  year: 2005
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 6873
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1761
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 855
  year: 2015
  publication-title: Fuel Cells
– volume: 53
  start-page: 16883
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 39
  start-page: 658
  year: 2005
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 1293
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1130
  year: 2014
  publication-title: ACS Macro. Lett.
– volume: 6
  start-page: 1291
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 12105
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 528
  year: 2014
  publication-title: Biosens. Bioelectron.
– volume: 156
  start-page: B1238
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 110
  start-page: 11151
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 5593
  year: 2012
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1364
  year: 2011
  publication-title: J. Nanosci. Nanotechnol.
– volume: 19
  start-page: 10895
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 213
  start-page: 382
  year: 2012
  publication-title: J. Power Sources
– volume: 136
  start-page: 14486
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 2504
  year: 2012
  publication-title: Crit. Rev. Env. Sci. Technol.
– volume: 25
  start-page: 1593
  year: 2013
  publication-title: Adv. Mater.
– volume: 26
  start-page: 849
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 7562
  year: 2014
  publication-title: Sci. Rep.
– volume: 4
  start-page: 12273
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 6658
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 35
  start-page: 1861
  year: 2014
  publication-title: Macromol. Rapid Commun.
– volume: 208
  start-page: 187
  year: 2012
  publication-title: J. Power Sources
– volume: 36
  start-page: 209
  year: 2007
  publication-title: Biochem. Eng. J.
– volume: 201
  start-page: 136
  year: 2012
  publication-title: J. Power Sources
– volume: 23
  start-page: 4976
  year: 2011
  publication-title: Adv. Mater.
– volume: 396
  start-page: 1794
  year: 2012
  publication-title: Adv. Mater. Res.
– volume: 16
  start-page: 3642
  year: 2016
  publication-title: Nano Lett.
– volume: 28
  start-page: 3423
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 320
  year: 2008
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 6444
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 2604
  year: 2007
  publication-title: Biosens. Bioelectron.
– volume: 265
  start-page: 391
  year: 2014
  publication-title: J. Power Sources
– volume: 54
  start-page: 401
  year: 2014
  publication-title: Polym. Rev.
– volume: 224
  start-page: 139
  year: 2013
  publication-title: J. Power Sources
– volume: 7
  start-page: 4640
  year: 2015
  publication-title: Anal. Methods
– volume: 4
  start-page: 1417
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1405
  year: 2005
  publication-title: Electrochem. Commun.
– volume: 7
  start-page: 7022
  year: 2015
  publication-title: Nanoscale
– volume: 6
  start-page: 8850
  year: 2015
  publication-title: Nat. Commun.
– volume: 26
  start-page: 3953
  year: 2011
  publication-title: Biosens. Bioelectron.
– volume: 18
  start-page: 9053
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 48
  start-page: 424
  year: 2010
  publication-title: Biochem. Eng. J.
– volume: 27
  start-page: 6683
  year: 2015
  publication-title: Adv. Mater.
– volume: 181
  start-page: 279
  year: 2016
  publication-title: Appl. Catal., B
– volume: 112
  start-page: 63
  year: 2011
  publication-title: J. Biosci. Bioeng.
– volume: 115
  start-page: 5159
  year: 2015
  publication-title: Chem. Rev.
– volume: 860–863
  start-page: 816
  year: 2014
  publication-title: Adv. Mater. Res.
– volume: 234
  start-page: 100
  year: 2013
  publication-title: J. Power Sources
– volume: 9
  start-page: 1237
  year: 2013
  publication-title: Small
– volume: 28
  start-page: 7494
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 13828
  year: 2011
  publication-title: Langmuir
– volume: 107
  start-page: 16806
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 2619
  year: 2007
  publication-title: Phys. Chem. Chem. Phys.
– volume: 39
  start-page: 21811
  year: 2014
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 791
  year: 2012
  publication-title: Nano Lett.
– volume: 196
  start-page: 4427
  year: 2011
  publication-title: J. Power Sources
– volume: 1
  start-page: 12587
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 7902
  year: 2013
  publication-title: RSC Adv.
– volume: 47
  start-page: 31
  year: 2009
  publication-title: Biochem. Eng. J.
– volume: 5
  start-page: 9611
  year: 2011
  publication-title: ACS Nano
– volume: 54
  start-page: v
  year: 2013
  publication-title: Polymer
– volume: 8
  start-page: 546
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 7
  year: 2009
  publication-title: Fuel Cells
– volume: 8
  start-page: 11958
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 1502518
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 1700
  year: 2015
  publication-title: J. Nanosci. Nanotechnol.
– volume: 27
  start-page: 3085
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1892
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 375
  year: 2009
  publication-title: Nat. Rev. Microbiol.
– volume: 130
  start-page: 512
  year: 2014
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 607
  year: 2008
  publication-title: Energy Environ. Sci.
– volume: 196
  start-page: 6036
  year: 2011
  publication-title: J. Power Sources
– volume: 257
  start-page: 246
  year: 2014
  publication-title: J. Power Sources
– volume: 43
  start-page: 85
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 975
  year: 2012
  publication-title: ChemSusChem
– volume: 46
  start-page: 116
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 208
  start-page: 170
  year: 2012
  publication-title: J. Power Sources
– volume: 53
  start-page: 5697
  year: 2008
  publication-title: Electrochim. Acta
– volume: 393
  start-page: 346
  year: 1998
  publication-title: Nature
– volume: 6
  start-page: 1501535
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 88
  year: 2014
  publication-title: Curr. Opin. Biotechnol.
– volume: 28
  start-page: 6845
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1501778
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 26514
  year: 2016
  publication-title: Sci. Rep.
– ident: e_1_2_6_78_1
  doi: 10.1016/j.biortech.2010.07.007
– ident: e_1_2_6_270_1
  doi: 10.1039/c2cp40760d
– ident: e_1_2_6_188_1
  doi: 10.1016/j.bios.2014.02.044
– ident: e_1_2_6_44_1
  doi: 10.1039/C2EE23350A
– ident: e_1_2_6_106_1
  doi: 10.1021/es062644y
– ident: e_1_2_6_67_1
  doi: 10.1021/ja506553r
– ident: e_1_2_6_222_1
  doi: 10.1039/c0ee00793e
– ident: e_1_2_6_101_1
  doi: 10.1016/j.jpowsour.2009.10.030
– ident: e_1_2_6_201_1
  doi: 10.1021/nl302175j
– ident: e_1_2_6_204_1
  doi: 10.1016/j.jpowsour.2015.02.088
– ident: e_1_2_6_261_1
  doi: 10.1021/es0512071
– ident: e_1_2_6_47_1
  doi: 10.1021/es500720g
– ident: e_1_2_6_105_1
  doi: 10.1021/es034923g
– ident: e_1_2_6_114_1
  doi: 10.1016/j.jpowsour.2015.03.014
– ident: e_1_2_6_7_1
  doi: 10.1021/cr5006217
– ident: e_1_2_6_163_1
  doi: 10.1021/nn700102s
– ident: e_1_2_6_94_1
  doi: 10.1002/bit.23204
– ident: e_1_2_6_121_1
  doi: 10.1166/jnn.2015.8404
– ident: e_1_2_6_306_1
  doi: 10.1002/advs.201500265
– ident: e_1_2_6_199_1
  doi: 10.1039/c1ee01477c
– ident: e_1_2_6_277_1
  doi: 10.1063/1.3529310
– ident: e_1_2_6_281_1
  doi: 10.1128/AEM.02766-10
– ident: e_1_2_6_236_1
  doi: 10.1016/j.jpowsour.2012.02.005
– ident: e_1_2_6_173_1
  doi: 10.5796/electrochemistry.78.814
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.201503609
– ident: e_1_2_6_209_1
  doi: 10.1002/adma.201504766
– ident: e_1_2_6_297_1
  doi: 10.1038/nrmicro3161
– ident: e_1_2_6_50_1
  doi: 10.1039/C2CS35335K
– ident: e_1_2_6_280_1
  doi: 10.1016/j.biomaterials.2013.07.048
– ident: e_1_2_6_242_1
  doi: 10.1016/j.jpowsour.2009.10.084
– ident: e_1_2_6_262_1
  doi: 10.1016/j.elecom.2006.01.010
– ident: e_1_2_6_130_1
  doi: 10.1166/jnn.2010.2347
– ident: e_1_2_6_291_1
  doi: 10.1385/1-59259-224-4:331
– ident: e_1_2_6_37_1
  doi: 10.1039/B703627M
– ident: e_1_2_6_110_1
  doi: 10.1016/j.bej.2009.06.013
– ident: e_1_2_6_117_1
  doi: 10.1038/30694
– ident: e_1_2_6_21_1
  doi: 10.1038/ncomms3809
– ident: e_1_2_6_115_1
  doi: 10.1002/smll.201203252
– ident: e_1_2_6_195_1
  doi: 10.1002/chem.201501772
– ident: e_1_2_6_220_1
  doi: 10.1002/anie.201306871
– ident: e_1_2_6_53_1
  doi: 10.1002/adma.201500472
– ident: e_1_2_6_156_1
  doi: 10.1016/j.jpowsour.2012.02.036
– ident: e_1_2_6_118_1
  doi: 10.1002/cssc.201100084
– ident: e_1_2_6_141_1
  doi: 10.1021/sc500244f
– ident: e_1_2_6_216_1
  doi: 10.1002/adma.201505086
– ident: e_1_2_6_250_1
  doi: 10.1039/C4TA06500J
– ident: e_1_2_6_148_1
  doi: 10.1039/c3ta12947k
– ident: e_1_2_6_128_1
  doi: 10.1021/nn504898p
– ident: e_1_2_6_146_1
  doi: 10.1016/j.ijhydene.2014.05.008
– ident: e_1_2_6_119_1
  doi: 10.1039/C1EE02122B
– ident: e_1_2_6_241_1
  doi: 10.1039/C4EE03268C
– ident: e_1_2_6_292_1
  doi: 10.1073/pnas.1011699107
– ident: e_1_2_6_179_1
  doi: 10.1039/C5RA06064H
– ident: e_1_2_6_143_1
  doi: 10.1002/anie.201400463
– ident: e_1_2_6_275_1
  doi: 10.1021/es401722j
– ident: e_1_2_6_212_1
  doi: 10.1002/adma.201505045
– ident: e_1_2_6_145_1
  doi: 10.1021/ie502399y
– ident: e_1_2_6_239_1
  doi: 10.1039/c3ra22569k
– ident: e_1_2_6_84_1
  doi: 10.1016/j.ijhydene.2011.12.154
– ident: e_1_2_6_16_1
  doi: 10.1016/j.biortech.2015.02.108
– ident: e_1_2_6_71_1
  doi: 10.1002/fuce.200800115
– ident: e_1_2_6_161_1
  doi: 10.1016/j.ijhydene.2012.12.016
– ident: e_1_2_6_24_1
  doi: 10.1039/C6TA00992A
– ident: e_1_2_6_48_1
  doi: 10.1016/j.copbio.2015.02.014
– ident: e_1_2_6_221_1
  doi: 10.1021/ja3085934
– ident: e_1_2_6_39_1
  doi: 10.1016/j.bej.2007.02.021
– ident: e_1_2_6_147_1
  doi: 10.1002/chem.201400272
– ident: e_1_2_6_43_1
  doi: 10.1007/s10529-014-1565-7
– ident: e_1_2_6_82_1
  doi: 10.1016/j.biortech.2011.07.019
– ident: e_1_2_6_203_1
  doi: 10.1039/c2jm33733a
– ident: e_1_2_6_184_1
  doi: 10.1016/j.polymer.2012.11.024
– ident: e_1_2_6_23_1
  doi: 10.1039/c3ee40441b
– ident: e_1_2_6_97_1
  doi: 10.1038/srep28588
– ident: e_1_2_6_36_1
  doi: 10.4028/www.scientific.net/AMR.860-863.816
– ident: e_1_2_6_108_1
  doi: 10.1016/j.electacta.2008.03.032
– ident: e_1_2_6_298_1
  doi: 10.1002/adma.201204880
– ident: e_1_2_6_206_1
  doi: 10.1016/j.elecom.2006.09.025
– ident: e_1_2_6_308_1
  doi: 10.1038/srep26514
– ident: e_1_2_6_150_1
  doi: 10.1039/C4NR05637J
– ident: e_1_2_6_162_1
  doi: 10.1016/j.elecom.2004.04.006
– ident: e_1_2_6_127_1
  doi: 10.1021/am500624k
– ident: e_1_2_6_251_1
  doi: 10.1016/j.jpowsour.2014.06.115
– ident: e_1_2_6_55_1
  doi: 10.1039/C1EE02391H
– ident: e_1_2_6_95_1
  doi: 10.1016/j.jpowsour.2016.05.078
– ident: e_1_2_6_137_1
  doi: 10.1039/C2TB00025C
– ident: e_1_2_6_41_1
  doi: 10.1021/es8003969
– ident: e_1_2_6_171_1
  doi: 10.1002/adma.201204271
– ident: e_1_2_6_257_1
  doi: 10.1038/nrmicro2113
– ident: e_1_2_6_294_1
  doi: 10.1073/pnas.1004880107
– ident: e_1_2_6_120_1
  doi: 10.1021/nl103905t
– ident: e_1_2_6_152_1
  doi: 10.1002/chem.201400272
– ident: e_1_2_6_295_1
  doi: 10.1073/pnas.0604517103
– ident: e_1_2_6_122_1
  doi: 10.1021/nl103905t
– ident: e_1_2_6_166_1
  doi: 10.1016/j.jbiosc.2011.03.014
– ident: e_1_2_6_193_1
  doi: 10.1002/anie.200602021
– ident: e_1_2_6_52_1
  doi: 10.1039/C3CS60210A
– ident: e_1_2_6_149_1
  doi: 10.1016/j.jpowsour.2012.09.091
– ident: e_1_2_6_276_1
  doi: 10.1016/j.jpowsour.2015.01.098
– ident: e_1_2_6_85_1
  doi: 10.1039/C3EE43106A
– ident: e_1_2_6_229_1
  doi: 10.1016/j.biortech.2015.06.012
– ident: e_1_2_6_62_1
  doi: 10.1021/es900997w
– ident: e_1_2_6_154_1
  doi: 10.1016/j.jpowsour.2015.03.033
– ident: e_1_2_6_138_1
  doi: 10.1021/bm3014999
– ident: e_1_2_6_238_1
  doi: 10.1039/C4RA05940A
– ident: e_1_2_6_158_1
  doi: 10.1016/j.bios.2011.04.018
– volume: 396
  start-page: 1794
  year: 2012
  ident: e_1_2_6_168_1
  publication-title: Adv. Mater. Res.
– ident: e_1_2_6_245_1
  doi: 10.1021/am5008547
– ident: e_1_2_6_266_1
  doi: 10.1016/j.apcatb.2015.07.010
– ident: e_1_2_6_38_1
  doi: 10.1016/j.bios.2006.10.028
– ident: e_1_2_6_77_1
  doi: 10.1021/es8001822
– ident: e_1_2_6_231_1
  doi: 10.1016/j.elecom.2005.09.032
– ident: e_1_2_6_13_1
  doi: 10.1002/smll.201203155
– ident: e_1_2_6_45_1
  doi: 10.1039/C5EE00866B
– ident: e_1_2_6_25_1
  doi: 10.1039/C5TA06673E
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201501643
– ident: e_1_2_6_111_1
  doi: 10.1007/s11368-012-0537-6
– ident: e_1_2_6_2_1
  doi: 10.1021/cr500077e
– ident: e_1_2_6_18_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_6_136_1
  doi: 10.1002/adma.201303115
– ident: e_1_2_6_211_1
  doi: 10.1002/adma.201503211
– ident: e_1_2_6_260_1
  doi: 10.1016/j.jpowsour.2009.08.092
– ident: e_1_2_6_278_1
  doi: 10.1016/j.jpowsour.2011.07.077
– ident: e_1_2_6_90_1
  doi: 10.1016/j.bios.2013.02.033
– ident: e_1_2_6_98_1
  doi: 10.1039/b810642h
– ident: e_1_2_6_140_1
  doi: 10.1021/nn203115u
– ident: e_1_2_6_194_1
  doi: 10.1016/j.biortech.2012.07.067
– ident: e_1_2_6_246_1
  doi: 10.1021/nn202906f
– ident: e_1_2_6_217_1
  doi: 10.1002/adma.201404314
– ident: e_1_2_6_304_1
  doi: 10.1038/nnano.2014.236
– ident: e_1_2_6_301_1
  doi: 10.1039/C5TB02072G
– ident: e_1_2_6_66_1
  doi: 10.1038/ncomms9618
– ident: e_1_2_6_86_1
  doi: 10.1002/aenm.201501778
– ident: e_1_2_6_237_1
  doi: 10.1016/j.jpowsour.2011.10.134
– ident: e_1_2_6_269_1
  doi: 10.1002/asia.201100565
– ident: e_1_2_6_80_1
  doi: 10.1038/am.2014.1
– ident: e_1_2_6_192_1
  doi: 10.1002/adma.201500493
– ident: e_1_2_6_54_1
  doi: 10.1039/C4CS00306C
– ident: e_1_2_6_165_1
  doi: 10.1021/nn204656d
– ident: e_1_2_6_180_1
  doi: 10.1166/jnn.2015.9317
– ident: e_1_2_6_103_1
  doi: 10.1002/jctb.3764
– ident: e_1_2_6_259_1
  doi: 10.4028/www.scientific.net/AMM.217-219.956
– ident: e_1_2_6_196_1
  doi: 10.1002/cssc.201100783
– ident: e_1_2_6_5_1
  doi: 10.1126/science.aaf1525
– volume: 69
  start-page: 727
  year: 2010
  ident: e_1_2_6_31_1
  publication-title: J. Sci. Ind. Res.
– ident: e_1_2_6_126_1
  doi: 10.1016/j.jpowsour.2013.03.115
– ident: e_1_2_6_218_1
  doi: 10.1002/adma.201202424
– ident: e_1_2_6_181_1
  doi: 10.5012/bkcs.2008.29.7.1344
– ident: e_1_2_6_124_1
  doi: 10.1039/B707504A
– ident: e_1_2_6_8_1
  doi: 10.1021/acs.nanolett.6b00771
– ident: e_1_2_6_225_1
  doi: 10.1039/c3ta14531j
– ident: e_1_2_6_79_1
  doi: 10.1021/nn402103q
– ident: e_1_2_6_282_1
  doi: 10.1016/j.nanoen.2015.05.031
– ident: e_1_2_6_164_1
  doi: 10.1021/es404163g
– ident: e_1_2_6_235_1
  doi: 10.1016/j.memsci.2015.03.006
– ident: e_1_2_6_307_1
  doi: 10.1039/C6TA02891H
– ident: e_1_2_6_189_1
  doi: 10.1016/j.colsurfa.2011.08.056
– ident: e_1_2_6_109_1
  doi: 10.1016/j.matlet.2013.04.044
– ident: e_1_2_6_129_1
  doi: 10.1016/j.jpowsour.2009.05.018
– ident: e_1_2_6_70_1
  doi: 10.1021/ja8076704
– ident: e_1_2_6_205_1
  doi: 10.1016/j.bios.2015.02.014
– ident: e_1_2_6_22_1
  doi: 10.1021/es0499344
– ident: e_1_2_6_81_1
  doi: 10.1016/j.jpowsour.2011.01.012
– ident: e_1_2_6_185_1
  doi: 10.1016/j.enzmictec.2011.02.006
– ident: e_1_2_6_19_1
  doi: 10.1021/nn303091t
– ident: e_1_2_6_296_1
  doi: 10.1021/acs.nanolett.5b02256
– ident: e_1_2_6_302_1
  doi: 10.1039/c3ee00071k
– ident: e_1_2_6_232_1
  doi: 10.1007/s10800-008-9653-9
– ident: e_1_2_6_151_1
  doi: 10.1038/srep07562
– ident: e_1_2_6_186_1
  doi: 10.1021/am506360x
– ident: e_1_2_6_139_1
  doi: 10.1021/acsami.5b00297
– ident: e_1_2_6_112_1
  doi: 10.1016/j.ijhydene.2014.07.136
– ident: e_1_2_6_68_1
  doi: 10.1002/adma.201601406
– ident: e_1_2_6_200_1
  doi: 10.1039/c2ee03583a
– ident: e_1_2_6_1_1
  doi: 10.1038/ncomms10667
– ident: e_1_2_6_243_1
  doi: 10.1021/am4018225
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.201600829
– ident: e_1_2_6_170_1
  doi: 10.7763/JOCET.2013.V1.47
– ident: e_1_2_6_65_1
  doi: 10.1002/cssc.201402680
– ident: e_1_2_6_6_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_6_40_1
  doi: 10.1007/s00253-007-1027-4
– ident: e_1_2_6_198_1
  doi: 10.1039/c3ee00052d
– ident: e_1_2_6_93_1
  doi: 10.1016/j.biortech.2015.01.078
– ident: e_1_2_6_134_1
  doi: 10.1016/j.jpowsour.2007.03.048
– ident: e_1_2_6_29_1
  doi: 10.4491/eer.2008.13.2.051
– ident: e_1_2_6_279_1
  doi: 10.1016/j.surfcoat.2014.01.027
– ident: e_1_2_6_116_1
  doi: 10.1126/science.1222453
– ident: e_1_2_6_285_1
  doi: 10.1002/anie.201602631
– ident: e_1_2_6_249_1
  doi: 10.1021/ie4003766
– ident: e_1_2_6_227_1
  doi: 10.1002/adma.201104392
– ident: e_1_2_6_100_1
  doi: 10.2166/wst.2012.956
– ident: e_1_2_6_9_1
  doi: 10.1002/aenm.201502518
– ident: e_1_2_6_33_1
  doi: 10.1039/b806498a
– ident: e_1_2_6_234_1
  doi: 10.1007/s10853-014-8677-2
– ident: e_1_2_6_142_1
  doi: 10.1039/C5AY00976F
– ident: e_1_2_6_172_1
  doi: 10.1016/j.colsurfa.2014.04.030
– ident: e_1_2_6_191_1
  doi: 10.1016/j.jpowsour.2013.01.146
– volume: 21
  start-page: 1672
  year: 2009
  ident: e_1_2_6_258_1
  publication-title: Prog. Chem.
– ident: e_1_2_6_169_1
  doi: 10.1016/j.bios.2012.09.054
– ident: e_1_2_6_125_1
  doi: 10.1039/c0ee00447b
– ident: e_1_2_6_305_1
  doi: 10.1002/cssc.201600573
– ident: e_1_2_6_75_1
  doi: 10.1126/science.1217412
– ident: e_1_2_6_252_1
  doi: 10.1021/ja209206c
– ident: e_1_2_6_51_1
  doi: 10.1021/ar3001475
– ident: e_1_2_6_74_1
  doi: 10.1039/C5CS00903K
– ident: e_1_2_6_267_1
  doi: 10.4028/www.scientific.net/AMR.881-883.310
– ident: e_1_2_6_32_1
  doi: 10.1021/es5047765
– ident: e_1_2_6_72_1
  doi: 10.3390/en3010023
– ident: e_1_2_6_299_1
  doi: 10.1021/mz500568k
– ident: e_1_2_6_35_1
  doi: 10.1039/b819866g
– ident: e_1_2_6_289_1
  doi: 10.1016/j.bej.2009.11.014
– ident: e_1_2_6_190_1
  doi: 10.1016/j.jpowsour.2014.10.035
– ident: e_1_2_6_197_1
  doi: 10.1039/c0ee00446d
– ident: e_1_2_6_233_1
  doi: 10.1039/C2TA00392A
– ident: e_1_2_6_219_1
  doi: 10.1002/adma.201502725
– ident: e_1_2_6_63_1
  doi: 10.1021/cr5003563
– ident: e_1_2_6_226_1
  doi: 10.1021/am501844p
– ident: e_1_2_6_244_1
  doi: 10.1021/acsami.5b05144
– ident: e_1_2_6_58_1
  doi: 10.1016/j.jpowsour.2012.03.040
– ident: e_1_2_6_89_1
  doi: 10.1021/es0480668
– ident: e_1_2_6_286_1
  doi: 10.1016/j.biomaterials.2006.07.019
– ident: e_1_2_6_290_1
  doi: 10.1016/j.pnsc.2008.04.001
– ident: e_1_2_6_178_1
  doi: 10.1016/j.jpowsour.2010.08.112
– ident: e_1_2_6_253_1
  doi: 10.1186/2191-0855-2-21
– ident: e_1_2_6_144_1
  doi: 10.1002/ente.201300085
– ident: e_1_2_6_46_1
  doi: 10.1039/c2cp42526b
– ident: e_1_2_6_174_1
  doi: 10.1021/acsami.5b05273
– ident: e_1_2_6_187_1
  doi: 10.1016/j.apsusc.2014.08.044
– ident: e_1_2_6_177_1
  doi: 10.1016/j.ijhydene.2014.05.057
– ident: e_1_2_6_88_1
  doi: 10.1016/j.bios.2015.02.021
– ident: e_1_2_6_56_1
  doi: 10.1002/fuce.201500120
– ident: e_1_2_6_61_1
  doi: 10.1016/j.jpowsour.2015.04.058
– ident: e_1_2_6_208_1
  doi: 10.1016/j.jpowsour.2014.04.005
– ident: e_1_2_6_202_1
  doi: 10.1039/c3nr03487a
– ident: e_1_2_6_4_1
  doi: 10.1038/nature13774
– ident: e_1_2_6_104_1
  doi: 10.1038/nbt867
– ident: e_1_2_6_157_1
  doi: 10.1021/am300048v
– ident: e_1_2_6_159_1
  doi: 10.1016/j.bioelechem.2009.11.001
– ident: e_1_2_6_59_1
  doi: 10.1016/j.jpowsour.2011.03.096
– ident: e_1_2_6_303_1
  doi: 10.1016/j.copbio.2013.12.003
– ident: e_1_2_6_153_1
  doi: 10.1016/j.electacta.2013.08.022
– volume: 14
  start-page: 147
  year: 2008
  ident: e_1_2_6_34_1
  publication-title: Chin. J. Appl. Environ. Biol.
– ident: e_1_2_6_283_1
  doi: 10.1016/j.bios.2015.11.026
– ident: e_1_2_6_293_1
  doi: 10.1038/nature03661
– ident: e_1_2_6_175_1
  doi: 10.1039/C6CP00159A
– ident: e_1_2_6_230_1
  doi: 10.1016/j.bios.2009.02.010
– ident: e_1_2_6_96_1
  doi: 10.1016/j.jpowsour.2014.09.165
– ident: e_1_2_6_64_1
  doi: 10.1002/adma.201302786
– ident: e_1_2_6_263_1
  doi: 10.1080/10643389.2011.592744
– ident: e_1_2_6_87_1
  doi: 10.1002/jctb.4004
– ident: e_1_2_6_160_1
  doi: 10.1002/chem.200903486
– ident: e_1_2_6_102_1
  doi: 10.1016/j.biortech.2010.05.063
– ident: e_1_2_6_113_1
  doi: 10.1149/1.3190477
– ident: e_1_2_6_271_1
  doi: 10.1002/anie.201309171
– ident: e_1_2_6_14_1
  doi: 10.1016/j.bios.2006.04.029
– ident: e_1_2_6_17_1
  doi: 10.1038/ncomms9850
– ident: e_1_2_6_284_1
  doi: 10.1016/j.nanoen.2015.05.030
– ident: e_1_2_6_11_1
  doi: 10.1002/cssc.201300109
– ident: e_1_2_6_83_1
  doi: 10.1016/j.bios.2010.02.014
– ident: e_1_2_6_131_1
  doi: 10.1039/C4TA03101F
– ident: e_1_2_6_107_1
  doi: 10.1039/b717773a
– ident: e_1_2_6_248_1
  doi: 10.1021/es4032216
– ident: e_1_2_6_30_1
  doi: 10.1016/j.jhazmat.2016.06.041
– ident: e_1_2_6_214_1
  doi: 10.1002/adma.201204461
– ident: e_1_2_6_132_1
  doi: 10.1166/jnn.2011.3311
– ident: e_1_2_6_228_1
  doi: 10.1016/j.biortech.2015.06.054
– ident: e_1_2_6_60_1
  doi: 10.1016/j.bios.2011.07.017
– ident: e_1_2_6_256_1
  doi: 10.1002/elan.200603628
– ident: e_1_2_6_300_1
  doi: 10.1073/pnas.1303897110
– ident: e_1_2_6_255_1
  doi: 10.1002/cssc.201100836
– ident: e_1_2_6_28_1
  doi: 10.1016/j.biotechadv.2007.05.004
– ident: e_1_2_6_133_1
  doi: 10.1002/adma.201502866
– ident: e_1_2_6_265_1
  doi: 10.1016/j.jpowsour.2014.01.117
– ident: e_1_2_6_27_1
  doi: 10.1002/aenm.201501535
– ident: e_1_2_6_264_1
  doi: 10.1039/c3ee41056k
– ident: e_1_2_6_135_1
  doi: 10.1016/j.electacta.2014.03.011
– ident: e_1_2_6_76_1
  doi: 10.1021/es803531g
– ident: e_1_2_6_49_1
  doi: 10.1016/j.jallcom.2013.05.094
– ident: e_1_2_6_247_1
  doi: 10.1039/c1ee01153g
– ident: e_1_2_6_167_1
  doi: 10.1016/j.bios.2009.10.009
– ident: e_1_2_6_288_1
  doi: 10.1039/b613899c
– ident: e_1_2_6_215_1
  doi: 10.1002/adma.201301975
– ident: e_1_2_6_272_1
  doi: 10.1002/aenm.201301415
– ident: e_1_2_6_223_1
  doi: 10.1021/ef100825h
– ident: e_1_2_6_210_1
  doi: 10.1002/adma.201502696
– ident: e_1_2_6_99_1
  doi: 10.1002/marc.201400332
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201600012
– ident: e_1_2_6_273_1
  doi: 10.1039/c1cp21813a
– ident: e_1_2_6_287_1
  doi: 10.1021/la202907f
– ident: e_1_2_6_213_1
  doi: 10.1002/adma.201102182
– ident: e_1_2_6_123_1
  doi: 10.1021/nl203801h
– ident: e_1_2_6_240_1
  doi: 10.1016/j.bios.2013.10.012
– ident: e_1_2_6_155_1
  doi: 10.1016/j.jpowsour.2011.02.067
– ident: e_1_2_6_224_1
  doi: 10.1021/ef070160x
– ident: e_1_2_6_92_1
  doi: 10.1016/j.bios.2012.12.029
– ident: e_1_2_6_12_1
  doi: 10.1002/chem.201300319
– ident: e_1_2_6_91_1
  doi: 10.1016/j.bios.2014.06.050
– ident: e_1_2_6_274_1
  doi: 10.1016/S1872-2067(14)60023-1
– ident: e_1_2_6_42_1
  doi: 10.1080/15583724.2014.881372
– ident: e_1_2_6_26_1
  doi: 10.1021/es048927c
– ident: e_1_2_6_254_1
  doi: 10.1039/C1CC16207A
– ident: e_1_2_6_268_1
  doi: 10.1016/j.ijhydene.2015.01.119
– ident: e_1_2_6_73_1
  doi: 10.1021/es0605016
– ident: e_1_2_6_57_1
  doi: 10.1016/j.bios.2012.12.048
– ident: e_1_2_6_183_1
  doi: 10.1039/C5RA09771A
– ident: e_1_2_6_69_1
  doi: 10.1039/b809009b
– ident: e_1_2_6_176_1
  doi: 10.1149/2.049205jes
– ident: e_1_2_6_182_1
  doi: 10.1016/j.bios.2011.02.046
– ident: e_1_2_6_207_1
  doi: 10.1016/j.elecom.2006.10.023
SSID ssj0009606
Score 2.6591218
SecondaryResourceType review_article
Snippet Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage np
SubjectTerms Anodes
bacterial adhesion
Biochemical fuel cells
Biofilms
Carbon
carbon‐based electrodes
Catalysis
Catalysts
Cathodes
Electric potential
Electric power generation
Electrical resistivity
Electrochemical analysis
Electrode materials
Electrodes
Electron transfer
electron‐transfer conductors
Energy density
Immobilization
Industrial applications
microbial fuel cells
Microorganisms
oxygen‐reduction‐reaction catalysts
Substrates
Title Carbon‐Based Microbial‐Fuel‐Cell Electrodes: From Conductive Supports to Active Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201602547
https://www.ncbi.nlm.nih.gov/pubmed/27991684
https://www.proquest.com/docview/1920420428
https://www.proquest.com/docview/1851293436
https://www.proquest.com/docview/1884117640
Volume 29
WOSCitedRecordID wos000395187900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7Y1gd9sN5NrWUEwafQzWRu6duaNvhgi4iFfQszkwkUtolsdgt98yf4G_0lzplk0y5FBX0KmZyEYXIu31zOdwDeGW11ZussnlSMxsxI9INOxTyzjnmErKyxodiEPDtTs1n2-VYWf88PMS64oWUEf40Grk13eEMaqqvAG5QIzOeWW7CDmVV--rVz_KU4_3RDvCtCfU3c74szwdSauHFCDze_sBmY7qDNTfAaok-x-__9fgyPBuRJpr2qPIF7rnkKD2_xET6DMtcL0zY_v__44INbRU4vAk2TnvuWYuXwkrv5nJz0tXMq1x2RYtFekrxtkDfWe06CZUJxF4IsWzLtm3JcIrrult1zOC9OvuYf46ECQ2w9kJCxkSbVacU5d0JxN6lt6njlaFZ7YM6VqrWlxiaaKm6US7isHUdAkDBNraxN-gK2m7Zxr4CIVEgtMqsTrwJGc-089Krr1NKa2kzICOL18Jd2oCfHKhnzsidWpiUOXDkOXATvR_lvPTHHbyX313-zHAy0Kz2w9e4KJ4wRvB0fe9PC_RLduHblZVRAQywVf5JRLEmkYJMIXvaaMnaHSgTfikVAg0L8pZ_l9Ph0Ot7t_ctLr-EBRdgRTpXvw_ZysXJv4L69Wl50iwPYkjN1MBjIL4qAEbg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7oVlAf6q3a1KoRBJ9CN5O5xbc1bai4u4i00LcwM5mBwprIZlfomz_B3-gvcU6STV1EBfEpZHIShsm5fDNn5jsAr7QyKjUujcYlJRHVAv2glRFLjaUeIUujTVtsQszn8uIi_dDvJsSzMB0_xLDghpbR-ms0cFyQPrpmDVVlSxwUczzQLW7CDuWJkCPYOf6Yn0-vmXd5W2ATE35RyqncMDeOydH2F7Yj0y9wcxu9tuEnv_cfOn4fdnvsGU46ZXkAN2z1EO7-xEj4CIpMLXVdff_67a0Pb2U4u2yJmtTCt-Rri5fMLhbhSVc9p7TNmzBf1p_CrK6QOdb7zhALhWIeIlzV4aRrynCR6KpZNXtwnp-cZadRX4MhMh5KiEgLnaikZIxZLpkdO5NYVlqSOg_NmZROGaJNrIhkWtqYCWcZQoKYKmKE08ljGFV1Zfch5AkXiqdGxV4JtGLKevDlXGKIIyblIoBoM_6F6QnKsU7GouiolUmBA1cMAxfA60H-c0fN8VvJw83vLHoTbQoPbb3DwiljAC-Hx964MGOiKluvvYxs8RBN-J9kJI1jwek4gCedqgzdIQLht6QBkFYj_tLPYnI8mwx3B__y0gu4fXo2mxbTd_P3T-EOQRDS7jE_hNFqubbP4Jb5srpsls97O_kBeDEUwA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7oVkQf6q1qtGoEwafQzWSuvm2zDYrtUsRC38LMZAYKa1I2u4W-9Sf0N_pLnJlkUxdRQXwKmZyEw-Rcvrl9B-CdkloKbUUyrjBKsGI-DhqeEKENdgiZa6VDsQk2m_HTU3Hc7yb0Z2E6fohhws17RojX3sHNeWX3blhDZRWIg1LqD3Sz27CFiSB4BFvTL8XJ4Q3zLg0FNv2CXyIo5mvmxjHa2_zCZmb6BW5uoteQfooH_0Hxh7DdY8940hnLI7hl6sdw_ydGwidQ5nKhmvr71fW-S29VfHQWiJrk3LUUK-MvuZnP44Ouek5l2g9xsWi-xXlTe-ZYFztjXyjUr0PEyyaedE25nyS6bJftDpwUB1_zj0lfgyHRDkqwRDGVyawihBjKiRlbnRlSGSSsg-aEcys1UjqViBPFTUqYNcRDghRLpJlV2VMY1U1tnkNMM8okFVqmzgiUJNI48GVtppFFWlAWQbLu_1L3BOW-Tsa87KiVUek7rhw6LoL3g_x5R83xW8nd9e8sexdtSwdtXcDyQ8YI3g6PnXP5FRNZm2blZHjAQzijf5LhOE0ZxeMInnWmMqiDmIffHEeAgkX8Rc9yMj2aDHcv_uWlN3D3eFqUh59mn1_CPeQxSNhivguj5WJlXsEdfbE8axevezf5AeSHFDs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon%E2%80%90Based+Microbial%E2%80%90Fuel%E2%80%90Cell+Electrodes%3A+From+Conductive+Supports+to+Active+Catalysts&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Shuang&rft.au=Cheng%2C+Chong&rft.au=Thomas%2C+Arne&rft.date=2017-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201602547&rft.externalDBID=10.1002%252Fadma.201602547&rft.externalDocID=ADMA201602547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon