Multi‐glomerular projection of single olfactory receptor neurons is conserved among amphibians
Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that recep...
Gespeichert in:
| Veröffentlicht in: | Journal of comparative neurology (1911) Jg. 528; H. 13; S. 2239 - 2253 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2020
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0021-9967, 1096-9861, 1096-9861 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae, and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59 and 50% connect to multiple glomeruli in larval and postmetamorphotic animals, respectively. Independent of developmental stage, lifestyle, and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing.
The formation of an odor map in the olfactory bulb of vertebrates is based on the general assumption that axons of individual olfactory receptor neurons do not branch and connect to single glomeruli. Here, we show that this general principle does not apply to the olfactory system of amphibians, which exhibits a multi‐glomerular wiring scheme and a putatively different odor coding strategy. Our data underline the need to acknowledge biological diversity to fully understand odor coding in vertebrates. |
|---|---|
| AbstractList | Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae, and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59 and 50% connect to multiple glomeruli in larval and postmetamorphotic animals, respectively. Independent of developmental stage, lifestyle, and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing. Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae, and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59 and 50% connect to multiple glomeruli in larval and postmetamorphotic animals, respectively. Independent of developmental stage, lifestyle, and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing. The formation of an odor map in the olfactory bulb of vertebrates is based on the general assumption that axons of individual olfactory receptor neurons do not branch and connect to single glomeruli. Here, we show that this general principle does not apply to the olfactory system of amphibians, which exhibits a multi‐glomerular wiring scheme and a putatively different odor coding strategy. Our data underline the need to acknowledge biological diversity to fully understand odor coding in vertebrates. Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae, and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59 and 50% connect to multiple glomeruli in larval and postmetamorphotic animals, respectively. Independent of developmental stage, lifestyle, and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing.Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae, and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59 and 50% connect to multiple glomeruli in larval and postmetamorphotic animals, respectively. Independent of developmental stage, lifestyle, and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing. Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59% and 50% connect to multiple glomeruli in larval and post-metamorphotic animals, respectively. Independent of developmental stage, lifestyle and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing. The formation of an odor map in the olfactory bulb of vertebrates is based on the general assumption that axons of individual olfactory receptor neurons do not branch and connect to single glomeruli. Here we show that this general principle does not apply to the olfactory system of amphibians, which exhibits a multi-glomerular wiring scheme and a putatively different odor coding strategy. Our data underline the need to acknowledge biological diversity to fully understand odor coding in vertebrates. |
| Author | Zielinski, Barbara S. O'Connell, Lauren A. Jungblut, Lucas D. Hassenklöver, Thomas Weiss, Lukas Pozzi, Andrea G. Manzini, Ivan |
| AuthorAffiliation | 5 Lead Contact 3 Department of Integrative Biology, University of Windsor, N9B 3P4 Windsor, Ontario, Canada 1 Department of Animal Physiology and Molecular Biomedicine, University of Giessen, 35392 Giessen, Germany 2 Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina 4 Department of Biology, Stanford University, 94305 Stanford, California, USA |
| AuthorAffiliation_xml | – name: 3 Department of Integrative Biology, University of Windsor, N9B 3P4 Windsor, Ontario, Canada – name: 4 Department of Biology, Stanford University, 94305 Stanford, California, USA – name: 2 Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina – name: 1 Department of Animal Physiology and Molecular Biomedicine, University of Giessen, 35392 Giessen, Germany – name: 5 Lead Contact |
| Author_xml | – sequence: 1 givenname: Lukas orcidid: 0000-0003-3078-8006 surname: Weiss fullname: Weiss, Lukas email: lukas.weiss@physzool.bio.uni-giessen.de organization: University of Giessen – sequence: 2 givenname: Lucas D. surname: Jungblut fullname: Jungblut, Lucas D. organization: Universidad de Buenos Aires – sequence: 3 givenname: Andrea G. surname: Pozzi fullname: Pozzi, Andrea G. organization: Universidad de Buenos Aires – sequence: 4 givenname: Barbara S. orcidid: 0000-0002-5666-4477 surname: Zielinski fullname: Zielinski, Barbara S. organization: University of Windsor – sequence: 5 givenname: Lauren A. orcidid: 0000-0002-2706-4077 surname: O'Connell fullname: O'Connell, Lauren A. organization: Stanford University – sequence: 6 givenname: Thomas orcidid: 0000-0002-9895-1263 surname: Hassenklöver fullname: Hassenklöver, Thomas organization: University of Giessen – sequence: 7 givenname: Ivan orcidid: 0000-0002-3575-9637 surname: Manzini fullname: Manzini, Ivan organization: University of Giessen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32080843$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFu1DAQhi3Uim4LB14AReJCD2ltx9jOBalatVCpwAXOxnHGW68cO9hJ0d54BJ6RJ8HbbSuoBJeZkeabXzPzH6K9EAMg9ILgE4IxPTUBTiiTUjxBC4JbXreSkz20KD1Sty0XB-gw5zXGuG0b-RQdNBRLLFmzQF8_zH5yv378XPk4QJq9TtWY4hrM5GKooq2yCysPVfRWmymmTZXAwFiqKsCcYsiVy5UpGdIN9JUeYliVOF67zumQn6F9q32G53f5CH25OP-8fF9ffXp3uTy7qs0b3IqaSiwop8wKbjuigene9kC4sJ3VlnaY2h7zBoQ0QlgQWmvKNGBLDBdM2uYIvd3pjnM3QG8gTEl7NSY36LRRUTv1dye4a7WKN0owIhsui8DrO4EUv82QJzW4bMB7HSDOWdGGc97w8rmCvnqEruOcQjlPUUbZlqKsUC__3OhhlfvnF-B4B5gUc05gHxCC1dZYVYxVt8YW9vQRa9yktx6VY5z_38R352Hzb2m1_Hi-m_gNjBC4Iw |
| CitedBy_id | crossref_primary_10_1007_s00441_020_03394_4 crossref_primary_10_1007_s00441_020_03377_5 crossref_primary_10_1007_s00441_020_03408_1 crossref_primary_10_1093_cz_zoaa051 crossref_primary_10_3389_fnana_2020_00044 crossref_primary_10_1007_s00441_021_03536_2 crossref_primary_10_3389_fncir_2020_561822 crossref_primary_10_1007_s00441_021_03527_3 crossref_primary_10_3389_fninf_2022_847108 crossref_primary_10_1371_journal_pone_0289361 |
| Cites_doi | 10.1523/JNEUROSCI.2755-13.2013 10.1523/JNEUROSCI.14-01-00219.1994 10.1016/0092-8674(94)90015-9 10.1016/S0092-8674(00)80581-4 10.1002/cne.10811 10.1523/JNEUROSCI.0679-05.2005 10.1016/j.cub.2017.04.014 10.1002/cne.22684 10.1016/S0092-8674(00)81387-2 10.1371/journal.pone.0002640 10.1016/S0092-8674(00)80730-8 10.1159/000047222 10.7717/peerj.7808 10.1525/california/9780520252783.003.0004 10.1016/j.cell.2004.05.011 10.1016/S0896-6273(01)00235-5 10.1016/S0896-6273(00)80490-0 10.1016/0092-8674(91)90418-X 10.1371/journal.pone.0069525 10.1002/(SICI)1096-9861(19990719)410:1<20::AID-CNE3>3.0.CO;2-T 10.1159/000113574 10.1038/srep04037 10.1007/s004410000208 10.1002/cne.20390 10.1016/j.neuron.2011.11.003 10.1002/jemt.1070230102 10.1126/science.286.5440.707 10.1007/BF00340285 10.1002/cne.21091 10.1093/sysbio/syu042 10.1242/jeb.150466 10.1002/cne.23075 10.1159/000113336 10.1146/annurev.physiol.70.113006.100608 10.1016/0092-8674(94)90029-9 10.1002/(SICI)1096-9861(19980112)390:2<256::AID-CNE8>3.0.CO;2-0 10.1002/cne.21790 10.1002/cne.22100 10.1016/S0092-8674(00)80731-X 10.1002/(SICI)1096-9861(19980824)398:2<273::AID-CNE8>3.0.CO;2-Y 10.1292/jvms.58.7 10.1016/0092-8674(95)90161-2 10.1002/1096-9861(20001009)426:1<68::AID-CNE5>3.0.CO;2-Z 10.1073/pnas.1302088110 10.1016/S0092-8674(94)90562-2 10.1111/j.1460-9568.2007.05731.x 10.1159/000006645 10.1093/chemse/bjm090 10.1038/nbt.1612 10.1007/BF00185769 10.1007/BF00221789 10.1007/s10038-006-0391-8 10.1016/j.neuron.2006.04.033 10.1146/annurev.cellbio.21.012804.093915 10.1007/s00018-006-6108-5 10.1083/jcb.25.2.209 10.1093/chemse/23.1.39 10.7208/chicago/9780226893334.001.0001 10.1016/S0896-6273(02)00904-2 10.1016/j.pneurobio.2007.02.007 10.1038/nmeth.2019 10.1016/j.cub.2016.09.011 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. 2020 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals, Inc. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. – notice: 2020 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals, Inc. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
| DOI | 10.1002/cne.24887 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Zoology |
| EISSN | 1096-9861 |
| EndPage | 2253 |
| ExternalDocumentID | PMC7418368 32080843 10_1002_cne_24887 CNE24887 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: CONICET‐DFG‐MINCYT funderid: 23120160100031CO – fundername: National Center for Research Resources funderid: S10RR02557401 – fundername: Company of Biologists funderid: JEBTF‐180809 – fundername: Deutsche Forschungsgemeinschaft funderid: 4113/4‐1 – fundername: UBACyT funderid: UBACyT 20020170200191BA – fundername: NCRR NIH HHS grantid: S10 RR025574 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YQT ZZTAW ~IA ~WT .55 .GJ .Y3 31~ 3O- 53G AAFWJ AAMMB AANHP AAYXX ABEML ABUFD ACBWZ ACRPL ACSCC ACYXJ ADNMO AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE GAKWD HF~ HVGLF M6M O8X OHT SAMSI X7M XOL ZGI ZXP NPM 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
| ID | FETCH-LOGICAL-c5097-28072624f76fb1ae4adfde167fbfaf2b02fd063e78c77fe7aaa24ae0f1c6748f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516640900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9967 1096-9861 |
| IngestDate | Tue Nov 04 01:46:56 EST 2025 Sun Nov 09 13:56:10 EST 2025 Sat Nov 29 14:27:59 EST 2025 Mon Jul 21 05:59:12 EDT 2025 Sat Nov 29 06:04:32 EST 2025 Tue Nov 18 20:55:50 EST 2025 Wed Jan 22 16:33:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | glomeruli RRID:SCR_002285 RRID:SCR_002609 axonal wiring sensory system olfaction RRID:SCR_007164 evolution anura fishes |
| Language | English |
| License | Attribution 2020 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5097-28072624f76fb1ae4adfde167fbfaf2b02fd063e78c77fe7aaa24ae0f1c6748f3 |
| Notes | Funding information Company of Biologists, Grant/Award Number: JEBTF‐180809; CONICET‐DFG‐MINCYT, Grant/Award Number: 23120160100031CO; Deutsche Forschungsgemeinschaft, Grant/Award Number: 4113/4‐1; National Center for Research Resources, Grant/Award Number: S10RR02557401; UBACyT, Grant/Award Number: UBACyT 20020170200191BA ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceptualization, L.W., T.H. and I.M.; Investigation, Formal Analysis, Visualization and Writing – Original Draft, L.W.; Writing – Review & Editing, L.W., L.D.J., A.G.P., B.S.Z., L.A.O., T.H. and I.M.; Funding Acquisition and Resources, L.D.J., A.G.P., B.S.Z., L.A.O., T.H. and I.M.; Supervision, T.H. and I.M. Author Contributions |
| ORCID | 0000-0003-3078-8006 0000-0002-9895-1263 0000-0002-3575-9637 0000-0002-5666-4477 0000-0002-2706-4077 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.24887 |
| PMID | 32080843 |
| PQID | 2424636224 |
| PQPubID | 1006438 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7418368 proquest_miscellaneous_2366636208 proquest_journals_2424636224 pubmed_primary_32080843 crossref_primary_10_1002_cne_24887 crossref_citationtrail_10_1002_cne_24887 wiley_primary_10_1002_cne_24887_CNE24887 |
| PublicationCentury | 2000 |
| PublicationDate | September 1, 2020 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: September 1, 2020 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
| PublicationTitle | Journal of comparative neurology (1911) |
| PublicationTitleAlternate | J Comp Neurol |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2019; 2019 2012; 520 2011; 519 1954; 41 1999; 286 2008; 33 2011; 12 2008; 3 2014; 63 2013; 8 2009; 516 2006; 499 2005; 25 1994; 189 2006; 63 1997; 50 1965; 25 2006; 22 2010; 28 2000; 55 2011; 72 1994; 78 1994; 79 1999; 97 1999; 410 1999; 96 2008; 510 2013; 110 2001; 57 2010; 4 1998; 288 2007; 26 1977; 176 2015; 4 2006; 50 2006; 51 2017; 27 2002; 35 1960; 16 1994; 44 2008 2007 1994 2001; 29 1996; 58 1911; 2 1998; 20 1998; 23 1995; 83 1998; 390 2005; 481 2013; 33 1991; 65 2000; 302 2009; 71 2000; 426 1994; 14 2007; 82 2017; 220 2003; 465 2016; 26 1992; 23 2004; 117 1996; 87 2012; 9 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Ramón y Cajal S. (e_1_2_10_53_1) 1911 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Gosner K. L. (e_1_2_10_24_1) 1960; 16 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 González A. (e_1_2_10_23_1) 2010; 4 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Nieuwkoop D. P. (e_1_2_10_47_1) 1994 Pedregosa F. (e_1_2_10_50_1) 2011; 12 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_68_1 |
| References_xml | – volume: 510 start-page: 309 year: 2008 end-page: 350 article-title: The accessory olfactory bulb in the adult rat: A cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system publication-title: Journal of Comparative Neurology – volume: 83 start-page: 195 year: 1995 end-page: 206 article-title: A novel family of genes encoding putative pheromone receptors in mammals publication-title: Cell – volume: 16 start-page: 183 year: 1960 end-page: 190 article-title: A simplified table for staging anuran embryos and larvae with notes on identification publication-title: Herpetologica – volume: 71 start-page: 115 year: 2009 end-page: 140 article-title: Subsystem organization of the mammalian sense of smell publication-title: Annual Review of Physiology – volume: 2 start-page: 887 year: 1911 end-page: 890 – volume: 63 start-page: 779 year: 2014 end-page: 797 article-title: Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians publication-title: Systematic Biology – volume: 97 start-page: 209 year: 1999 end-page: 220 article-title: A map of pheromone receptor activation in the mammalian brain publication-title: Cell – volume: 176 start-page: 285 year: 1977 end-page: 308 article-title: A neuroanatomical study on the organization of the central antennal pathways in insects—II. Deutocerebral connections in Locusta migratoria and publication-title: Cell and Tissue Research – volume: 41 start-page: 89 year: 1954 end-page: 100 article-title: Studies on the olfactory epithelium of the frog and the toad with the aid of light and electron microscopy publication-title: Zeitschrift für Zellforschung Und Mikroskopische Anatomie – volume: 72 start-page: 698 year: 2011 end-page: 711 article-title: Evolution of insect olfaction publication-title: Neuron – year: 1994 – volume: 499 start-page: 218 year: 2006 end-page: 230 article-title: Mitral cells in the olfactory bulb of adult zebrafish ( ): Morphology and distribution publication-title: Journal of Comparative Neurology – volume: 288 start-page: 273 year: 1998 end-page: 288 article-title: Ultrastructure of the olfactory organ in the clawed frog, , during larval development and metamorphosis publication-title: Journal of Comparative Neurology – volume: 97 start-page: 199 year: 1999 end-page: 208 article-title: Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system publication-title: Cell – volume: 22 start-page: 713 year: 2006 end-page: 737 article-title: Axonal wiring in the mouse olfactory system publication-title: Annual Review of Cell and Developmental Biology – volume: 410 start-page: 20 year: 1999 end-page: 30 article-title: Errors in lamina growth of primary olfactory axons in the rat and mouse olfactory bulb publication-title: Journal of Comparative Neurology – volume: 33 start-page: 17247 year: 2013 end-page: 17252 article-title: Olfactory wiring logic in amphibians challenges the basic assumptions of the unbranched axon concept publication-title: The Journal of Neuroscience – volume: 57 start-page: 1 year: 2001 end-page: 17 article-title: The antennal lobe of orthoptera—Anatomy and evolution publication-title: Brain, Behavior and Evolution – volume: 26 start-page: 925 year: 2007 end-page: 934 article-title: Presynaptic protein distribution and odour mapping in glomeruli of the olfactory bulb of tadpoles publication-title: European Journal of Neuroscience – volume: 27 start-page: 1 year: 2017 end-page: 11 article-title: An adenosine receptor for olfaction in fish publication-title: Current Biology – volume: 189 start-page: 91 year: 1994 end-page: 106 article-title: Mitral cell dendrites: A comparative approach publication-title: Anatomy and Embryology – volume: 519 start-page: 3713 year: 2011 end-page: 3726 article-title: Exuberant growth and synapse formation of olfactory sensory neuron axonal arborizations publication-title: The Journal of Comparative Neurology – volume: 58 start-page: 7 year: 1996 end-page: 15 article-title: Development of the olfactory epithelium and vomeronasal organ in the Japanese reddish frog, publication-title: Journal of Veterinary Medical Science – volume: 390 start-page: 256 year: 1998 end-page: 267 article-title: Postnatal development of olfactory receptor cell axonal arbors publication-title: Journal of Comparative Neurology – volume: 2019 year: 2019 article-title: An update on anatomy and function of the teleost olfactory system publication-title: PeerJ – volume: 465 start-page: 27 year: 2003 end-page: 37 article-title: Glomerular territories in the olfactory bulb from the larval stage of the sea lamprey publication-title: Journal of Comparative Neurology – volume: 51 start-page: 505 year: 2006 end-page: 517 article-title: Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates publication-title: Journal of Human Genetics – volume: 87 start-page: 675 year: 1996 end-page: 686 article-title: Visualizing an olfactory sensory map publication-title: Cell – volume: 33 start-page: 339 year: 2008 end-page: 346 article-title: Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system publication-title: Chemical Senses – volume: 35 start-page: 1057 year: 2002 end-page: 1066 article-title: A divergent pattern of sensory axonal projections is rendered convergent by second‐order neurons in the accessory olfactory bulb publication-title: Neuron – volume: 516 start-page: 105 year: 2009 end-page: 116 article-title: Projections from the accessory olfactory organ into the medial region of the olfactory bulb in the sea lamprey ( ): A novel vertebrate sensory structure? publication-title: Journal of Comparative Neurology – volume: 4 start-page: 130 year: 2010 article-title: Lungfishes, like tetrapods, possess a vomeronasal system publication-title: Frontiers in Neuroanatomy – volume: 26 start-page: R1039 year: 2016 end-page: R1049 article-title: The evolving neural and genetic architecture of vertebrate olfaction publication-title: Current Biology – volume: 481 start-page: 233 year: 2005 end-page: 239 article-title: Individual olfactory sensory neurons project into more than one glomerulus in tadpole olfactory bulb publication-title: Journal of Comparative Neurology – volume: 28 start-page: 348 year: 2010 end-page: 353 article-title: V3D enables real‐time 3D visualization and quantitative analysis of large‐scale biological image data sets publication-title: Nature Biotechnology – volume: 25 start-page: 209 year: 1965 end-page: 230 article-title: Olfactory cilia in the frog publication-title: The Journal of Cell Biology – volume: 96 start-page: 713 year: 1999 end-page: 723 article-title: Combinatorial receptor codes for odors publication-title: Cell – volume: 79 start-page: 1245 year: 1994 end-page: 1255 article-title: Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb publication-title: Cell – start-page: 43 year: 2008 end-page: 63 – volume: 20 start-page: 1081 year: 1998 end-page: 1091 article-title: Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos publication-title: Neuron – volume: 55 start-page: 100 year: 2000 end-page: 110 article-title: Phyletic distribution of crypt‐type olfactory receptor neurons in fishes publication-title: Brain, Behavior and Evolution – year: 2007 – volume: 117 start-page: 817 year: 2004 end-page: 831 article-title: A contextual model for axonal sorting into glomeruli in the mouse olfactory system publication-title: Cell – volume: 82 start-page: 80 year: 2007 end-page: 86 article-title: The functional organization of the fish olfactory system publication-title: Progress in Neurobiology – volume: 63 start-page: 1465 year: 2006 end-page: 1475 article-title: The sense of smell: Multiple olfactory subsystems publication-title: Cellular and Molecular Life Sciences – volume: 110 start-page: 7714 year: 2013 end-page: 7719 article-title: Ancestral amphibian v2rs are expressed in the main olfactory epithelium publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 65 start-page: 175 year: 1991 end-page: 187 article-title: A novel multigene family may encode odorant receptors: A molecular basis for odor recognition publication-title: Cell – volume: 23 start-page: 39 year: 1998 end-page: 48 article-title: The peripheral olfactory organ of the zebrafish, : An ultrastructural study publication-title: Chemical Senses – volume: 78 start-page: 823 year: 1994 end-page: 834 article-title: Allelic inactivation regulates olfactory receptor gene expression publication-title: Cell – volume: 79 start-page: 981 year: 1994 end-page: 991 article-title: Topographic organization of sensory projections to the olfactory bulb publication-title: Cell – volume: 8 year: 2013 article-title: The neuroanatomical organization of projection neurons associated with different olfactory bulb pathways in the sea lamprey, publication-title: PLoS One – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in python publication-title: Journal of Machine Learning Research – volume: 50 start-page: 697 year: 2006 end-page: 709 article-title: A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb publication-title: Neuron – volume: 3 year: 2008 article-title: Principles of glomerular organization in the human olfactory bulb—Implications for odor processing publication-title: PLoS One – volume: 9 start-page: 676 year: 2012 end-page: 682 article-title: Fiji: An open‐source platform for biological‐image analysis publication-title: Nature Methods – volume: 44 start-page: 108 year: 1994 end-page: 124 article-title: Anatomy and forebrain projections of the olfactory and vomeronasal organs in axolotls ( ) publication-title: Brain, Behavior and Evolution – volume: 302 start-page: 21 year: 2000 end-page: 29 article-title: Structure of the olfactory bulb in tadpoles of publication-title: Cell and Tissue Research – volume: 29 start-page: 583 year: 2001 end-page: 591 article-title: Single‐cell electroporation for gene transfer in vivo publication-title: Neuron – volume: 50 start-page: 222 year: 1997 end-page: 233 article-title: Evolution of vertebrate olfactory systems publication-title: Brain, Behavior and Evolution – volume: 220 start-page: 1350 year: 2017 end-page: 1359 article-title: Odorant organization in the olfactory bulb of the sea lamprey publication-title: Journal of Experimental Biology – volume: 23 start-page: 1 year: 1992 end-page: 21 article-title: Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates publication-title: Microscopy Research and Technique – volume: 4 start-page: 4037 year: 2015 article-title: Kappe neurons, a novel population of olfactory sensory neurons publication-title: Scientific Reports – volume: 520 start-page: 2317 year: 2012 end-page: 2339 article-title: Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish ( ) publication-title: The Journal of Comparative Neurology – volume: 286 start-page: 707 year: 1999 end-page: 711 article-title: Seven‐transmembrane proteins as odorant and chemosensory receptors publication-title: Science (New York, N.Y.) – volume: 25 start-page: 4889 year: 2005 end-page: 4897 article-title: Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish publication-title: Journal of Neuroscience – volume: 426 start-page: 68 year: 2000 end-page: 80 article-title: Morphology of developing olfactory axons in the olfactory bulb of the rabbit ( ): A Golgi study publication-title: Journal of Comparative Neurology – volume: 14 start-page: 219 year: 1994 end-page: 230 article-title: Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals publication-title: The Journal of Neuroscience – ident: e_1_2_10_33_1 doi: 10.1523/JNEUROSCI.2755-13.2013 – ident: e_1_2_10_3_1 doi: 10.1523/JNEUROSCI.14-01-00219.1994 – ident: e_1_2_10_57_1 doi: 10.1016/0092-8674(94)90015-9 – ident: e_1_2_10_37_1 doi: 10.1016/S0092-8674(00)80581-4 – ident: e_1_2_10_21_1 doi: 10.1002/cne.10811 – ident: e_1_2_10_59_1 doi: 10.1523/JNEUROSCI.0679-05.2005 – ident: e_1_2_10_66_1 doi: 10.1016/j.cub.2017.04.014 – ident: e_1_2_10_39_1 doi: 10.1002/cne.22684 – ident: e_1_2_10_43_1 doi: 10.1016/S0092-8674(00)81387-2 – ident: e_1_2_10_40_1 doi: 10.1371/journal.pone.0002640 – ident: e_1_2_10_58_1 doi: 10.1016/S0092-8674(00)80730-8 – ident: e_1_2_10_34_1 doi: 10.1159/000047222 – start-page: 887 volume-title: Histologie du systeme nerveux de l'homme et des vertebres year: 1911 ident: e_1_2_10_53_1 – ident: e_1_2_10_49_1 doi: 10.7717/peerj.7808 – ident: e_1_2_10_55_1 doi: 10.1525/california/9780520252783.003.0004 – ident: e_1_2_10_20_1 doi: 10.1016/j.cell.2004.05.011 – ident: e_1_2_10_27_1 doi: 10.1016/S0896-6273(01)00235-5 – ident: e_1_2_10_15_1 doi: 10.1016/S0896-6273(00)80490-0 – ident: e_1_2_10_9_1 doi: 10.1016/0092-8674(91)90418-X – ident: e_1_2_10_25_1 doi: 10.1371/journal.pone.0069525 – ident: e_1_2_10_63_1 doi: 10.1002/(SICI)1096-9861(19990719)410:1<20::AID-CNE3>3.0.CO;2-T – ident: e_1_2_10_18_1 doi: 10.1159/000113574 – ident: e_1_2_10_2_1 doi: 10.1038/srep04037 – ident: e_1_2_10_45_1 doi: 10.1007/s004410000208 – ident: e_1_2_10_46_1 doi: 10.1002/cne.20390 – ident: e_1_2_10_32_1 doi: 10.1016/j.neuron.2011.11.003 – ident: e_1_2_10_16_1 doi: 10.1002/jemt.1070230102 – ident: e_1_2_10_41_1 doi: 10.1126/science.286.5440.707 – ident: e_1_2_10_6_1 doi: 10.1007/BF00340285 – ident: e_1_2_10_22_1 doi: 10.1002/cne.21091 – ident: e_1_2_10_52_1 doi: 10.1093/sysbio/syu042 – ident: e_1_2_10_26_1 doi: 10.1242/jeb.150466 – ident: e_1_2_10_7_1 doi: 10.1002/cne.23075 – ident: e_1_2_10_17_1 doi: 10.1159/000113336 – ident: e_1_2_10_44_1 doi: 10.1146/annurev.physiol.70.113006.100608 – ident: e_1_2_10_64_1 doi: 10.1016/0092-8674(94)90029-9 – ident: e_1_2_10_35_1 doi: 10.1002/(SICI)1096-9861(19980112)390:2<256::AID-CNE8>3.0.CO;2-0 – ident: e_1_2_10_36_1 doi: 10.1002/cne.21790 – ident: e_1_2_10_56_1 doi: 10.1002/cne.22100 – volume: 16 start-page: 183 year: 1960 ident: e_1_2_10_24_1 article-title: A simplified table for staging anuran embryos and larvae with notes on identification publication-title: Herpetologica – volume-title: Normal table of Xenopus laevis (Daudin) year: 1994 ident: e_1_2_10_47_1 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_10_50_1 article-title: Scikit‐learn: machine learning in python publication-title: Journal of Machine Learning Research – ident: e_1_2_10_5_1 doi: 10.1016/S0092-8674(00)80731-X – ident: e_1_2_10_30_1 doi: 10.1002/(SICI)1096-9861(19980824)398:2<273::AID-CNE8>3.0.CO;2-Y – ident: e_1_2_10_62_1 doi: 10.1292/jvms.58.7 – ident: e_1_2_10_14_1 doi: 10.1016/0092-8674(95)90161-2 – ident: e_1_2_10_68_1 doi: 10.1002/1096-9861(20001009)426:1<68::AID-CNE5>3.0.CO;2-Z – ident: e_1_2_10_61_1 doi: 10.1073/pnas.1302088110 – ident: e_1_2_10_10_1 doi: 10.1016/S0092-8674(94)90562-2 – ident: e_1_2_10_38_1 doi: 10.1111/j.1460-9568.2007.05731.x – ident: e_1_2_10_29_1 doi: 10.1159/000006645 – ident: e_1_2_10_11_1 doi: 10.1093/chemse/bjm090 – ident: e_1_2_10_51_1 doi: 10.1038/nbt.1612 – volume: 4 start-page: 130 year: 2010 ident: e_1_2_10_23_1 article-title: Lungfishes, like tetrapods, possess a vomeronasal system publication-title: Frontiers in Neuroanatomy – ident: e_1_2_10_13_1 doi: 10.1007/BF00185769 – ident: e_1_2_10_19_1 doi: 10.1007/BF00221789 – ident: e_1_2_10_48_1 doi: 10.1007/s10038-006-0391-8 – ident: e_1_2_10_65_1 doi: 10.1016/j.neuron.2006.04.033 – ident: e_1_2_10_42_1 doi: 10.1146/annurev.cellbio.21.012804.093915 – ident: e_1_2_10_8_1 doi: 10.1007/s00018-006-6108-5 – ident: e_1_2_10_54_1 doi: 10.1083/jcb.25.2.209 – ident: e_1_2_10_31_1 doi: 10.1093/chemse/23.1.39 – ident: e_1_2_10_67_1 doi: 10.7208/chicago/9780226893334.001.0001 – ident: e_1_2_10_12_1 doi: 10.1016/S0896-6273(02)00904-2 – ident: e_1_2_10_28_1 doi: 10.1016/j.pneurobio.2007.02.007 – ident: e_1_2_10_60_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_10_4_1 doi: 10.1016/j.cub.2016.09.011 |
| SSID | ssj0009938 |
| Score | 2.3999462 |
| Snippet | Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2239 |
| SubjectTerms | Adaptation anura axonal wiring Axons Dendritic branching Divergence Electroporation evolution fishes glomeruli Neurons Neuropil Odor Odorant receptors Odors olfaction Olfactory bulb Olfactory glomeruli Olfactory organs Olfactory receptor neurons Reptiles & amphibians RRID:SCR_002285 RRID:SCR_002609 RRID:SCR_007164 sensory system Synapses Vertebrates |
| Title | Multi‐glomerular projection of single olfactory receptor neurons is conserved among amphibians |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.24887 https://www.ncbi.nlm.nih.gov/pubmed/32080843 https://www.proquest.com/docview/2424636224 https://www.proquest.com/docview/2366636208 https://pubmed.ncbi.nlm.nih.gov/PMC7418368 |
| Volume | 528 |
| WOSCitedRecordID | wos000516640900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-9861 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009938 issn: 0021-9967 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFqReKL8lUCqDOPQSmthJJhGnqu2KQ7WqEJVWXILtjNuVlmS1aStx4xF4Rp4E28mmXRUkJC6WFU8SyzNjTyYz3wC807nSkVIUSmnyMNEJDxWlFKKSgmSmDCefKHyC43E-mRSna_BhmQvT4UMMDjenGX6_dgouVbt_Axqqa3rPrfjhPdiIY5G7ug08Ob1B3C1Etw27GIQiwyWsUMT3h1tXD6M7FubdQMnbBqw_gUZb_zX3R_CwNzzZQScpj2GN6ifw4Evj3epP4avPxP314-f5rPlGCxecynovjeUcawxzToUZsWbWlej5zuxeSXPbYx4Ts27ZtGXaBWcvrqlivoqRbecXLimlbp_B2ej48-HHsK--EGprRGDoYHJ4xhODmVGxpERWpqI4Q6OMNFxF3FTWviHMNaIhlFLyRFJkYu0KmBjxHNbrpqYXwDCtUqlEYVLUiVJYSOJYVCatKoNxTAHsLdlQ6h6a3FXImJUdqDIv7YKVfsECeDuQzjs8jj8R7Sx5WfYq2ZYuDyazxzVPAngzDFtlcn9IZE3NlaUR9mvO0kR5ANsd64e3CHs1yhMRAK4IxUDggLpXR-rphQfsdghBIrPP3PNC8feJl4fjY995-e-kr2CTOx-Aj3vbgfXLxRW9hvv6-nLaLna9TtgWJ_kubBx9Gp2d_Ab_3hgg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFgQX_imBAgZx6CU0cZxMInFBpasilhVCrVRxCbYzpittk9WmrcSNR-AZeRJsJ5uyKkhIXCIrniSWZ8YeT2a-AXipc6UjpSiU0uSh0IKHilIKUcmEZKYMJ58oPMbJJD86Kj6uwetlLkyHDzE43Jxm-PXaKbhzSO9coIbqml5xK394BTaEFSMr3xtvP40Oxxegu0XSrcQuDKHIcIksFPGd4eHV_eiSkXk5VvJ3G9ZvQqNb_zf823CzNz7Zm05a7sAa1Xfh2ufGu9bvwRefjfvz-4-vs-aEFi5AlfWeGss91hjmHAszYs2sK9Pzjdn1kua2xTwuZt2yacu0C9BenFPFfCUje50fu8SUur0Ph6O9g939sK_AEGprSGDooHJ4xoXBzKhYkpCVqSjO0CgjDVcRN5W1cQhzjWgIpZRcSIpMrF0RE5M8gPW6qekhMEyrVKqkMClqoRQWkjgWlUmrymAcUwDbSz6Uuocnd1UyZmUHrMxLO2Gln7AAXgyk8w6T409EW0tmlr1atqXLhcnsls1FAM-HbqtQ7i-JrKk5szSJPdFZmigPYLPj_fCVxN6NcpEEgCtSMRA4sO7Vnnp67EG7HUpQktl3bnup-PvAy93Jnm88-nfSZ3B9_-DDuBy_m7x_DDe48wn4OLgtWD9dnNETuKrPT6ft4mmvIr8ASKYbHg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB61W0BcKJQCgQKm4tBL2sRx4kTigtquQKxWFaJSxSX4Z9yutCSrTVuJG4_AM_Ik2E427aogIfUSWfEksTwz9ngy8w3AW5VLFUmJoRAmD5liNJSYYsilSFBk0lD0icIjPh7nJyfF0Qq8W-TCtPgQvcPNaYZfr52C40ybvSvUUFXhLrXyx1dhjbkiMgNYO_g8PB5dge4WSbsSuzCEIuMLZKGI7vUPL-9HN4zMm7GS121YvwkN1283_IfwoDM-yftWWh7BClYbcPdr7V3rj-Gbz8b9_fPX6bT-jnMXoEo6T43lHqkNcY6FKZJ62pbp-UHseokz2yIeF7NqyKQhygVozy9RE1_JyF5nZy4xpWo24Xh4-GX_Q9hVYAiVNSR46KByaEaZ4ZmRsUAmtNEYZ9xIIwyVETXa2jjIc8W5QS6EoExgZGLlipiY5AkMqrrCZ0B4qlMhk8KkXDEpeSGQ8kKbVGvD4xgD2FnwoVQdPLmrkjEtW2BlWtoJK_2EBbDdk85aTI6_EW0tmFl2atmULhcms1s2ZQG86butQrm_JKLC-sLSJPZEZ2miPICnLe_7ryT2bpSzJAC-JBU9gQPrXu6pJmcetNuhBCWZfeeOl4p_D7zcHx_6xvP_J30N944OhuXo4_jTC7hPnUvAh8FtweB8foEv4Y66PJ8081edhvwBsKwamQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90glomerular+projection+of+single+olfactory+receptor+neurons+is+conserved+among+amphibians&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Weiss%2C+Lukas&rft.au=Jungblut%2C+Lucas+D&rft.au=Pozzi%2C+Andrea+G&rft.au=Zielinski%2C+Barbara+S&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=528&rft.issue=13&rft.spage=2239&rft.epage=2253&rft_id=info:doi/10.1002%2Fcne.24887&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |