Carbon‐Based Microbial‐Fuel‐Cell Electrodes: From Conductive Supports to Active Catalysts
Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials ha...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 29; no. 8; pp. np - n/a |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.02.2017
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast‐emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon‐based materials can function as catalysts for the oxygen‐reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon‐based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon‐electrode‐based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.
Carbon‐based electrodes with different morphologies and structures are widely used in microbial fuel cells from conductive supports (anode) to active catalysts (cathode). Recent advancements in the design of carbon materials for anodes (conductivity, biofilm formation, interaction) and cathodes (catalytic activity) are discussed separately. The future perspectives and emerging challenges of this area are also highlighted. |
|---|---|
| AbstractList | Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described. Carbon-based electrodes with different morphologies and structures are widely used in microbial fuel cells from conductive supports (anode) to active catalysts (cathode). Recent advancements in the design of carbon materials for anodes (conductivity, biofilm formation, interaction) and cathodes (catalytic activity) are discussed separately. The future perspectives and emerging challenges of this area are also highlighted. Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described. Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast‐emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon‐based materials can function as catalysts for the oxygen‐reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon‐based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon‐electrode‐based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described. Carbon‐based electrodes with different morphologies and structures are widely used in microbial fuel cells from conductive supports (anode) to active catalysts (cathode). Recent advancements in the design of carbon materials for anodes (conductivity, biofilm formation, interaction) and cathodes (catalytic activity) are discussed separately. The future perspectives and emerging challenges of this area are also highlighted. Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described. |
| Author | Thomas, Arne Cheng, Chong Li, Shuang |
| Author_xml | – sequence: 1 givenname: Shuang surname: Li fullname: Li, Shuang organization: Technische Universität Berlin – sequence: 2 givenname: Chong surname: Cheng fullname: Cheng, Chong organization: Freie Universität Berlin – sequence: 3 givenname: Arne surname: Thomas fullname: Thomas, Arne email: arne.thomas@tu-berlin.de organization: Technische Universität Berlin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27991684$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkcFq3DAQhkVJaDZprz0GQy-5eCPJki31tnV200CWHJqehSyPQcG2NpLcsLc-Qp8xTxKbzaYQKAkIBobvGzTzH6OD3vWA0BeC5wRjeq7rTs8pJjmmnBUf0IxwSlKGJT9AMywznsqciSN0HMIdxljmOP-IjmghJckFmyFVal-5_vHP3-86QJ2srfGusrodO6sBplJC2ybLFkz0robwLVl51yWl6-vBRPsbkp_DZuN8DEl0yWLXKnXU7TbE8AkdNroN8Pm5nqBfq-Vt-SO9vrm8KhfXqeFYFmlVVJnOas455IIDbkwGvAYqGyEoF6LRhlaGaCp4JYDwogE-bUqYpqZoquwEne3mbry7HyBE1dlgxp_rHtwQFBGCEVLkDL8D5YTKjGX5iH59hd65wffjIopIitn0xEidPlND1UGtNt522m_V_sojwHbAeNsQPDTK2KijdX302raKYDWFqaYw1UuYozZ_pe0n_1eQO-HBtrB9g1aLi_Xin_sEQGCzPg |
| CitedBy_id | crossref_primary_10_1007_s41918_018_0020_1 crossref_primary_10_1016_j_watres_2020_115493 crossref_primary_10_1039_D3NR00742A crossref_primary_10_1002_smll_202100165 crossref_primary_10_1016_j_jpowsour_2018_12_041 crossref_primary_10_1016_j_biortech_2021_125604 crossref_primary_10_1016_j_fuel_2023_129921 crossref_primary_10_1016_j_jpowsour_2024_235623 crossref_primary_10_1002_cey2_113 crossref_primary_10_1016_j_electacta_2019_03_194 crossref_primary_10_1002_smll_202304663 crossref_primary_10_1016_j_jece_2025_117756 crossref_primary_10_1002_adma_201800618 crossref_primary_10_1016_j_surfin_2024_104228 crossref_primary_10_1016_j_watres_2023_120578 crossref_primary_10_1016_j_jece_2025_115451 crossref_primary_10_1016_j_envres_2021_111054 crossref_primary_10_1016_j_polymer_2024_127048 crossref_primary_10_1016_j_cej_2025_164918 crossref_primary_10_3390_en13246596 crossref_primary_10_1007_s13762_021_03635_1 crossref_primary_10_1016_j_jpcs_2019_02_007 crossref_primary_10_1016_j_scitotenv_2021_151314 crossref_primary_10_1039_D4RA07323A crossref_primary_10_1557_jmr_2017_372 crossref_primary_10_1016_j_jiec_2024_07_031 crossref_primary_10_1016_j_seta_2025_104284 crossref_primary_10_3390_pr8040424 crossref_primary_10_1016_j_mser_2023_100736 crossref_primary_10_4028_www_scientific_net_AMM_875_14 crossref_primary_10_1016_j_ijhydene_2020_10_087 crossref_primary_10_1016_j_apcatb_2017_08_069 crossref_primary_10_1016_j_rechem_2025_102627 crossref_primary_10_1016_j_apenergy_2019_114391 crossref_primary_10_1007_s41918_023_00181_x crossref_primary_10_14710_ijred_2024_58977 crossref_primary_10_1016_j_memsci_2019_04_006 crossref_primary_10_1016_j_resconrec_2022_106781 crossref_primary_10_1016_j_seppur_2019_115769 crossref_primary_10_1016_j_bios_2019_111444 crossref_primary_10_1038_s41598_022_11472_6 crossref_primary_10_3390_ma18102336 crossref_primary_10_1016_j_seppur_2021_118971 crossref_primary_10_1039_D5TA04072H crossref_primary_10_1016_j_biortech_2022_128177 crossref_primary_10_1016_j_apmt_2019_07_006 crossref_primary_10_1038_s41598_025_91889_x crossref_primary_10_1016_j_cej_2024_158276 crossref_primary_10_1016_j_jpowsour_2022_232366 crossref_primary_10_3390_en14030553 crossref_primary_10_1016_j_cej_2021_130008 crossref_primary_10_1016_j_matchar_2022_112273 crossref_primary_10_1002_adfm_202308084 crossref_primary_10_3390_catal11020278 crossref_primary_10_3390_app13126874 crossref_primary_10_1016_j_jpowsour_2021_230491 crossref_primary_10_1186_s12302_025_01123_8 crossref_primary_10_1016_j_jece_2021_105441 crossref_primary_10_1039_C9RA07671A crossref_primary_10_1016_j_cej_2025_167254 crossref_primary_10_1016_j_jpowsour_2020_228582 crossref_primary_10_1016_j_cej_2021_129704 crossref_primary_10_1016_j_bios_2022_114895 crossref_primary_10_1016_j_ijhydene_2020_03_177 crossref_primary_10_3390_ma17030565 crossref_primary_10_3390_bioengineering12060635 crossref_primary_10_1016_j_cej_2018_02_083 crossref_primary_10_1007_s11051_021_05333_y crossref_primary_10_1186_s40643_018_0201_0 crossref_primary_10_3390_su12166538 crossref_primary_10_1016_j_bioelechem_2020_107459 crossref_primary_10_1016_j_mtener_2020_100385 crossref_primary_10_1002_smll_201801983 crossref_primary_10_1002_apj_2558 crossref_primary_10_1002_ente_202200824 crossref_primary_10_1007_s41918_022_00135_9 crossref_primary_10_3390_su151310640 crossref_primary_10_1016_j_ijhydene_2021_08_102 crossref_primary_10_1016_j_jenvman_2024_121633 crossref_primary_10_1016_j_nanoen_2019_04_056 crossref_primary_10_1016_j_ces_2023_118906 crossref_primary_10_1007_s00449_024_03115_z crossref_primary_10_1016_j_jwpe_2025_107881 crossref_primary_10_3390_en16062760 crossref_primary_10_1002_smll_202400962 crossref_primary_10_32604_jrm_2022_015806 crossref_primary_10_1016_j_cej_2019_04_067 crossref_primary_10_1039_D3CY01510F crossref_primary_10_1002_ange_201710852 crossref_primary_10_1016_j_ijhydene_2022_09_300 crossref_primary_10_1007_s40843_018_9368_y crossref_primary_10_3390_catal15010093 crossref_primary_10_1016_j_colsurfb_2023_113383 crossref_primary_10_1109_ACCESS_2020_3044354 crossref_primary_10_1016_j_cej_2021_129279 crossref_primary_10_1002_admt_201900079 crossref_primary_10_1016_j_apenergy_2019_114475 crossref_primary_10_1016_j_procbio_2021_03_032 crossref_primary_10_1007_s13399_024_06134_8 crossref_primary_10_1016_j_scitotenv_2021_152078 crossref_primary_10_3390_polym14183739 crossref_primary_10_1111_1751_7915_14236 crossref_primary_10_1016_j_bej_2023_108856 crossref_primary_10_1016_j_jpowsour_2021_230482 crossref_primary_10_1155_2021_5465680 crossref_primary_10_1016_j_jpowsour_2021_230000 crossref_primary_10_1002_cben_201900023 crossref_primary_10_1007_s12649_019_00817_4 crossref_primary_10_1007_s40820_019_0319_4 crossref_primary_10_1002_aelm_202300019 crossref_primary_10_1002_anie_201710852 crossref_primary_10_1002_cctc_201901084 crossref_primary_10_3390_su13168796 crossref_primary_10_1002_advs_202308040 crossref_primary_10_3390_w13040445 crossref_primary_10_1016_j_bios_2018_09_005 crossref_primary_10_1016_j_cej_2024_154540 crossref_primary_10_1002_tcr_202300216 crossref_primary_10_3389_fmicb_2022_868220 crossref_primary_10_1016_j_carbon_2021_05_003 crossref_primary_10_3389_fbioe_2021_622994 crossref_primary_10_1002_bab_1928 crossref_primary_10_1002_vjch_202300407 crossref_primary_10_1039_D5GC01001B crossref_primary_10_3390_nano12091496 crossref_primary_10_1016_j_electacta_2020_136388 crossref_primary_10_1002_aic_16897 crossref_primary_10_1073_pnas_1913463117 crossref_primary_10_1002_smll_202005060 crossref_primary_10_1016_j_jece_2025_116148 crossref_primary_10_1039_D5TB00105F crossref_primary_10_1007_s13762_023_05348_z crossref_primary_10_1061_JHTRBP_HZENG_1357 crossref_primary_10_3390_bios11060170 crossref_primary_10_1016_j_jallcom_2022_166076 crossref_primary_10_1016_j_jwpe_2025_107533 crossref_primary_10_1080_17597269_2023_2215625 crossref_primary_10_1016_j_arabjc_2020_07_016 crossref_primary_10_1002_adfm_201705708 crossref_primary_10_1007_s10562_023_04481_1 crossref_primary_10_3389_fenrg_2019_00091 crossref_primary_10_3390_molecules27030761 crossref_primary_10_3390_su17114758 crossref_primary_10_1080_00986445_2025_2512795 crossref_primary_10_1016_j_cej_2023_145891 crossref_primary_10_1016_j_electacta_2021_137745 crossref_primary_10_1002_smll_202101518 crossref_primary_10_1002_cctc_201901667 crossref_primary_10_1007_s11706_023_0642_z crossref_primary_10_1002_adma_201802669 crossref_primary_10_1016_j_jtice_2022_104668 crossref_primary_10_1002_chem_202005020 crossref_primary_10_1002_chem_201801302 crossref_primary_10_1016_j_renene_2025_123850 crossref_primary_10_1016_j_chemosphere_2021_133184 crossref_primary_10_3390_polym10070759 crossref_primary_10_1016_j_energy_2021_120702 crossref_primary_10_1007_s13204_021_01885_6 crossref_primary_10_1016_j_jelechem_2022_116948 crossref_primary_10_1002_smll_201804710 crossref_primary_10_1016_j_jenvman_2024_121422 crossref_primary_10_1002_adma_201700707 crossref_primary_10_1007_s40974_025_00366_8 crossref_primary_10_1016_j_bios_2019_111727 crossref_primary_10_1007_s11157_020_09545_x crossref_primary_10_1016_j_jclepro_2024_142554 crossref_primary_10_1021_acs_energyfuels_4c05967 crossref_primary_10_3390_nano10081472 crossref_primary_10_1016_j_apsusc_2025_164598 crossref_primary_10_1016_j_apsusc_2020_147174 crossref_primary_10_1007_s12678_017_0393_7 crossref_primary_10_1016_j_ces_2022_118124 crossref_primary_10_1002_adfm_201900143 crossref_primary_10_1016_j_cej_2025_166352 crossref_primary_10_1007_s13399_025_06650_1 crossref_primary_10_1039_D1SE00896J crossref_primary_10_1002_cite_201800214 crossref_primary_10_1080_09593330_2020_1829088 crossref_primary_10_3390_molecules27217483 crossref_primary_10_1039_D2RA02038F crossref_primary_10_1016_j_bios_2018_09_044 crossref_primary_10_1016_j_jece_2023_111201 crossref_primary_10_25159_3005_2602_16430 crossref_primary_10_1080_10643389_2022_2040327 crossref_primary_10_1002_adma_201808021 crossref_primary_10_1002_adma_202008784 crossref_primary_10_1016_j_indcrop_2023_116488 crossref_primary_10_1016_j_pmatsci_2020_100656 crossref_primary_10_1007_s41742_025_00786_8 crossref_primary_10_1007_s13201_024_02355_4 crossref_primary_10_1016_j_jpowsour_2025_237581 crossref_primary_10_1002_smll_202105831 crossref_primary_10_3390_molecules27238594 crossref_primary_10_1002_ese3_833 crossref_primary_10_4028_p_3QcQuv crossref_primary_10_1002_adfm_201707408 crossref_primary_10_1002_adma_202004051 crossref_primary_10_1002_admi_201801107 crossref_primary_10_1016_j_bios_2019_111630 crossref_primary_10_1002_smll_201905240 crossref_primary_10_1002_adma_201705452 crossref_primary_10_1016_j_jcis_2020_01_122 crossref_primary_10_1016_j_apcato_2024_206924 crossref_primary_10_3390_batteries4020014 crossref_primary_10_1002_aelm_201900320 crossref_primary_10_1016_j_bioelechem_2023_108486 crossref_primary_10_1016_j_fuel_2022_123560 crossref_primary_10_3390_molecules30051167 crossref_primary_10_1016_j_ijhydene_2019_05_196 crossref_primary_10_1016_j_nantod_2019_03_003 crossref_primary_10_1039_D5MH00344J crossref_primary_10_1002_chem_202202002 crossref_primary_10_1016_j_envres_2020_110212 crossref_primary_10_1016_j_gee_2020_11_010 crossref_primary_10_3390_en15062283 crossref_primary_10_1016_j_jpowsour_2020_229133 crossref_primary_10_1007_s13399_024_05636_9 crossref_primary_10_1038_s41598_024_67759_3 crossref_primary_10_1016_j_jpowsour_2020_228822 crossref_primary_10_4491_eer_2022_666 crossref_primary_10_1016_j_jpowsour_2021_229779 crossref_primary_10_1038_s41467_020_14866_0 crossref_primary_10_1016_j_energy_2022_124163 crossref_primary_10_1016_j_apenergy_2020_115913 crossref_primary_10_1002_cssc_201801538 crossref_primary_10_1016_j_biotechadv_2021_107728 crossref_primary_10_1039_D3RA05084J crossref_primary_10_1007_s10853_022_07029_7 crossref_primary_10_1016_j_jclepro_2020_125597 crossref_primary_10_1038_s41598_021_87118_w crossref_primary_10_1016_j_nanoen_2019_05_001 crossref_primary_10_1039_C9NR03778K crossref_primary_10_1016_j_psep_2024_04_066 crossref_primary_10_3390_su151813767 crossref_primary_10_1002_admt_202200238 crossref_primary_10_1016_S1872_2067_21_63932_3 crossref_primary_10_1155_2023_2425735 |
| Cites_doi | 10.1016/j.biortech.2010.07.007 10.1039/c2cp40760d 10.1016/j.bios.2014.02.044 10.1039/C2EE23350A 10.1021/es062644y 10.1021/ja506553r 10.1039/c0ee00793e 10.1016/j.jpowsour.2009.10.030 10.1021/nl302175j 10.1016/j.jpowsour.2015.02.088 10.1021/es0512071 10.1021/es500720g 10.1021/es034923g 10.1016/j.jpowsour.2015.03.014 10.1021/cr5006217 10.1021/nn700102s 10.1002/bit.23204 10.1166/jnn.2015.8404 10.1002/advs.201500265 10.1039/c1ee01477c 10.1063/1.3529310 10.1128/AEM.02766-10 10.1016/j.jpowsour.2012.02.005 10.5796/electrochemistry.78.814 10.1002/adma.201503609 10.1002/adma.201504766 10.1038/nrmicro3161 10.1039/C2CS35335K 10.1016/j.biomaterials.2013.07.048 10.1016/j.jpowsour.2009.10.084 10.1016/j.elecom.2006.01.010 10.1166/jnn.2010.2347 10.1385/1-59259-224-4:331 10.1039/B703627M 10.1016/j.bej.2009.06.013 10.1038/30694 10.1038/ncomms3809 10.1002/smll.201203252 10.1002/chem.201501772 10.1002/anie.201306871 10.1002/adma.201500472 10.1016/j.jpowsour.2012.02.036 10.1002/cssc.201100084 10.1021/sc500244f 10.1002/adma.201505086 10.1039/C4TA06500J 10.1039/c3ta12947k 10.1021/nn504898p 10.1016/j.ijhydene.2014.05.008 10.1039/C1EE02122B 10.1039/C4EE03268C 10.1073/pnas.1011699107 10.1039/C5RA06064H 10.1002/anie.201400463 10.1021/es401722j 10.1002/adma.201505045 10.1021/ie502399y 10.1039/c3ra22569k 10.1016/j.ijhydene.2011.12.154 10.1016/j.biortech.2015.02.108 10.1002/fuce.200800115 10.1016/j.ijhydene.2012.12.016 10.1039/C6TA00992A 10.1016/j.copbio.2015.02.014 10.1021/ja3085934 10.1016/j.bej.2007.02.021 10.1002/chem.201400272 10.1007/s10529-014-1565-7 10.1016/j.biortech.2011.07.019 10.1039/c2jm33733a 10.1016/j.polymer.2012.11.024 10.1039/c3ee40441b 10.1038/srep28588 10.4028/www.scientific.net/AMR.860-863.816 10.1016/j.electacta.2008.03.032 10.1002/adma.201204880 10.1016/j.elecom.2006.09.025 10.1038/srep26514 10.1039/C4NR05637J 10.1016/j.elecom.2004.04.006 10.1021/am500624k 10.1016/j.jpowsour.2014.06.115 10.1039/C1EE02391H 10.1016/j.jpowsour.2016.05.078 10.1039/C2TB00025C 10.1021/es8003969 10.1002/adma.201204271 10.1038/nrmicro2113 10.1073/pnas.1004880107 10.1021/nl103905t 10.1073/pnas.0604517103 10.1016/j.jbiosc.2011.03.014 10.1002/anie.200602021 10.1039/C3CS60210A 10.1016/j.jpowsour.2012.09.091 10.1016/j.jpowsour.2015.01.098 10.1039/C3EE43106A 10.1016/j.biortech.2015.06.012 10.1021/es900997w 10.1016/j.jpowsour.2015.03.033 10.1021/bm3014999 10.1039/C4RA05940A 10.1016/j.bios.2011.04.018 10.1021/am5008547 10.1016/j.apcatb.2015.07.010 10.1016/j.bios.2006.10.028 10.1021/es8001822 10.1016/j.elecom.2005.09.032 10.1002/smll.201203155 10.1039/C5EE00866B 10.1039/C5TA06673E 10.1002/adma.201501643 10.1007/s11368-012-0537-6 10.1021/cr500077e 10.1038/nchem.2085 10.1002/adma.201303115 10.1002/adma.201503211 10.1016/j.jpowsour.2009.08.092 10.1016/j.jpowsour.2011.07.077 10.1016/j.bios.2013.02.033 10.1039/b810642h 10.1021/nn203115u 10.1016/j.biortech.2012.07.067 10.1021/nn202906f 10.1002/adma.201404314 10.1038/nnano.2014.236 10.1039/C5TB02072G 10.1038/ncomms9618 10.1002/aenm.201501778 10.1016/j.jpowsour.2011.10.134 10.1002/asia.201100565 10.1038/am.2014.1 10.1002/adma.201500493 10.1039/C4CS00306C 10.1021/nn204656d 10.1166/jnn.2015.9317 10.1002/jctb.3764 10.4028/www.scientific.net/AMM.217-219.956 10.1002/cssc.201100783 10.1126/science.aaf1525 10.1016/j.jpowsour.2013.03.115 10.1002/adma.201202424 10.5012/bkcs.2008.29.7.1344 10.1039/B707504A 10.1021/acs.nanolett.6b00771 10.1039/c3ta14531j 10.1021/nn402103q 10.1016/j.nanoen.2015.05.031 10.1021/es404163g 10.1016/j.memsci.2015.03.006 10.1039/C6TA02891H 10.1016/j.colsurfa.2011.08.056 10.1016/j.matlet.2013.04.044 10.1016/j.jpowsour.2009.05.018 10.1021/ja8076704 10.1016/j.bios.2015.02.014 10.1021/es0499344 10.1016/j.jpowsour.2011.01.012 10.1016/j.enzmictec.2011.02.006 10.1021/nn303091t 10.1021/acs.nanolett.5b02256 10.1039/c3ee00071k 10.1007/s10800-008-9653-9 10.1038/srep07562 10.1021/am506360x 10.1021/acsami.5b00297 10.1016/j.ijhydene.2014.07.136 10.1002/adma.201601406 10.1039/c2ee03583a 10.1038/ncomms10667 10.1021/am4018225 10.1002/adma.201600829 10.7763/JOCET.2013.V1.47 10.1002/cssc.201402680 10.1038/nnano.2016.32 10.1007/s00253-007-1027-4 10.1039/c3ee00052d 10.1016/j.biortech.2015.01.078 10.1016/j.jpowsour.2007.03.048 10.4491/eer.2008.13.2.051 10.1016/j.surfcoat.2014.01.027 10.1126/science.1222453 10.1002/anie.201602631 10.1021/ie4003766 10.1002/adma.201104392 10.2166/wst.2012.956 10.1002/aenm.201502518 10.1039/b806498a 10.1007/s10853-014-8677-2 10.1039/C5AY00976F 10.1016/j.colsurfa.2014.04.030 10.1016/j.jpowsour.2013.01.146 10.1016/j.bios.2012.09.054 10.1039/c0ee00447b 10.1002/cssc.201600573 10.1126/science.1217412 10.1021/ja209206c 10.1021/ar3001475 10.1039/C5CS00903K 10.4028/www.scientific.net/AMR.881-883.310 10.1021/es5047765 10.3390/en3010023 10.1021/mz500568k 10.1039/b819866g 10.1016/j.bej.2009.11.014 10.1016/j.jpowsour.2014.10.035 10.1039/c0ee00446d 10.1039/C2TA00392A 10.1002/adma.201502725 10.1021/cr5003563 10.1021/am501844p 10.1021/acsami.5b05144 10.1016/j.jpowsour.2012.03.040 10.1021/es0480668 10.1016/j.biomaterials.2006.07.019 10.1016/j.pnsc.2008.04.001 10.1016/j.jpowsour.2010.08.112 10.1186/2191-0855-2-21 10.1002/ente.201300085 10.1039/c2cp42526b 10.1021/acsami.5b05273 10.1016/j.apsusc.2014.08.044 10.1016/j.ijhydene.2014.05.057 10.1016/j.bios.2015.02.021 10.1002/fuce.201500120 10.1016/j.jpowsour.2015.04.058 10.1016/j.jpowsour.2014.04.005 10.1039/c3nr03487a 10.1038/nature13774 10.1038/nbt867 10.1021/am300048v 10.1016/j.bioelechem.2009.11.001 10.1016/j.jpowsour.2011.03.096 10.1016/j.copbio.2013.12.003 10.1016/j.electacta.2013.08.022 10.1016/j.bios.2015.11.026 10.1038/nature03661 10.1039/C6CP00159A 10.1016/j.bios.2009.02.010 10.1016/j.jpowsour.2014.09.165 10.1002/adma.201302786 10.1080/10643389.2011.592744 10.1002/jctb.4004 10.1002/chem.200903486 10.1016/j.biortech.2010.05.063 10.1149/1.3190477 10.1002/anie.201309171 10.1016/j.bios.2006.04.029 10.1038/ncomms9850 10.1016/j.nanoen.2015.05.030 10.1002/cssc.201300109 10.1016/j.bios.2010.02.014 10.1039/C4TA03101F 10.1039/b717773a 10.1021/es4032216 10.1016/j.jhazmat.2016.06.041 10.1002/adma.201204461 10.1166/jnn.2011.3311 10.1016/j.biortech.2015.06.054 10.1016/j.bios.2011.07.017 10.1002/elan.200603628 10.1073/pnas.1303897110 10.1002/cssc.201100836 10.1016/j.biotechadv.2007.05.004 10.1002/adma.201502866 10.1016/j.jpowsour.2014.01.117 10.1002/aenm.201501535 10.1039/c3ee41056k 10.1016/j.electacta.2014.03.011 10.1021/es803531g 10.1016/j.jallcom.2013.05.094 10.1039/c1ee01153g 10.1016/j.bios.2009.10.009 10.1039/b613899c 10.1002/adma.201301975 10.1002/aenm.201301415 10.1021/ef100825h 10.1002/adma.201502696 10.1002/marc.201400332 10.1002/adma.201600012 10.1039/c1cp21813a 10.1021/la202907f 10.1002/adma.201102182 10.1021/nl203801h 10.1016/j.bios.2013.10.012 10.1016/j.jpowsour.2011.02.067 10.1021/ef070160x 10.1016/j.bios.2012.12.029 10.1002/chem.201300319 10.1016/j.bios.2014.06.050 10.1016/S1872-2067(14)60023-1 10.1080/15583724.2014.881372 10.1021/es048927c 10.1039/C1CC16207A 10.1016/j.ijhydene.2015.01.119 10.1021/es0605016 10.1016/j.bios.2012.12.048 10.1039/C5RA09771A 10.1039/b809009b 10.1149/2.049205jes 10.1016/j.bios.2011.02.046 10.1016/j.elecom.2006.10.023 |
| ContentType | Journal Article |
| Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201602547 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed Materials Research Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 27991684 10_1002_adma_201602547 ADMA201602547 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: DFG‐Unifying Concepts in Catalysis funderid: EXC 314 – fundername: Berlin Graduate School of Natural Sciences and Engineering |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c5097-b7b3a3d555e685e0fc3e5de29f882588fac2bc1a285b8e157fe5152114a2c7fb3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 441 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395187900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 15:58:42 EDT 2025 Sun Nov 09 09:09:02 EST 2025 Fri Jul 25 04:54:06 EDT 2025 Mon Jul 21 05:41:51 EDT 2025 Tue Nov 18 20:55:40 EST 2025 Sat Nov 29 07:19:05 EST 2025 Sun Sep 21 06:23:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | carbon-based electrodes electron-transfer conductors microbial fuel cells oxygen-reduction-reaction catalysts bacterial adhesion |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5097-b7b3a3d555e685e0fc3e5de29f882588fac2bc1a285b8e157fe5152114a2c7fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 27991684 |
| PQID | 1920420428 |
| PQPubID | 2045203 |
| PageCount | 30 |
| ParticipantIDs | proquest_miscellaneous_1884117640 proquest_miscellaneous_1851293436 proquest_journals_1920420428 pubmed_primary_27991684 crossref_citationtrail_10_1002_adma_201602547 crossref_primary_10_1002_adma_201602547 wiley_primary_10_1002_adma_201602547_ADMA201602547 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2004; 6 2009; 194 2012; 14 2012; 13 2012; 12 1998; 393 2011; 112 2016; 318 2013; 54 2004; 38 2007; 170 2008; 29 2013; 239 2013; 52 2013; 111 2013; 234 2010; 195 2013; 110 2010; 3 2012; 24 2012; 22 2016; 45 2007; 17 2014; 317 2013; 88 2013; 105 2015; 484 2013; 224 2013; 580 2016; 324 2012; 37 2008; 53 2011; 4 2016; 18 2016; 16 2011; 5 2011; 133 2016; 11 2016; 4 2016; 6 2016; 7 2016; 3 2015; 115 2013; 339 2014; 860–863 2005; 7 2008; 42 2012; 48 2016; 28 2012; 42 2016; 9 2006; 103 2015; 185 2015; 182 2013; 25 2012; 201 2008; 1 2014; 62 2008; 2 2007; 36 2012; 208 2013; 19 2014; 4 2015; 290 2010; 69 2010; 1251 2014; 3 2014; 2 2000 2014; 58 2016; 352 2012; 213 2014; 9 2014; 8 2007; 21 2007; 22 2014; 7 2012; 337 2014; 6 2007; 25 2014; 54 2014; 53 2014; 514 2015; 284 2010; 78 2015; 283 2015; 6 2015; 280 2013; 47 2015; 5 2010; 79 2015; 3 2013; 43 2013; 46 2015; 287 2013; 42 2013; 41 2008 2006; 18 2015; 8 2015; 7 2015; 273 2011; 102 2011; 108 2013; 38 2013; 34 2015; 274 2009; 9 2009; 7 2007; 41 2012; 217–219 2014; 881–883 2010; 10 2010; 16 2013; 3 2013; 4 2013; 1 2012; 124 2010; 107 2014; 27 2014; 26 2011; 196 2013; 7 2007; 76 2014; 130 2013; 5 2013; 6 2014; 136 2014; 257 2013; 9 2014; 20 2014; 256 2010; 25 2012; 134 2010; 24 2006; 27 2007; 9 2014; 12 2015; 50 2014; 48 2011; 77 2014; 43 2015; 195 2015; 69 2010; 48 2006; 40 2006; 45 2014; 36 2014; 35 2014; 39 2014; 265 2003; 21 2014; 269 2009; 47 2009; 43 2015; 33 2009; 156 2011; 11 2011; 390 2011; 13 2016; 181 2014; 455 2016; 78 2015; 49 2015; 40 2015; 44 2011; 23 2011; 26 2011; 28 2011; 27 2005; 39 2012; 65 2015; 15 2009; 24 2015; 16 2009; 21 2008; 18 2005; 435 2008; 14 2006; 8 2008; 13 2009; 131 2014; 114 2016; 55 2012; 396 2012; 2 2015; 27 2015; 21 2011; 48 2012; 6 2012; 159 2012; 7 2012; 4 2012; 5 2009; 38 2012; 87 2009; 39 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_152_1 e_1_2_6_175_1 e_1_2_6_198_1 e_1_2_6_306_1 e_1_2_6_212_1 e_1_2_6_250_1 e_1_2_6_296_1 e_1_2_6_273_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_235_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_148_1 e_1_2_6_41_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_102_1 e_1_2_6_186_1 e_1_2_6_200_1 e_1_2_6_223_1 e_1_2_6_246_1 e_1_2_6_269_1 e_1_2_6_5_1 e_1_2_6_208_1 e_1_2_6_261_1 e_1_2_6_284_1 e_1_2_6_49_1 e_1_2_6_26_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_159_1 e_1_2_6_92_1 e_1_2_6_305_1 e_1_2_6_174_1 e_1_2_6_151_1 e_1_2_6_113_1 e_1_2_6_197_1 e_1_2_6_211_1 e_1_2_6_234_1 e_1_2_6_257_1 e_1_2_6_272_1 e_1_2_6_295_1 e_1_2_6_219_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_162_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_185_1 e_1_2_6_222_1 e_1_2_6_268_1 e_1_2_6_6_1 e_1_2_6_260_1 e_1_2_6_207_1 e_1_2_6_283_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_245_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_158_1 e_1_2_6_150_1 e_1_2_6_173_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_196_1 e_1_2_6_304_1 e_1_2_6_233_1 e_1_2_6_279_1 e_1_2_6_210_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_271_1 e_1_2_6_218_1 e_1_2_6_294_1 e_1_2_6_256_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_169_1 e_1_2_6_108_1 e_1_2_6_270_1 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_184_1 e_1_2_6_123_1 e_1_2_6_221_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_206_1 e_1_2_6_229_1 e_1_2_6_282_1 e_1_2_6_244_1 e_1_2_6_267_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_119_1 e_1_2_6_281_1 e_1_2_6_90_1 Mao Y. (e_1_2_6_258_1) 2009; 21 e_1_2_6_172_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_195_1 e_1_2_6_303_1 e_1_2_6_134_1 e_1_2_6_232_1 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_293_1 e_1_2_6_217_1 e_1_2_6_255_1 e_1_2_6_278_1 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_107_1 e_1_2_6_292_1 e_1_2_6_40_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_183_1 e_1_2_6_220_1 e_1_2_6_171_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_228_1 e_1_2_6_205_1 e_1_2_6_243_1 e_1_2_6_289_1 e_1_2_6_266_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_280_1 e_1_2_6_72_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_179_1 e_1_2_6_194_1 e_1_2_6_302_1 e_1_2_6_19_1 e_1_2_6_182_1 e_1_2_6_231_1 e_1_2_6_239_1 e_1_2_6_11_1 e_1_2_6_216_1 e_1_2_6_254_1 e_1_2_6_57_1 e_1_2_6_277_1 e_1_2_6_106_1 e_1_2_6_291_1 e_1_2_6_129_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_167_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_193_1 e_1_2_6_170_1 e_1_2_6_1_1 e_1_2_6_22_1 e_1_2_6_204_1 e_1_2_6_227_1 e_1_2_6_242_1 e_1_2_6_265_1 e_1_2_6_288_1 e_1_2_6_45_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_50_1 e_1_2_6_301_1 e_1_2_6_132_1 e_1_2_6_178_1 e_1_2_6_155_1 e_1_2_6_181_1 e_1_2_6_230_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_238_1 e_1_2_6_253_1 e_1_2_6_276_1 e_1_2_6_299_1 e_1_2_6_215_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_61_1 e_1_2_6_290_1 e_1_2_6_120_1 e_1_2_6_189_1 e_1_2_6_143_1 e_1_2_6_166_1 e_1_2_6_192_1 e_1_2_6_249_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_241_1 e_1_2_6_226_1 e_1_2_6_264_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_203_1 e_1_2_6_287_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_300_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 Das S. (e_1_2_6_31_1) 2010; 69 e_1_2_6_131_1 e_1_2_6_308_1 e_1_2_6_154_1 e_1_2_6_177_1 e_1_2_6_180_1 Li D. (e_1_2_6_34_1) 2008; 14 e_1_2_6_252_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_237_1 e_1_2_6_275_1 e_1_2_6_214_1 e_1_2_6_298_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_142_1 e_1_2_6_188_1 e_1_2_6_165_1 e_1_2_6_191_1 e_1_2_6_248_1 e_1_2_6_7_1 e_1_2_6_240_1 e_1_2_6_263_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_202_1 e_1_2_6_225_1 e_1_2_6_286_1 e_1_2_6_115_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_153_1 e_1_2_6_199_1 e_1_2_6_307_1 e_1_2_6_130_1 e_1_2_6_176_1 e_1_2_6_259_1 e_1_2_6_251_1 e_1_2_6_274_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_236_1 e_1_2_6_297_1 e_1_2_6_79_1 e_1_2_6_213_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_21_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_187_1 e_1_2_6_190_1 e_1_2_6_8_1 e_1_2_6_201_1 e_1_2_6_247_1 Zhang E. (e_1_2_6_168_1) 2012; 396 e_1_2_6_209_1 e_1_2_6_285_1 e_1_2_6_262_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_224_1 |
| References_xml | – volume: 284 start-page: 252 year: 2015 publication-title: J. Power Sources – volume: 48 start-page: 7151 year: 2014 publication-title: Environ. Sci. Technol. – volume: 4 start-page: 4201 year: 2011 publication-title: Energy Environ. Sci. – volume: 28 start-page: 7696 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 50968 year: 2015 publication-title: Rsc Adv. – volume: 43 start-page: 264 year: 2013 publication-title: Biosens. Bioelectron. – volume: 4 start-page: 44065 year: 2014 publication-title: RSC Adv. – volume: 2 start-page: 2283 year: 2014 publication-title: ACS Sustainable Chem. Eng. – volume: 45 start-page: 2847 year: 2016 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 7464 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 697 year: 2015 publication-title: Nano Energy – volume: 194 start-page: 199 year: 2009 publication-title: J. Power Sources – volume: 52 start-page: 13818 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 196 start-page: 1103 year: 2011 publication-title: J. Power Sources – volume: 4 start-page: 1422 year: 2011 publication-title: Energy Environ. Sci. – volume: 53 start-page: 4480 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 8349 year: 2012 publication-title: ACS Nano – volume: 102 start-page: 9335 year: 2011 publication-title: Bioresour. Technol. – volume: 4 start-page: 694 year: 2016 publication-title: J. Mater. Chem. B – volume: 6 start-page: 13438 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2082 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 76 start-page: 485 year: 2007 publication-title: Appl. Microbiol. Biotechnol. – volume: 195 start-page: 2586 year: 2010 publication-title: J. Power Sources – volume: 25 start-page: 5838 year: 2013 publication-title: Adv. Mater. – volume: 42 start-page: 3828 year: 2008 publication-title: Environ. Sci. Technol. – volume: 390 start-page: 56 year: 2011 publication-title: Colloids Surf., A – volume: 37 start-page: 5992 year: 2012 publication-title: Int. J. Hydrogen Energy – volume: 9 start-page: 1173 year: 2013 publication-title: Small – volume: 170 start-page: 79 year: 2007 publication-title: J. Power Sources – volume: 6 start-page: 1901 year: 2013 publication-title: Energy Environ. Sci. – volume: 39 start-page: 197 year: 2009 publication-title: J. Appl. Electrochem. – volume: 21 start-page: 2984 year: 2007 publication-title: Energy Fuels – volume: 88 start-page: 508 year: 2013 publication-title: J. Chem. Technol. Biotechnol. – volume: 12 start-page: 1197 year: 2012 publication-title: J. Soils Sediments – volume: 134 start-page: 19528 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 770 year: 2014 publication-title: Chin. J. Catal. – volume: 6 start-page: 571 year: 2004 publication-title: Electrochem. Commun. – volume: 69 start-page: 8 year: 2015 publication-title: Biosens. Bioelectron. – volume: 239 start-page: 169 year: 2013 publication-title: J. Power Sources – volume: 5 start-page: 8943 year: 2011 publication-title: ACS Nano – volume: 7 start-page: 20657 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 39 start-page: 11250 year: 2014 publication-title: Int. J. Hydrogen Energy – volume: 105 start-page: 24 year: 2013 publication-title: Mater. Lett. – volume: 18 start-page: 1049 year: 2008 publication-title: Prog. Nat. Sci. – volume: 5 start-page: 5540 year: 2012 publication-title: Energy Environ. Sci. – volume: 5 start-page: 5265 year: 2012 publication-title: Energy Environ. Sci. – volume: 27 start-page: 7204 year: 2015 publication-title: Adv. Mater. – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 41 start-page: 3341 year: 2007 publication-title: Environ. Sci. Technol. – volume: 9 start-page: 2226 year: 2016 publication-title: ChemSusChem – volume: 27 start-page: 5755 year: 2006 publication-title: Biomaterials – volume: 318 start-page: 9 year: 2016 publication-title: J. Hazard. Mater. – volume: 107 start-page: 18127 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 7862 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 364 year: 2006 publication-title: Environ. Sci. Technol. – volume: 8 start-page: 489 year: 2006 publication-title: Electrochem. Commun. – volume: 14 start-page: 12221 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 113 year: 2008 publication-title: ACS Nano – volume: 36 start-page: 1987 year: 2014 publication-title: Biotechnol. Lett. – volume: 7 start-page: 8539 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 3868 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 115 start-page: 4823 year: 2015 publication-title: Chem. Rev. – volume: 24 start-page: 5897 year: 2010 publication-title: Energy Fuels – volume: 182 start-page: 34 year: 2015 publication-title: Bioresour. Technol. – volume: 87 start-page: 1436 year: 2012 publication-title: J. Chem. Technol. Biotechnol. – start-page: 2055 year: 2008 publication-title: Chem. Commun. – volume: 3 start-page: 1500265 year: 2016 publication-title: Adv. Sci. – volume: 22 start-page: 1224 year: 2007 publication-title: Biosens. Bioelectron. – volume: 4 start-page: 6342 year: 2016 publication-title: J. Mater. Chem. A – volume: 16 start-page: 1 year: 2015 publication-title: Nano Energy – volume: 124 start-page: 199 year: 2012 publication-title: Bioresour. Technol. – volume: 27 start-page: 4054 year: 2015 publication-title: Adv. Mater. – volume: 881–883 start-page: 310 year: 2014 publication-title: Adv. Mater. Res. – volume: 41 start-page: 582 year: 2013 publication-title: Biosens. Bioelectron. – volume: 283 start-page: 46 year: 2015 publication-title: J. Power Sources – start-page: 331 year: 2000 – volume: 455 start-page: 92 year: 2014 publication-title: Colloids Surf., A – volume: 195 start-page: 180 year: 2015 publication-title: Bioresour. Technol. – volume: 33 start-page: 149 year: 2015 publication-title: Curr. Opin. Biotechnol. – volume: 7 start-page: 6921 year: 2013 publication-title: ACS Nano – volume: 5 start-page: 1059 year: 2012 publication-title: ChemSusChem – volume: 2 year: 2012 publication-title: AMB Express – volume: 484 start-page: 27 year: 2015 publication-title: J. Membr. Sci. – volume: 108 start-page: 2339 year: 2011 publication-title: Biotechnol. Bioeng. – volume: 7 start-page: 18672 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 387 year: 2012 publication-title: Chem. Asian J. – volume: 14 start-page: 147 year: 2008 publication-title: Chin. J. Appl. Environ. Biol. – volume: 317 start-page: 84 year: 2014 publication-title: Appl. Surf. Sci. – volume: 44 start-page: 4672 year: 2015 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 492 year: 2007 publication-title: Electrochem. Commun. – volume: 196 start-page: 9317 year: 2011 publication-title: J. Power Sources – volume: 2 start-page: 13093 year: 2014 publication-title: J. Mater. Chem. A – volume: 195 start-page: 1130 year: 2010 publication-title: J. Power Sources – volume: 103 start-page: 11358 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 4040 year: 2004 publication-title: Environ. Sci. Technol. – volume: 40 start-page: 5181 year: 2006 publication-title: Environ. Sci. Technol. – volume: 48 start-page: 458 year: 2011 publication-title: Enzyme Microb. Technol. – volume: 69 start-page: 135 year: 2015 publication-title: Biosens. Bioelectron. – volume: 337 start-page: 686 year: 2012 publication-title: Science – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 15016 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 47 start-page: 14525 year: 2013 publication-title: Environ. Sci. Technol. – volume: 29 start-page: 1344 year: 2008 publication-title: Bull. Korean Chem. Soc. – volume: 62 start-page: 182 year: 2014 publication-title: Biosens. Bioelectron. – volume: 102 start-page: 395 year: 2011 publication-title: Bioresour. Technol. – volume: 6 start-page: 28588 year: 2016 publication-title: Sci. Rep. – volume: 1251 start-page: 316 year: 2010 publication-title: AIP Conf. Proc. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 24 start-page: 1399 year: 2012 publication-title: Adv. Mater. – volume: 10 start-page: 3271 year: 2010 publication-title: J. Nanosci. Nanotechnol. – volume: 217–219 start-page: 956 year: 2012 publication-title: Appl. Mech. Mater. – volume: 256 start-page: 52 year: 2014 publication-title: Surf. Coat. Technol. – volume: 17 start-page: 2992 year: 2007 publication-title: J. Mater. Chem. – volume: 435 start-page: 1098 year: 2005 publication-title: Nature – volume: 79 start-page: 50 year: 2010 publication-title: Bioelectrochem. – volume: 24 start-page: 2825 year: 2009 publication-title: Biosens. Bioelectron. – volume: 195 start-page: 147 year: 2015 publication-title: Bioresour. Technol. – volume: 77 start-page: 1541 year: 2011 publication-title: Appl. Environ. Microbiol. – volume: 273 start-page: 823 year: 2015 publication-title: J. Power Sources – volume: 34 start-page: 8018 year: 2013 publication-title: Biomaterials – volume: 25 start-page: 1666 year: 2013 publication-title: Adv. Mater. – volume: 102 start-page: 235 year: 2011 publication-title: Bioresour. Technol. – volume: 28 start-page: 1668 year: 2016 publication-title: Adv. Mater. – volume: 50 start-page: 1214 year: 2015 publication-title: J. Mater. Sci. – volume: 27 start-page: 4113 year: 2015 publication-title: Adv. Mater. – volume: 26 start-page: 4169 year: 2011 publication-title: Biosens. Bioelectron. – volume: 28 start-page: 2337 year: 2016 publication-title: Adv. Mater. – volume: 43 start-page: 461 year: 2013 publication-title: Biosens. Bioelectron. – volume: 47 start-page: 50 year: 2013 publication-title: Biosens. Bioelectron. – volume: 28 start-page: 215 year: 2016 publication-title: Adv. Mater. – volume: 43 start-page: 3953 year: 2009 publication-title: Environ. Sci. Technol. – volume: 55 start-page: 6762 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 2394 year: 2012 publication-title: ACS Nano – volume: 4 start-page: 2809 year: 2013 publication-title: Nat. Commun. – volume: 58 start-page: 75 year: 2014 publication-title: Biosens. Bioelectron. – volume: 6 start-page: 1510 year: 2013 publication-title: ChemSusChem – volume: 195 start-page: 1841 year: 2010 publication-title: J. Power Sources – volume: 27 start-page: 6834 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 6879 year: 2013 publication-title: Adv. Mater. – volume: 4 start-page: 913 year: 2011 publication-title: ChemSusChem – volume: 287 start-page: 269 year: 2015 publication-title: J. Power Sources – volume: 196 start-page: 5402 year: 2011 publication-title: J. Power Sources – volume: 28 start-page: 181 year: 2011 publication-title: Biosens. Bioelectron. – volume: 12 start-page: 4738 year: 2012 publication-title: Nano Lett. – volume: 42 start-page: 2824 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: e89 year: 2014 publication-title: NPG Asia Mater. – volume: 15 start-page: 6051 year: 2015 publication-title: Nano Lett. – volume: 6 start-page: 217 year: 2013 publication-title: Energy Environ. Sci. – volume: 6 start-page: 8158 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 65 start-page: 1208 year: 2012 publication-title: Water Sci. Technol. – volume: 47 start-page: 6704 year: 2013 publication-title: Environ. Sci. Technol. – volume: 1 start-page: 417 year: 2008 publication-title: Energy Environ. Sci. – volume: 52 start-page: 6076 year: 2013 publication-title: Ind. Eng. Chem. Res. – volume: 18 start-page: 2009 year: 2006 publication-title: Electroanalysis – volume: 43 start-page: 6870 year: 2009 publication-title: Environ. Sci. Technol. – volume: 133 start-page: 20116 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 269 start-page: 212 year: 2014 publication-title: J. Power Sources – volume: 21 start-page: 1229 year: 2003 publication-title: Nat. Biotechnol. – volume: 7 start-page: 3002 year: 2014 publication-title: ChemSusChem – volume: 5 start-page: 10283 year: 2013 publication-title: Nanoscale – volume: 12 start-page: 49 year: 2014 publication-title: Nat. Rev. Microbiol. – volume: 4 start-page: 1632 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 400 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 4982 year: 2010 publication-title: Chem. – Eur. J. – volume: 9 start-page: 349 year: 2007 publication-title: Electrochem. Commun. – volume: 15 start-page: 484 year: 2015 publication-title: J. Nanosci. Nanotechnol. – volume: 7 start-page: 911 year: 2014 publication-title: Energy Environ. Sci. – volume: 13 start-page: 51 year: 2008 publication-title: Environ. Eng. Res. – volume: 131 start-page: 826 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1672 year: 2009 publication-title: Prog. Chem. – volume: 39 start-page: 10724 year: 2014 publication-title: Int. J. Hydrogen Energy – volume: 69 start-page: 727 year: 2010 publication-title: J. Sci. Ind. Res. – volume: 17 start-page: 1819 year: 2007 publication-title: J. Mater. Chem. – volume: 114 start-page: 8720 year: 2014 publication-title: Chem. Rev. – volume: 580 start-page: 245 year: 2013 publication-title: J. Alloys Compd. – volume: 280 start-page: 159 year: 2015 publication-title: J. Power Sources – volume: 38 start-page: 1926 year: 2009 publication-title: Chem. Soc. Rev. – volume: 290 start-page: 80 year: 2015 publication-title: J. Power Sources – volume: 1 start-page: 1450 year: 2013 publication-title: J. Mater. Chem. A – volume: 111 start-page: 366 year: 2013 publication-title: Electrochim. Acta – volume: 1 start-page: 265 year: 2013 publication-title: J. Mater. Chem. B – volume: 47 start-page: 13889 year: 2013 publication-title: Environ. Sci. Technol. – volume: 6 start-page: 8618 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 270 year: 2016 publication-title: Adv. Mater. – volume: 25 start-page: 464 year: 2007 publication-title: Biotechnol. Adv. – volume: 21 start-page: 10634 year: 2015 publication-title: Chem. – Eur. J. – volume: 2 start-page: 2794 year: 2014 publication-title: J. Mater. Chem. A – volume: 11 start-page: 291 year: 2011 publication-title: Nano Lett. – volume: 514 start-page: 218 year: 2014 publication-title: Nature – volume: 27 start-page: 277 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 2181 year: 2013 publication-title: Adv. Mater. – volume: 3 start-page: 23 year: 2010 publication-title: Energies – volume: 9 start-page: 1012 year: 2014 publication-title: Nat. Nanotechnol. – volume: 38 start-page: 2281 year: 2004 publication-title: Environ. Sci. Technol. – volume: 38 start-page: 9525 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 72699 year: 2015 publication-title: RSC Adv. – volume: 25 start-page: 1516 year: 2010 publication-title: Biosens. Bioelectron. – volume: 7 start-page: 10667 year: 2016 publication-title: Nat. Commun. – volume: 20 start-page: 7091 year: 2014 publication-title: Chem. – Eur. J. – volume: 1 start-page: 206 year: 2013 publication-title: J. Clean Energy Technol. – volume: 78 start-page: 814 year: 2010 publication-title: Electrochemistry – volume: 185 start-page: 426 year: 2015 publication-title: Bioresour. Technol. – volume: 4 start-page: 1301415 year: 2014 publication-title: Adv. Energy Mater. – volume: 78 start-page: 229 year: 2016 publication-title: Biosens. Bioelectron. – volume: 8 start-page: 2048 year: 2015 publication-title: Energy Environ. Sci. – volume: 274 start-page: 170 year: 2015 publication-title: J. Power Sources – volume: 159 start-page: B497 year: 2012 publication-title: J. Electrochem. Soc. – volume: 324 start-page: 113 year: 2016 publication-title: J. Power Sources – volume: 25 start-page: 2156 year: 2010 publication-title: Biosens. Bioelectron. – volume: 339 start-page: 535 year: 2013 publication-title: Science – volume: 42 start-page: 3401 year: 2008 publication-title: Environ. Sci. Technol. – volume: 5 start-page: 6862 year: 2012 publication-title: Energy Environ. Sci. – volume: 13 start-page: 4236 year: 2012 publication-title: Biomacromolecules – volume: 48 start-page: 49 year: 2012 publication-title: Chem. Commun. – volume: 22 start-page: 18609 year: 2012 publication-title: J. Mater. Chem. – volume: 49 start-page: 3267 year: 2015 publication-title: Environ. Sci. Technol. – volume: 20 start-page: 7091 year: 2014 publication-title: Chem. Eur. J. – volume: 1 start-page: 648 year: 2013 publication-title: Energy Technol. – volume: 39 start-page: 5037 year: 2005 publication-title: Environ. Sci. Technol. – volume: 3 start-page: 6873 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1761 year: 2013 publication-title: Energy Environ. Sci. – volume: 15 start-page: 855 year: 2015 publication-title: Fuel Cells – volume: 53 start-page: 16883 year: 2014 publication-title: Ind. Eng. Chem. Res. – volume: 39 start-page: 658 year: 2005 publication-title: Environ. Sci. Technol. – volume: 4 start-page: 1293 year: 2011 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1130 year: 2014 publication-title: ACS Macro. Lett. – volume: 6 start-page: 1291 year: 2013 publication-title: Energy Environ. Sci. – volume: 52 start-page: 12105 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 528 year: 2014 publication-title: Biosens. Bioelectron. – volume: 156 start-page: B1238 year: 2009 publication-title: J. Electrochem. Soc. – volume: 110 start-page: 11151 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 5593 year: 2012 publication-title: Adv. Mater. – volume: 11 start-page: 1364 year: 2011 publication-title: J. Nanosci. Nanotechnol. – volume: 19 start-page: 10895 year: 2013 publication-title: Chem. Eur. J. – volume: 213 start-page: 382 year: 2012 publication-title: J. Power Sources – volume: 136 start-page: 14486 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 2504 year: 2012 publication-title: Crit. Rev. Env. Sci. Technol. – volume: 25 start-page: 1593 year: 2013 publication-title: Adv. Mater. – volume: 26 start-page: 849 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 7562 year: 2014 publication-title: Sci. Rep. – volume: 4 start-page: 12273 year: 2016 publication-title: J. Mater. Chem. A – volume: 45 start-page: 6658 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 35 start-page: 1861 year: 2014 publication-title: Macromol. Rapid Commun. – volume: 208 start-page: 187 year: 2012 publication-title: J. Power Sources – volume: 36 start-page: 209 year: 2007 publication-title: Biochem. Eng. J. – volume: 201 start-page: 136 year: 2012 publication-title: J. Power Sources – volume: 23 start-page: 4976 year: 2011 publication-title: Adv. Mater. – volume: 396 start-page: 1794 year: 2012 publication-title: Adv. Mater. Res. – volume: 16 start-page: 3642 year: 2016 publication-title: Nano Lett. – volume: 28 start-page: 3423 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 320 year: 2008 publication-title: Energy Environ. Sci. – volume: 14 start-page: 6444 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 2604 year: 2007 publication-title: Biosens. Bioelectron. – volume: 265 start-page: 391 year: 2014 publication-title: J. Power Sources – volume: 54 start-page: 401 year: 2014 publication-title: Polym. Rev. – volume: 224 start-page: 139 year: 2013 publication-title: J. Power Sources – volume: 7 start-page: 4640 year: 2015 publication-title: Anal. Methods – volume: 4 start-page: 1417 year: 2011 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1405 year: 2005 publication-title: Electrochem. Commun. – volume: 7 start-page: 7022 year: 2015 publication-title: Nanoscale – volume: 6 start-page: 8850 year: 2015 publication-title: Nat. Commun. – volume: 26 start-page: 3953 year: 2011 publication-title: Biosens. Bioelectron. – volume: 18 start-page: 9053 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 48 start-page: 424 year: 2010 publication-title: Biochem. Eng. J. – volume: 27 start-page: 6683 year: 2015 publication-title: Adv. Mater. – volume: 181 start-page: 279 year: 2016 publication-title: Appl. Catal., B – volume: 112 start-page: 63 year: 2011 publication-title: J. Biosci. Bioeng. – volume: 115 start-page: 5159 year: 2015 publication-title: Chem. Rev. – volume: 860–863 start-page: 816 year: 2014 publication-title: Adv. Mater. Res. – volume: 234 start-page: 100 year: 2013 publication-title: J. Power Sources – volume: 9 start-page: 1237 year: 2013 publication-title: Small – volume: 28 start-page: 7494 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 13828 year: 2011 publication-title: Langmuir – volume: 107 start-page: 16806 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 2619 year: 2007 publication-title: Phys. Chem. Chem. Phys. – volume: 39 start-page: 21811 year: 2014 publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 791 year: 2012 publication-title: Nano Lett. – volume: 196 start-page: 4427 year: 2011 publication-title: J. Power Sources – volume: 1 start-page: 12587 year: 2013 publication-title: J. Mater. Chem. A – volume: 3 start-page: 7902 year: 2013 publication-title: RSC Adv. – volume: 47 start-page: 31 year: 2009 publication-title: Biochem. Eng. J. – volume: 5 start-page: 9611 year: 2011 publication-title: ACS Nano – volume: 54 start-page: v year: 2013 publication-title: Polymer – volume: 8 start-page: 546 year: 2015 publication-title: Energy Environ. Sci. – volume: 9 start-page: 7 year: 2009 publication-title: Fuel Cells – volume: 8 start-page: 11958 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 1502518 year: 2016 publication-title: Adv. Energy Mater. – volume: 15 start-page: 1700 year: 2015 publication-title: J. Nanosci. Nanotechnol. – volume: 27 start-page: 3085 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 1892 year: 2011 publication-title: Energy Environ. Sci. – volume: 7 start-page: 375 year: 2009 publication-title: Nat. Rev. Microbiol. – volume: 130 start-page: 512 year: 2014 publication-title: Electrochim. Acta – volume: 1 start-page: 607 year: 2008 publication-title: Energy Environ. Sci. – volume: 196 start-page: 6036 year: 2011 publication-title: J. Power Sources – volume: 257 start-page: 246 year: 2014 publication-title: J. Power Sources – volume: 43 start-page: 85 year: 2014 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 975 year: 2012 publication-title: ChemSusChem – volume: 46 start-page: 116 year: 2013 publication-title: Acc. Chem. Res. – volume: 208 start-page: 170 year: 2012 publication-title: J. Power Sources – volume: 53 start-page: 5697 year: 2008 publication-title: Electrochim. Acta – volume: 393 start-page: 346 year: 1998 publication-title: Nature – volume: 6 start-page: 1501535 year: 2016 publication-title: Adv. Energy Mater. – volume: 27 start-page: 88 year: 2014 publication-title: Curr. Opin. Biotechnol. – volume: 28 start-page: 6845 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 1501778 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 26514 year: 2016 publication-title: Sci. Rep. – ident: e_1_2_6_78_1 doi: 10.1016/j.biortech.2010.07.007 – ident: e_1_2_6_270_1 doi: 10.1039/c2cp40760d – ident: e_1_2_6_188_1 doi: 10.1016/j.bios.2014.02.044 – ident: e_1_2_6_44_1 doi: 10.1039/C2EE23350A – ident: e_1_2_6_106_1 doi: 10.1021/es062644y – ident: e_1_2_6_67_1 doi: 10.1021/ja506553r – ident: e_1_2_6_222_1 doi: 10.1039/c0ee00793e – ident: e_1_2_6_101_1 doi: 10.1016/j.jpowsour.2009.10.030 – ident: e_1_2_6_201_1 doi: 10.1021/nl302175j – ident: e_1_2_6_204_1 doi: 10.1016/j.jpowsour.2015.02.088 – ident: e_1_2_6_261_1 doi: 10.1021/es0512071 – ident: e_1_2_6_47_1 doi: 10.1021/es500720g – ident: e_1_2_6_105_1 doi: 10.1021/es034923g – ident: e_1_2_6_114_1 doi: 10.1016/j.jpowsour.2015.03.014 – ident: e_1_2_6_7_1 doi: 10.1021/cr5006217 – ident: e_1_2_6_163_1 doi: 10.1021/nn700102s – ident: e_1_2_6_94_1 doi: 10.1002/bit.23204 – ident: e_1_2_6_121_1 doi: 10.1166/jnn.2015.8404 – ident: e_1_2_6_306_1 doi: 10.1002/advs.201500265 – ident: e_1_2_6_199_1 doi: 10.1039/c1ee01477c – ident: e_1_2_6_277_1 doi: 10.1063/1.3529310 – ident: e_1_2_6_281_1 doi: 10.1128/AEM.02766-10 – ident: e_1_2_6_236_1 doi: 10.1016/j.jpowsour.2012.02.005 – ident: e_1_2_6_173_1 doi: 10.5796/electrochemistry.78.814 – ident: e_1_2_6_20_1 doi: 10.1002/adma.201503609 – ident: e_1_2_6_209_1 doi: 10.1002/adma.201504766 – ident: e_1_2_6_297_1 doi: 10.1038/nrmicro3161 – ident: e_1_2_6_50_1 doi: 10.1039/C2CS35335K – ident: e_1_2_6_280_1 doi: 10.1016/j.biomaterials.2013.07.048 – ident: e_1_2_6_242_1 doi: 10.1016/j.jpowsour.2009.10.084 – ident: e_1_2_6_262_1 doi: 10.1016/j.elecom.2006.01.010 – ident: e_1_2_6_130_1 doi: 10.1166/jnn.2010.2347 – ident: e_1_2_6_291_1 doi: 10.1385/1-59259-224-4:331 – ident: e_1_2_6_37_1 doi: 10.1039/B703627M – ident: e_1_2_6_110_1 doi: 10.1016/j.bej.2009.06.013 – ident: e_1_2_6_117_1 doi: 10.1038/30694 – ident: e_1_2_6_21_1 doi: 10.1038/ncomms3809 – ident: e_1_2_6_115_1 doi: 10.1002/smll.201203252 – ident: e_1_2_6_195_1 doi: 10.1002/chem.201501772 – ident: e_1_2_6_220_1 doi: 10.1002/anie.201306871 – ident: e_1_2_6_53_1 doi: 10.1002/adma.201500472 – ident: e_1_2_6_156_1 doi: 10.1016/j.jpowsour.2012.02.036 – ident: e_1_2_6_118_1 doi: 10.1002/cssc.201100084 – ident: e_1_2_6_141_1 doi: 10.1021/sc500244f – ident: e_1_2_6_216_1 doi: 10.1002/adma.201505086 – ident: e_1_2_6_250_1 doi: 10.1039/C4TA06500J – ident: e_1_2_6_148_1 doi: 10.1039/c3ta12947k – ident: e_1_2_6_128_1 doi: 10.1021/nn504898p – ident: e_1_2_6_146_1 doi: 10.1016/j.ijhydene.2014.05.008 – ident: e_1_2_6_119_1 doi: 10.1039/C1EE02122B – ident: e_1_2_6_241_1 doi: 10.1039/C4EE03268C – ident: e_1_2_6_292_1 doi: 10.1073/pnas.1011699107 – ident: e_1_2_6_179_1 doi: 10.1039/C5RA06064H – ident: e_1_2_6_143_1 doi: 10.1002/anie.201400463 – ident: e_1_2_6_275_1 doi: 10.1021/es401722j – ident: e_1_2_6_212_1 doi: 10.1002/adma.201505045 – ident: e_1_2_6_145_1 doi: 10.1021/ie502399y – ident: e_1_2_6_239_1 doi: 10.1039/c3ra22569k – ident: e_1_2_6_84_1 doi: 10.1016/j.ijhydene.2011.12.154 – ident: e_1_2_6_16_1 doi: 10.1016/j.biortech.2015.02.108 – ident: e_1_2_6_71_1 doi: 10.1002/fuce.200800115 – ident: e_1_2_6_161_1 doi: 10.1016/j.ijhydene.2012.12.016 – ident: e_1_2_6_24_1 doi: 10.1039/C6TA00992A – ident: e_1_2_6_48_1 doi: 10.1016/j.copbio.2015.02.014 – ident: e_1_2_6_221_1 doi: 10.1021/ja3085934 – ident: e_1_2_6_39_1 doi: 10.1016/j.bej.2007.02.021 – ident: e_1_2_6_147_1 doi: 10.1002/chem.201400272 – ident: e_1_2_6_43_1 doi: 10.1007/s10529-014-1565-7 – ident: e_1_2_6_82_1 doi: 10.1016/j.biortech.2011.07.019 – ident: e_1_2_6_203_1 doi: 10.1039/c2jm33733a – ident: e_1_2_6_184_1 doi: 10.1016/j.polymer.2012.11.024 – ident: e_1_2_6_23_1 doi: 10.1039/c3ee40441b – ident: e_1_2_6_97_1 doi: 10.1038/srep28588 – ident: e_1_2_6_36_1 doi: 10.4028/www.scientific.net/AMR.860-863.816 – ident: e_1_2_6_108_1 doi: 10.1016/j.electacta.2008.03.032 – ident: e_1_2_6_298_1 doi: 10.1002/adma.201204880 – ident: e_1_2_6_206_1 doi: 10.1016/j.elecom.2006.09.025 – ident: e_1_2_6_308_1 doi: 10.1038/srep26514 – ident: e_1_2_6_150_1 doi: 10.1039/C4NR05637J – ident: e_1_2_6_162_1 doi: 10.1016/j.elecom.2004.04.006 – ident: e_1_2_6_127_1 doi: 10.1021/am500624k – ident: e_1_2_6_251_1 doi: 10.1016/j.jpowsour.2014.06.115 – ident: e_1_2_6_55_1 doi: 10.1039/C1EE02391H – ident: e_1_2_6_95_1 doi: 10.1016/j.jpowsour.2016.05.078 – ident: e_1_2_6_137_1 doi: 10.1039/C2TB00025C – ident: e_1_2_6_41_1 doi: 10.1021/es8003969 – ident: e_1_2_6_171_1 doi: 10.1002/adma.201204271 – ident: e_1_2_6_257_1 doi: 10.1038/nrmicro2113 – ident: e_1_2_6_294_1 doi: 10.1073/pnas.1004880107 – ident: e_1_2_6_120_1 doi: 10.1021/nl103905t – ident: e_1_2_6_152_1 doi: 10.1002/chem.201400272 – ident: e_1_2_6_295_1 doi: 10.1073/pnas.0604517103 – ident: e_1_2_6_122_1 doi: 10.1021/nl103905t – ident: e_1_2_6_166_1 doi: 10.1016/j.jbiosc.2011.03.014 – ident: e_1_2_6_193_1 doi: 10.1002/anie.200602021 – ident: e_1_2_6_52_1 doi: 10.1039/C3CS60210A – ident: e_1_2_6_149_1 doi: 10.1016/j.jpowsour.2012.09.091 – ident: e_1_2_6_276_1 doi: 10.1016/j.jpowsour.2015.01.098 – ident: e_1_2_6_85_1 doi: 10.1039/C3EE43106A – ident: e_1_2_6_229_1 doi: 10.1016/j.biortech.2015.06.012 – ident: e_1_2_6_62_1 doi: 10.1021/es900997w – ident: e_1_2_6_154_1 doi: 10.1016/j.jpowsour.2015.03.033 – ident: e_1_2_6_138_1 doi: 10.1021/bm3014999 – ident: e_1_2_6_238_1 doi: 10.1039/C4RA05940A – ident: e_1_2_6_158_1 doi: 10.1016/j.bios.2011.04.018 – volume: 396 start-page: 1794 year: 2012 ident: e_1_2_6_168_1 publication-title: Adv. Mater. Res. – ident: e_1_2_6_245_1 doi: 10.1021/am5008547 – ident: e_1_2_6_266_1 doi: 10.1016/j.apcatb.2015.07.010 – ident: e_1_2_6_38_1 doi: 10.1016/j.bios.2006.10.028 – ident: e_1_2_6_77_1 doi: 10.1021/es8001822 – ident: e_1_2_6_231_1 doi: 10.1016/j.elecom.2005.09.032 – ident: e_1_2_6_13_1 doi: 10.1002/smll.201203155 – ident: e_1_2_6_45_1 doi: 10.1039/C5EE00866B – ident: e_1_2_6_25_1 doi: 10.1039/C5TA06673E – ident: e_1_2_6_10_1 doi: 10.1002/adma.201501643 – ident: e_1_2_6_111_1 doi: 10.1007/s11368-012-0537-6 – ident: e_1_2_6_2_1 doi: 10.1021/cr500077e – ident: e_1_2_6_18_1 doi: 10.1038/nchem.2085 – ident: e_1_2_6_136_1 doi: 10.1002/adma.201303115 – ident: e_1_2_6_211_1 doi: 10.1002/adma.201503211 – ident: e_1_2_6_260_1 doi: 10.1016/j.jpowsour.2009.08.092 – ident: e_1_2_6_278_1 doi: 10.1016/j.jpowsour.2011.07.077 – ident: e_1_2_6_90_1 doi: 10.1016/j.bios.2013.02.033 – ident: e_1_2_6_98_1 doi: 10.1039/b810642h – ident: e_1_2_6_140_1 doi: 10.1021/nn203115u – ident: e_1_2_6_194_1 doi: 10.1016/j.biortech.2012.07.067 – ident: e_1_2_6_246_1 doi: 10.1021/nn202906f – ident: e_1_2_6_217_1 doi: 10.1002/adma.201404314 – ident: e_1_2_6_304_1 doi: 10.1038/nnano.2014.236 – ident: e_1_2_6_301_1 doi: 10.1039/C5TB02072G – ident: e_1_2_6_66_1 doi: 10.1038/ncomms9618 – ident: e_1_2_6_86_1 doi: 10.1002/aenm.201501778 – ident: e_1_2_6_237_1 doi: 10.1016/j.jpowsour.2011.10.134 – ident: e_1_2_6_269_1 doi: 10.1002/asia.201100565 – ident: e_1_2_6_80_1 doi: 10.1038/am.2014.1 – ident: e_1_2_6_192_1 doi: 10.1002/adma.201500493 – ident: e_1_2_6_54_1 doi: 10.1039/C4CS00306C – ident: e_1_2_6_165_1 doi: 10.1021/nn204656d – ident: e_1_2_6_180_1 doi: 10.1166/jnn.2015.9317 – ident: e_1_2_6_103_1 doi: 10.1002/jctb.3764 – ident: e_1_2_6_259_1 doi: 10.4028/www.scientific.net/AMM.217-219.956 – ident: e_1_2_6_196_1 doi: 10.1002/cssc.201100783 – ident: e_1_2_6_5_1 doi: 10.1126/science.aaf1525 – volume: 69 start-page: 727 year: 2010 ident: e_1_2_6_31_1 publication-title: J. Sci. Ind. Res. – ident: e_1_2_6_126_1 doi: 10.1016/j.jpowsour.2013.03.115 – ident: e_1_2_6_218_1 doi: 10.1002/adma.201202424 – ident: e_1_2_6_181_1 doi: 10.5012/bkcs.2008.29.7.1344 – ident: e_1_2_6_124_1 doi: 10.1039/B707504A – ident: e_1_2_6_8_1 doi: 10.1021/acs.nanolett.6b00771 – ident: e_1_2_6_225_1 doi: 10.1039/c3ta14531j – ident: e_1_2_6_79_1 doi: 10.1021/nn402103q – ident: e_1_2_6_282_1 doi: 10.1016/j.nanoen.2015.05.031 – ident: e_1_2_6_164_1 doi: 10.1021/es404163g – ident: e_1_2_6_235_1 doi: 10.1016/j.memsci.2015.03.006 – ident: e_1_2_6_307_1 doi: 10.1039/C6TA02891H – ident: e_1_2_6_189_1 doi: 10.1016/j.colsurfa.2011.08.056 – ident: e_1_2_6_109_1 doi: 10.1016/j.matlet.2013.04.044 – ident: e_1_2_6_129_1 doi: 10.1016/j.jpowsour.2009.05.018 – ident: e_1_2_6_70_1 doi: 10.1021/ja8076704 – ident: e_1_2_6_205_1 doi: 10.1016/j.bios.2015.02.014 – ident: e_1_2_6_22_1 doi: 10.1021/es0499344 – ident: e_1_2_6_81_1 doi: 10.1016/j.jpowsour.2011.01.012 – ident: e_1_2_6_185_1 doi: 10.1016/j.enzmictec.2011.02.006 – ident: e_1_2_6_19_1 doi: 10.1021/nn303091t – ident: e_1_2_6_296_1 doi: 10.1021/acs.nanolett.5b02256 – ident: e_1_2_6_302_1 doi: 10.1039/c3ee00071k – ident: e_1_2_6_232_1 doi: 10.1007/s10800-008-9653-9 – ident: e_1_2_6_151_1 doi: 10.1038/srep07562 – ident: e_1_2_6_186_1 doi: 10.1021/am506360x – ident: e_1_2_6_139_1 doi: 10.1021/acsami.5b00297 – ident: e_1_2_6_112_1 doi: 10.1016/j.ijhydene.2014.07.136 – ident: e_1_2_6_68_1 doi: 10.1002/adma.201601406 – ident: e_1_2_6_200_1 doi: 10.1039/c2ee03583a – ident: e_1_2_6_1_1 doi: 10.1038/ncomms10667 – ident: e_1_2_6_243_1 doi: 10.1021/am4018225 – ident: e_1_2_6_3_1 doi: 10.1002/adma.201600829 – ident: e_1_2_6_170_1 doi: 10.7763/JOCET.2013.V1.47 – ident: e_1_2_6_65_1 doi: 10.1002/cssc.201402680 – ident: e_1_2_6_6_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_6_40_1 doi: 10.1007/s00253-007-1027-4 – ident: e_1_2_6_198_1 doi: 10.1039/c3ee00052d – ident: e_1_2_6_93_1 doi: 10.1016/j.biortech.2015.01.078 – ident: e_1_2_6_134_1 doi: 10.1016/j.jpowsour.2007.03.048 – ident: e_1_2_6_29_1 doi: 10.4491/eer.2008.13.2.051 – ident: e_1_2_6_279_1 doi: 10.1016/j.surfcoat.2014.01.027 – ident: e_1_2_6_116_1 doi: 10.1126/science.1222453 – ident: e_1_2_6_285_1 doi: 10.1002/anie.201602631 – ident: e_1_2_6_249_1 doi: 10.1021/ie4003766 – ident: e_1_2_6_227_1 doi: 10.1002/adma.201104392 – ident: e_1_2_6_100_1 doi: 10.2166/wst.2012.956 – ident: e_1_2_6_9_1 doi: 10.1002/aenm.201502518 – ident: e_1_2_6_33_1 doi: 10.1039/b806498a – ident: e_1_2_6_234_1 doi: 10.1007/s10853-014-8677-2 – ident: e_1_2_6_142_1 doi: 10.1039/C5AY00976F – ident: e_1_2_6_172_1 doi: 10.1016/j.colsurfa.2014.04.030 – ident: e_1_2_6_191_1 doi: 10.1016/j.jpowsour.2013.01.146 – volume: 21 start-page: 1672 year: 2009 ident: e_1_2_6_258_1 publication-title: Prog. Chem. – ident: e_1_2_6_169_1 doi: 10.1016/j.bios.2012.09.054 – ident: e_1_2_6_125_1 doi: 10.1039/c0ee00447b – ident: e_1_2_6_305_1 doi: 10.1002/cssc.201600573 – ident: e_1_2_6_75_1 doi: 10.1126/science.1217412 – ident: e_1_2_6_252_1 doi: 10.1021/ja209206c – ident: e_1_2_6_51_1 doi: 10.1021/ar3001475 – ident: e_1_2_6_74_1 doi: 10.1039/C5CS00903K – ident: e_1_2_6_267_1 doi: 10.4028/www.scientific.net/AMR.881-883.310 – ident: e_1_2_6_32_1 doi: 10.1021/es5047765 – ident: e_1_2_6_72_1 doi: 10.3390/en3010023 – ident: e_1_2_6_299_1 doi: 10.1021/mz500568k – ident: e_1_2_6_35_1 doi: 10.1039/b819866g – ident: e_1_2_6_289_1 doi: 10.1016/j.bej.2009.11.014 – ident: e_1_2_6_190_1 doi: 10.1016/j.jpowsour.2014.10.035 – ident: e_1_2_6_197_1 doi: 10.1039/c0ee00446d – ident: e_1_2_6_233_1 doi: 10.1039/C2TA00392A – ident: e_1_2_6_219_1 doi: 10.1002/adma.201502725 – ident: e_1_2_6_63_1 doi: 10.1021/cr5003563 – ident: e_1_2_6_226_1 doi: 10.1021/am501844p – ident: e_1_2_6_244_1 doi: 10.1021/acsami.5b05144 – ident: e_1_2_6_58_1 doi: 10.1016/j.jpowsour.2012.03.040 – ident: e_1_2_6_89_1 doi: 10.1021/es0480668 – ident: e_1_2_6_286_1 doi: 10.1016/j.biomaterials.2006.07.019 – ident: e_1_2_6_290_1 doi: 10.1016/j.pnsc.2008.04.001 – ident: e_1_2_6_178_1 doi: 10.1016/j.jpowsour.2010.08.112 – ident: e_1_2_6_253_1 doi: 10.1186/2191-0855-2-21 – ident: e_1_2_6_144_1 doi: 10.1002/ente.201300085 – ident: e_1_2_6_46_1 doi: 10.1039/c2cp42526b – ident: e_1_2_6_174_1 doi: 10.1021/acsami.5b05273 – ident: e_1_2_6_187_1 doi: 10.1016/j.apsusc.2014.08.044 – ident: e_1_2_6_177_1 doi: 10.1016/j.ijhydene.2014.05.057 – ident: e_1_2_6_88_1 doi: 10.1016/j.bios.2015.02.021 – ident: e_1_2_6_56_1 doi: 10.1002/fuce.201500120 – ident: e_1_2_6_61_1 doi: 10.1016/j.jpowsour.2015.04.058 – ident: e_1_2_6_208_1 doi: 10.1016/j.jpowsour.2014.04.005 – ident: e_1_2_6_202_1 doi: 10.1039/c3nr03487a – ident: e_1_2_6_4_1 doi: 10.1038/nature13774 – ident: e_1_2_6_104_1 doi: 10.1038/nbt867 – ident: e_1_2_6_157_1 doi: 10.1021/am300048v – ident: e_1_2_6_159_1 doi: 10.1016/j.bioelechem.2009.11.001 – ident: e_1_2_6_59_1 doi: 10.1016/j.jpowsour.2011.03.096 – ident: e_1_2_6_303_1 doi: 10.1016/j.copbio.2013.12.003 – ident: e_1_2_6_153_1 doi: 10.1016/j.electacta.2013.08.022 – volume: 14 start-page: 147 year: 2008 ident: e_1_2_6_34_1 publication-title: Chin. J. Appl. Environ. Biol. – ident: e_1_2_6_283_1 doi: 10.1016/j.bios.2015.11.026 – ident: e_1_2_6_293_1 doi: 10.1038/nature03661 – ident: e_1_2_6_175_1 doi: 10.1039/C6CP00159A – ident: e_1_2_6_230_1 doi: 10.1016/j.bios.2009.02.010 – ident: e_1_2_6_96_1 doi: 10.1016/j.jpowsour.2014.09.165 – ident: e_1_2_6_64_1 doi: 10.1002/adma.201302786 – ident: e_1_2_6_263_1 doi: 10.1080/10643389.2011.592744 – ident: e_1_2_6_87_1 doi: 10.1002/jctb.4004 – ident: e_1_2_6_160_1 doi: 10.1002/chem.200903486 – ident: e_1_2_6_102_1 doi: 10.1016/j.biortech.2010.05.063 – ident: e_1_2_6_113_1 doi: 10.1149/1.3190477 – ident: e_1_2_6_271_1 doi: 10.1002/anie.201309171 – ident: e_1_2_6_14_1 doi: 10.1016/j.bios.2006.04.029 – ident: e_1_2_6_17_1 doi: 10.1038/ncomms9850 – ident: e_1_2_6_284_1 doi: 10.1016/j.nanoen.2015.05.030 – ident: e_1_2_6_11_1 doi: 10.1002/cssc.201300109 – ident: e_1_2_6_83_1 doi: 10.1016/j.bios.2010.02.014 – ident: e_1_2_6_131_1 doi: 10.1039/C4TA03101F – ident: e_1_2_6_107_1 doi: 10.1039/b717773a – ident: e_1_2_6_248_1 doi: 10.1021/es4032216 – ident: e_1_2_6_30_1 doi: 10.1016/j.jhazmat.2016.06.041 – ident: e_1_2_6_214_1 doi: 10.1002/adma.201204461 – ident: e_1_2_6_132_1 doi: 10.1166/jnn.2011.3311 – ident: e_1_2_6_228_1 doi: 10.1016/j.biortech.2015.06.054 – ident: e_1_2_6_60_1 doi: 10.1016/j.bios.2011.07.017 – ident: e_1_2_6_256_1 doi: 10.1002/elan.200603628 – ident: e_1_2_6_300_1 doi: 10.1073/pnas.1303897110 – ident: e_1_2_6_255_1 doi: 10.1002/cssc.201100836 – ident: e_1_2_6_28_1 doi: 10.1016/j.biotechadv.2007.05.004 – ident: e_1_2_6_133_1 doi: 10.1002/adma.201502866 – ident: e_1_2_6_265_1 doi: 10.1016/j.jpowsour.2014.01.117 – ident: e_1_2_6_27_1 doi: 10.1002/aenm.201501535 – ident: e_1_2_6_264_1 doi: 10.1039/c3ee41056k – ident: e_1_2_6_135_1 doi: 10.1016/j.electacta.2014.03.011 – ident: e_1_2_6_76_1 doi: 10.1021/es803531g – ident: e_1_2_6_49_1 doi: 10.1016/j.jallcom.2013.05.094 – ident: e_1_2_6_247_1 doi: 10.1039/c1ee01153g – ident: e_1_2_6_167_1 doi: 10.1016/j.bios.2009.10.009 – ident: e_1_2_6_288_1 doi: 10.1039/b613899c – ident: e_1_2_6_215_1 doi: 10.1002/adma.201301975 – ident: e_1_2_6_272_1 doi: 10.1002/aenm.201301415 – ident: e_1_2_6_223_1 doi: 10.1021/ef100825h – ident: e_1_2_6_210_1 doi: 10.1002/adma.201502696 – ident: e_1_2_6_99_1 doi: 10.1002/marc.201400332 – ident: e_1_2_6_15_1 doi: 10.1002/adma.201600012 – ident: e_1_2_6_273_1 doi: 10.1039/c1cp21813a – ident: e_1_2_6_287_1 doi: 10.1021/la202907f – ident: e_1_2_6_213_1 doi: 10.1002/adma.201102182 – ident: e_1_2_6_123_1 doi: 10.1021/nl203801h – ident: e_1_2_6_240_1 doi: 10.1016/j.bios.2013.10.012 – ident: e_1_2_6_155_1 doi: 10.1016/j.jpowsour.2011.02.067 – ident: e_1_2_6_224_1 doi: 10.1021/ef070160x – ident: e_1_2_6_92_1 doi: 10.1016/j.bios.2012.12.029 – ident: e_1_2_6_12_1 doi: 10.1002/chem.201300319 – ident: e_1_2_6_91_1 doi: 10.1016/j.bios.2014.06.050 – ident: e_1_2_6_274_1 doi: 10.1016/S1872-2067(14)60023-1 – ident: e_1_2_6_42_1 doi: 10.1080/15583724.2014.881372 – ident: e_1_2_6_26_1 doi: 10.1021/es048927c – ident: e_1_2_6_254_1 doi: 10.1039/C1CC16207A – ident: e_1_2_6_268_1 doi: 10.1016/j.ijhydene.2015.01.119 – ident: e_1_2_6_73_1 doi: 10.1021/es0605016 – ident: e_1_2_6_57_1 doi: 10.1016/j.bios.2012.12.048 – ident: e_1_2_6_183_1 doi: 10.1039/C5RA09771A – ident: e_1_2_6_69_1 doi: 10.1039/b809009b – ident: e_1_2_6_176_1 doi: 10.1149/2.049205jes – ident: e_1_2_6_182_1 doi: 10.1016/j.bios.2011.02.046 – ident: e_1_2_6_207_1 doi: 10.1016/j.elecom.2006.10.023 |
| SSID | ssj0009606 |
| Score | 2.6591218 |
| SecondaryResourceType | review_article |
| Snippet | Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | np |
| SubjectTerms | Anodes bacterial adhesion Biochemical fuel cells Biofilms Carbon carbon‐based electrodes Catalysis Catalysts Cathodes Electric potential Electric power generation Electrical resistivity Electrochemical analysis Electrode materials Electrodes Electron transfer electron‐transfer conductors Energy density Immobilization Industrial applications microbial fuel cells Microorganisms oxygen‐reduction‐reaction catalysts Substrates |
| Title | Carbon‐Based Microbial‐Fuel‐Cell Electrodes: From Conductive Supports to Active Catalysts |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201602547 https://www.ncbi.nlm.nih.gov/pubmed/27991684 https://www.proquest.com/docview/1920420428 https://www.proquest.com/docview/1851293436 https://www.proquest.com/docview/1884117640 |
| Volume | 29 |
| WOSCitedRecordID | wos000395187900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7Y1gd9sN5NrWUEwafQzWRu6duaNvhgi4iFfQszkwkUtolsdgt98yf4G_0lzplk0y5FBX0KmZyEYXIu31zOdwDeGW11ZussnlSMxsxI9INOxTyzjnmErKyxodiEPDtTs1n2-VYWf88PMS64oWUEf40Grk13eEMaqqvAG5QIzOeWW7CDmVV--rVz_KU4_3RDvCtCfU3c74szwdSauHFCDze_sBmY7qDNTfAaok-x-__9fgyPBuRJpr2qPIF7rnkKD2_xET6DMtcL0zY_v__44INbRU4vAk2TnvuWYuXwkrv5nJz0tXMq1x2RYtFekrxtkDfWe06CZUJxF4IsWzLtm3JcIrrult1zOC9OvuYf46ECQ2w9kJCxkSbVacU5d0JxN6lt6njlaFZ7YM6VqrWlxiaaKm6US7isHUdAkDBNraxN-gK2m7Zxr4CIVEgtMqsTrwJGc-089Krr1NKa2kzICOL18Jd2oCfHKhnzsidWpiUOXDkOXATvR_lvPTHHbyX313-zHAy0Kz2w9e4KJ4wRvB0fe9PC_RLduHblZVRAQywVf5JRLEmkYJMIXvaaMnaHSgTfikVAg0L8pZ_l9Ph0Ot7t_ctLr-EBRdgRTpXvw_ZysXJv4L69Wl50iwPYkjN1MBjIL4qAEbg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7oVlAf6q3a1KoRBJ9CN5O5xbc1bai4u4i00LcwM5mBwprIZlfomz_B3-gvcU6STV1EBfEpZHIShsm5fDNn5jsAr7QyKjUujcYlJRHVAv2glRFLjaUeIUujTVtsQszn8uIi_dDvJsSzMB0_xLDghpbR-ms0cFyQPrpmDVVlSxwUczzQLW7CDuWJkCPYOf6Yn0-vmXd5W2ATE35RyqncMDeOydH2F7Yj0y9wcxu9tuEnv_cfOn4fdnvsGU46ZXkAN2z1EO7-xEj4CIpMLXVdff_67a0Pb2U4u2yJmtTCt-Rri5fMLhbhSVc9p7TNmzBf1p_CrK6QOdb7zhALhWIeIlzV4aRrynCR6KpZNXtwnp-cZadRX4MhMh5KiEgLnaikZIxZLpkdO5NYVlqSOg_NmZROGaJNrIhkWtqYCWcZQoKYKmKE08ljGFV1Zfch5AkXiqdGxV4JtGLKevDlXGKIIyblIoBoM_6F6QnKsU7GouiolUmBA1cMAxfA60H-c0fN8VvJw83vLHoTbQoPbb3DwiljAC-Hx964MGOiKluvvYxs8RBN-J9kJI1jwek4gCedqgzdIQLht6QBkFYj_tLPYnI8mwx3B__y0gu4fXo2mxbTd_P3T-EOQRDS7jE_hNFqubbP4Jb5srpsls97O_kBeDEUwA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7oVkQf6q1qtGoEwafQzWSuvm2zDYrtUsRC38LMZAYKa1I2u4W-9Sf0N_pLnJlkUxdRQXwKmZyEw-Rcvrl9B-CdkloKbUUyrjBKsGI-DhqeEKENdgiZa6VDsQk2m_HTU3Hc7yb0Z2E6fohhws17RojX3sHNeWX3blhDZRWIg1LqD3Sz27CFiSB4BFvTL8XJ4Q3zLg0FNv2CXyIo5mvmxjHa2_zCZmb6BW5uoteQfooH_0Hxh7DdY8940hnLI7hl6sdw_ydGwidQ5nKhmvr71fW-S29VfHQWiJrk3LUUK-MvuZnP44Ouek5l2g9xsWi-xXlTe-ZYFztjXyjUr0PEyyaedE25nyS6bJftDpwUB1_zj0lfgyHRDkqwRDGVyawihBjKiRlbnRlSGSSsg-aEcys1UjqViBPFTUqYNcRDghRLpJlV2VMY1U1tnkNMM8okFVqmzgiUJNI48GVtppFFWlAWQbLu_1L3BOW-Tsa87KiVUek7rhw6LoL3g_x5R83xW8nd9e8sexdtSwdtXcDyQ8YI3g6PnXP5FRNZm2blZHjAQzijf5LhOE0ZxeMInnWmMqiDmIffHEeAgkX8Rc9yMj2aDHcv_uWlN3D3eFqUh59mn1_CPeQxSNhivguj5WJlXsEdfbE8axevezf5AeSHFDs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon%E2%80%90Based+Microbial%E2%80%90Fuel%E2%80%90Cell+Electrodes%3A+From+Conductive+Supports+to+Active+Catalysts&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Shuang&rft.au=Cheng%2C+Chong&rft.au=Thomas%2C+Arne&rft.date=2017-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201602547&rft.externalDBID=10.1002%252Fadma.201602547&rft.externalDocID=ADMA201602547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |