Dynamic MRI using model‐based deep learning and SToRM priors: MoDL‐SToRM
Purpose To introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi‐channel measurements. Methods Image recovery is formulated as an optimization prob...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 82; H. 1; S. 485 - 494 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Wiley Subscription Services, Inc
01.07.2019
|
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
To introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi‐channel measurements.
Methods
Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.
Results
The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.
Conclusions
The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient‐specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework. |
|---|---|
| AbstractList | Purpose
To introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi‐channel measurements.
Methods
Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.
Results
The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.
Conclusions
The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient‐specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework. PurposeTo introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi‐channel measurements.MethodsImage recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.ResultsThe experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.ConclusionsThe results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient‐specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework. To introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi-channel measurements.PURPOSETo introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi-channel measurements.Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.METHODSImage recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.RESULTSThe experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient-specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.CONCLUSIONSThe results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient-specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework. To introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi-channel measurements. Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data. The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time. The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient-specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework. |
| Author | Aggarwal, Hemant K. Biswas, Sampurna Jacob, Mathews |
| Author_xml | – sequence: 1 givenname: Sampurna surname: Biswas fullname: Biswas, Sampurna organization: The University of Iowa – sequence: 2 givenname: Hemant K. surname: Aggarwal fullname: Aggarwal, Hemant K. organization: The University of Iowa – sequence: 3 givenname: Mathews surname: Jacob fullname: Jacob, Mathews email: mathews-jacob@uiowa.edu organization: The University of Iowa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30860286$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1uEzEUhS1URNPCghdAI7GBxbT-m7HNAgm1_FTKCCmUteXYd4qrGTu1M6DseASekSfBaVIEFaxs-X7n6FyfI3QQYgCEnhJ8QjCmp2MaT6gQuH2AZqShtKaN4gdohgXHNSOKH6KjnK8xxkoJ_ggdMixbTGU7Q_PzTTCjt1W3uKim7MNVNUYHw8_vP5Ymg6scwKoawKSwnZngqk-XcdFVq-Rjyq-qLp7PC3z7-Bg97M2Q4cn-PEaf3729PPtQzz--vzh7M69tg1VbAxPWcutASi7bclWW9EQ6wZagWuewWloDprFABQXDQIqGUQDe96RhzLFj9Hrnu5qWIzgLYZ3MoEuk0aSNjsbrvyfBf9FX8asWUjWMyGLwYm-Q4s0Eea1Hny0MgwkQp6wpUZgrymRb0Of30Os4pVDW05SSlhMmJC7Usz8T_Y5y99EFON0BNsWcE_Ta-rVZ-7gN6AdNsN5WqUuV-rbKonh5T3Fn-i927_7ND7D5P6i7RbdT_AKkbq7j |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ad33b7 crossref_primary_10_1109_TBME_2022_3158904 crossref_primary_10_1155_2021_2803857 crossref_primary_10_3390_children12040416 crossref_primary_10_1109_JPROC_2022_3141367 crossref_primary_10_1002_mrm_30105 crossref_primary_10_1016_j_patrec_2024_09_018 crossref_primary_10_1109_TMI_2022_3153849 crossref_primary_10_3390_electronics11040586 crossref_primary_10_1016_j_compbiomed_2023_106998 crossref_primary_10_1007_s10334_024_01173_8 crossref_primary_10_1109_JBHI_2022_3193299 crossref_primary_10_1002_mrm_29313 crossref_primary_10_1016_j_mri_2021_08_007 crossref_primary_10_1007_s11831_022_09785_w crossref_primary_10_1002_mp_14809 crossref_primary_10_1038_s42256_020_00273_z crossref_primary_10_1002_mrm_28827 crossref_primary_10_1148_radiol_2021202624 crossref_primary_10_3390_diagnostics11101935 crossref_primary_10_1109_TCI_2021_3085534 crossref_primary_10_1002_nbm_5051 crossref_primary_10_1002_mrm_30131 crossref_primary_10_1109_TMI_2022_3220757 crossref_primary_10_1109_TCI_2024_3452008 crossref_primary_10_1002_mrm_28177 crossref_primary_10_1016_j_patcog_2020_107252 crossref_primary_10_1109_TCI_2022_3148062 crossref_primary_10_1109_TMI_2021_3096218 crossref_primary_10_1109_TCI_2024_3402347 crossref_primary_10_1016_j_mri_2020_09_021 crossref_primary_10_1002_nbm_5011 crossref_primary_10_1109_TMI_2021_3084288 crossref_primary_10_1002_mrm_28659 crossref_primary_10_1016_j_pnmrs_2025_101561 crossref_primary_10_1007_s11684_020_0761_1 crossref_primary_10_1002_mp_17188 crossref_primary_10_3389_fcvm_2020_00017 crossref_primary_10_1109_TMI_2022_3207774 crossref_primary_10_1109_TCI_2024_3440008 crossref_primary_10_1016_j_ejmp_2021_02_020 crossref_primary_10_1109_TMI_2019_2946501 crossref_primary_10_1145_3708498 crossref_primary_10_1109_TMI_2022_3168559 crossref_primary_10_1016_j_media_2021_102190 crossref_primary_10_1016_j_mri_2022_06_012 crossref_primary_10_1016_j_media_2023_102872 crossref_primary_10_1016_j_media_2025_103485 crossref_primary_10_1007_s13534_024_00425_9 crossref_primary_10_1109_TMI_2021_3096232 crossref_primary_10_3389_fcvm_2022_826283 crossref_primary_10_1002_mp_16643 crossref_primary_10_1002_nbm_4661 crossref_primary_10_1109_JSTSP_2020_2998402 crossref_primary_10_1002_mrm_29526 crossref_primary_10_1088_1361_6560_acc003 crossref_primary_10_3390_bioengineering10030334 crossref_primary_10_1109_TMI_2022_3147426 crossref_primary_10_1002_nbm_70114 crossref_primary_10_1016_j_bspc_2021_102579 crossref_primary_10_1109_TCI_2021_3131564 crossref_primary_10_1109_TCI_2021_3125564 crossref_primary_10_1109_TMI_2021_3073381 crossref_primary_10_1109_MSP_2019_2942180 crossref_primary_10_1002_mrm_28917 crossref_primary_10_1016_j_jocmr_2024_101051 |
| Cites_doi | 10.1002/(SICI)1098-1098(1997)8:6<551::AID-IMA7>3.0.CO;2-9 10.1109/TMI.2017.2760978 10.1002/mrm.21757 10.1109/TMI.2013.2255133 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.10611 10.1038/s41551-018-0217-y 10.1109/ISBI.2010.5490154 10.1002/mrm.26977 10.1109/TMI.2017.2723871 10.1109/ISBI.2015.7163877 10.1109/ISBI.2018.8363663 10.1002/mrm.26215 10.1109/ICASSP.2014.6854938 10.1002/mrm.24524 10.1002/mrm.22444 10.1002/mrm.24980 10.1002/mrm.25665 10.1109/TMI.2015.2509245 10.1002/mrm.24751 10.1109/TIP.2014.2315156 10.1109/ISBI.2012.6235741 10.1097/00004424-199409000-00009 10.1002/mrm.20641 10.1109/TMI.2012.2203921 10.1109/TIP.2017.2713099 10.1109/TMI.2018.2865356. 10.1109/TBME.2014.2320463 10.1109/TMI.2010.2100850 |
| ContentType | Journal Article |
| Copyright | 2019 International Society for Magnetic Resonance in Medicine 2019 International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2019 International Society for Magnetic Resonance in Medicine – notice: 2019 International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.27706 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 494 |
| ExternalDocumentID | PMC7895318 30860286 10_1002_mrm_27706 MRM27706 |
| Genre | technicalNote Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIH funderid: 1R01EB019961‐01A1 – fundername: NIBIB NIH HHS grantid: R01 EB019961 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c5096-e37cc4cde88486cc49c1f18d73be96dd09bcaea5ce272ea3e87532ee4ff1533d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481978800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Aug 21 14:27:05 EDT 2025 Thu Oct 02 10:40:25 EDT 2025 Sat Nov 29 14:33:52 EST 2025 Wed Feb 19 02:29:20 EST 2025 Sat Nov 29 02:37:46 EST 2025 Tue Nov 18 21:49:00 EST 2025 Wed Jan 22 16:58:31 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | free breathing cardiac MR non-local prior learned prior subject specific prior alternating minimization model-based |
| Language | English |
| License | 2019 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5096-e37cc4cde88486cc49c1f18d73be96dd09bcaea5ce272ea3e87532ee4ff1533d3 |
| Notes | Funding information NIH, Grant/Award Number: 1R01EB019961‐01A1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7895318 |
| PMID | 30860286 |
| PQID | 2216413780 |
| PQPubID | 1016391 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895318 proquest_miscellaneous_2190492386 proquest_journals_2216413780 pubmed_primary_30860286 crossref_citationtrail_10_1002_mrm_27706 crossref_primary_10_1002_mrm_27706 wiley_primary_10_1002_mrm_27706_MRM27706 |
| PublicationCentury | 2000 |
| PublicationDate | July 2019 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 61 2018b 2010 2018a 2011; 30 2016; 75 2013; 70 1999; 42 2017; 29 1994; 29 2003; 50 2014; 61 2014; 23 2012; 31 2016; 35 1997; 8 2010; 64 2018; 2 2013; 32 2017; 36 2017; 77 2005; 54 2017 2012b 2012a 2015 2014 2014; 72 2014; 71 2018; 37 2018; 79 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Poddar S (e_1_2_5_29_1) e_1_2_5_30_1 e_1_2_5_31_1 |
| References_xml | – start-page: 319 year: 2015 end-page: 322 – start-page: 671 year: 2018b end-page: 674 – volume: 72 start-page: 707 year: 2014 end-page: 717 article-title: Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI publication-title: Magn Reson Med – volume: 36 start-page: 2297 year: 2017 end-page: 2307 article-title: A kernel‐based low‐rank (KLR) model for low‐dimensional manifold recovery in highly accelerated dynamic MRI publication-title: IEEE Trans Med Imaging – volume: 79 start-page: 3055 year: 2018 end-page: 3071 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn Reson Med – volume: 29 start-page: 848 year: 1994 end-page: 851 article-title: Breath‐holding capability of adults. Implications for spiral computed tomography, fast‐acquisition magnetic resonance imaging, and angiography publication-title: Investigative Radiol – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: Sense: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 8 start-page: 551 year: 1997 end-page: 557 article-title: Dynamic imaging by model estimation publication-title: Int J Imaging Syst Technol – volume: 70 start-page: 800 year: 2013 end-page: 812 article-title: Motion‐adaptive spatio‐temporal regularization for accelerated dynamic MRI publication-title: Magn Reson Med – volume: 77 start-page: 1238 year: 2017 end-page: 1248 article-title: Accelerated dynamic MRI using patch regularization for implicit motion compensation publication-title: Magn Reson Med – start-page: 1 year: 2017 end-page: 11 – volume: 64 start-page: 501 year: 2010 end-page: 513 article-title: Patient‐adaptive reconstruction and acquisition in dynamic imaging with sensitivity encoding (paradise) publication-title: Magn Reson Med – volume: 31 start-page: 1809 year: 2012 end-page: 1820 article-title: Image reconstruction from highly undersampled (k, t)‐space data with joint partial separability and sparsity constraints publication-title: IEEE Trans Med Imaging – start-page: 6904 year: 2014 end-page: 6908 – volume: 2 start-page: 215 year: 2018 article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging publication-title: Nat Biomed Eng – volume: 23 start-page: 2423 year: 2014 end-page: 2435 article-title: Generalized higher degree total variation (HDTV) regularization publication-title: IEEE Trans Image Process – volume: 29 start-page: 4509 year: 2017 end-page: 4522 article-title: Deep convolutional neural network for inverse problems in imaging publication-title: IEEE Trans Image Process – article-title: Recovery of noisy points on band‐limited surfaces: kernel methods re‐explained publication-title: CoRR – start-page: 1 year: 2018a end-page: 1 article-title: MoDL: model‐based deep learning architecture for inverse problems publication-title: IEEE Trans Med Imaging – volume: 30 start-page: 1042 year: 2011 end-page: 1054 article-title: Accelerated dynamic MRI exploiting sparsity and low‐rank structure: kt SLR publication-title: IEEE Trans Med Imaging – volume: 50 start-page: 1031 year: 2003 end-page: 1042 article-title: k‐t blast and k‐t sense: dynamic MRI with high frame rate exploiting spatiotemporal correlations publication-title: Magn Reson Med – volume: 32 start-page: 1132 year: 2013 end-page: 1145 article-title: Blind compressive sensing dynamic MRI publication-title: IEEE Trans Med Imaging – volume: 61 start-page: 103 year: 2009 end-page: 116 article-title: k‐t focus: a general compressed sensing framework for high‐resolution dynamic MRI publication-title: Magn Reson Med – start-page: 1060 year: 2012b – volume: 75 year: 2016 article-title: Xd‐grasp: golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing publication-title: Magn Reson Med – volume: 61 start-page: 2451 year: 2014 end-page: 2457 article-title: Improved subspace estimation for low‐rank model‐based accelerated cardiac imaging publication-title: IEEE Trans Biomed Eng – year: 2012a – volume: 54 start-page: 1172 year: 2005 end-page: 1184 article-title: k‐t grappa: A k‐space implementation for dynamic MRI with high reduction factor publication-title: Magn Reson Med – volume: 37 start-page: 491 year: 2018 end-page: 503 article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imaging – start-page: 988 year: 2010 end-page: 991 – year: 2017 – volume: 71 start-page: 990 year: 2014 end-page: 1001 article-title: Espirit—an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa publication-title: Magn Reson Med – volume: 35 start-page: 1106 year: 2016 end-page: 1115 article-title: Dynamic MRI using smoothness regularization on manifolds (storm) publication-title: IEEE Trans Med Imaging – start-page: 15 year: 2017 end-page: 18 – ident: e_1_2_5_5_1 doi: 10.1002/(SICI)1098-1098(1997)8:6<551::AID-IMA7>3.0.CO;2-9 – ident: e_1_2_5_21_1 doi: 10.1109/TMI.2017.2760978 – ident: e_1_2_5_8_1 doi: 10.1002/mrm.21757 – ident: e_1_2_5_20_1 – ident: e_1_2_5_12_1 doi: 10.1109/TMI.2013.2255133 – ident: e_1_2_5_4_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_5_7_1 doi: 10.1002/mrm.10611 – ident: e_1_2_5_25_1 doi: 10.1038/s41551-018-0217-y – ident: e_1_2_5_35_1 doi: 10.1109/ISBI.2010.5490154 – ident: e_1_2_5_32_1 doi: 10.1002/mrm.26977 – ident: e_1_2_5_16_1 doi: 10.1109/TMI.2017.2723871 – ident: e_1_2_5_28_1 doi: 10.1109/ISBI.2015.7163877 – ident: e_1_2_5_17_1 – ident: e_1_2_5_31_1 doi: 10.1109/ISBI.2018.8363663 – ident: e_1_2_5_15_1 doi: 10.1002/mrm.26215 – ident: e_1_2_5_27_1 doi: 10.1109/ICASSP.2014.6854938 – ident: e_1_2_5_14_1 doi: 10.1002/mrm.24524 – ident: e_1_2_5_6_1 doi: 10.1002/mrm.22444 – ident: e_1_2_5_22_1 doi: 10.1002/mrm.24980 – ident: e_1_2_5_23_1 doi: 10.1002/mrm.25665 – ident: e_1_2_5_26_1 doi: 10.1109/TMI.2015.2509245 – ident: e_1_2_5_36_1 doi: 10.1002/mrm.24751 – ident: e_1_2_5_34_1 doi: 10.1109/TIP.2014.2315156 – ident: e_1_2_5_13_1 doi: 10.1109/ISBI.2012.6235741 – ident: e_1_2_5_33_1 doi: 10.1109/ISBI.2012.6235741 – ident: e_1_2_5_2_1 doi: 10.1097/00004424-199409000-00009 – ident: e_1_2_5_9_1 – ident: e_1_2_5_3_1 doi: 10.1002/mrm.20641 – ident: e_1_2_5_10_1 doi: 10.1109/TMI.2012.2203921 – ident: e_1_2_5_18_1 doi: 10.1109/TIP.2017.2713099 – ident: e_1_2_5_30_1 doi: 10.1109/TMI.2018.2865356. – ident: e_1_2_5_24_1 doi: 10.1109/TBME.2014.2320463 – ident: e_1_2_5_29_1 article-title: Recovery of noisy points on band‐limited surfaces: kernel methods re‐explained publication-title: CoRR – ident: e_1_2_5_19_1 – ident: e_1_2_5_11_1 doi: 10.1109/TMI.2010.2100850 |
| SSID | ssj0009974 |
| Score | 2.5764706 |
| Snippet | Purpose
To introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing &... To introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated... PurposeTo introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing &... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 485 |
| SubjectTerms | Algorithms alternating minimization Artificial neural networks Breathing Cardiac Imaging Techniques - methods Conjugate gradient method Consistency Data recovery Databases, Factual Deep Learning free breathing cardiac MR Heart Heart - diagnostic imaging Humans Image acquisition Image Processing, Computer-Assisted - methods Image quality Image reconstruction Iterative algorithms Iterative methods learned prior Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Manifolds Measurement methods model‐based Neural networks Noise reduction non‐local prior Optimization Regularization Respiration Smoothness subject specific prior |
| Title | Dynamic MRI using model‐based deep learning and SToRM priors: MoDL‐SToRM |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27706 https://www.ncbi.nlm.nih.gov/pubmed/30860286 https://www.proquest.com/docview/2216413780 https://www.proquest.com/docview/2190492386 https://pubmed.ncbi.nlm.nih.gov/PMC7895318 |
| Volume | 82 |
| WOSCitedRecordID | wos000481978800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley-Blackwell Open Access Backfiles customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLSAu_BQoW0plEAcuaRPbiW04IZYVlTYrtLRib5FjO2WlNlklbc99BJ6RJ6ntZFNWBQmJmxNPEsee8YzjyfcBvGUhV7FkOogpKwKrFDLgPOdBIgiNrVLJnGpPNsGmUz6fi68b8GH1L0yLD9F_cHOW4edrZ-Aybw5uQEPP6rN9zJiD297EVm_jAWyOZuPjyQ3mrmhBmBl1U42gK2ChEB_0F6-7o1sx5u1Uyd9DWO-Dxo_-q_WP4WEXeqKPra48gQ1TbsH9tNtc34J7PhtUNU9hMmp56lE6O0QuM_4EecacX1c_ndfTSBuzRB3hxAmSpUbfjqpZipb1oqqb9yitRhMr7E8-g-Px56NPX4KOdiFQDgsmMIQpRZU2nFOe2KJQURFxzUhuRKJ1KHIljYyVwQwbSYxb8mBjaFG44FGT5zAoq9K8AJTHimgWqzDJNZWc5TQqDAnzIjIskiQZwrtV72eqwyR31BinWYumjDPbT5nvpyG86UWXLRDHn4R2V0OYdbbYZBjbJWFEGA-H8LqvtlbktkZkaaoLK2PjIgdVx-0tttsR759CQsfT5WrYmi70Ag6he72mXPzwSN2MCzvHcfuaXhf-3vAsnaW-sPPvoi_hgY3eRJs7vAuD8_rCvIK76vJ80dR7cIfN-V5nEvbo--H0Gq9VENo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5V5a8Xfgq0CwUM4sAlbRI7sY24IErVFZsVWhbRW-TYTlmpTVbZlnMfoc_Ik-BxsimrgoTEzYoniTOescf25PsAXvNQ6ERxEySMl4EzChUIUYgglZQlzqhUwYwnm-DjsTg6kp_X4N3yX5gWH6LfcEPP8OM1OjhuSO9doYaeNqe7MeeIt32DuUADiRu-DcdXkLuyxWDmDEcayZa4QmG819-6OhtdCzGvZ0r-HsH6Kejg3v81_j7c7UJP8r61lQewZqtNuJ11h-ubcMtng-rFQxjttzz1JJsMCWbGHxPPmPPz4hJnPUOMtXPSEU4cE1UZ8mVaTzIyb2Z1s3hLsnp_5IT9xUfw9eDj9MNh0NEuBBqxYAJLudZMGysEE6krSh2VkTCcFlamxoSy0MqqRNuYx1ZRi0ue2FpWlhg8GvoY1qu6sttAikRTwxMdpoVhSvCCRaWlYVFGlkeKpgN4s1R_rjtMcqTGOMlbNOU4d3rKvZ4G8KoXnbdAHH8S2ln2Yd754iKPY7ckjCgX4QBe9tXOi_BoRFW2PncyLi5CqDrhHrHVdnn_FhoiTxfW8BVj6AUQoXu1ppp990jdXEg3xgn3md4Y_t7wPJtkvvDk30VfwJ3DaTbKR8Pxp6ew4SI52eYR78D6WXNun8FN_eNstmiee7_4BcpJEaU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VW6i4UCh_SwsYxIFLaBI7sY24IJYVFZtVtbRSb5FjT8pKNFllW848As_YJ6ntZFNWBQmJmxVPEmc8Y4_tyfcBvOah0IniJkgYLwNrFCoQohBBKilLrFGpghlPNsGnU3FyIg834P3qX5gWH6LfcHOe4cdr5-C4MOX-NWroWXP2Nubc4W1vMkciM4DN0Wx8PLkG3ZUtCjNnbqyRbIUsFMb7_c3r89GNIPNmruTvMayfhMbb_9f8e3C3Cz7Jh9Za7sMGVjuwlXXH6ztw2-eD6uUDmIxapnqSzQ6Iy40_JZ4z5_LnLzfvGWIQF6SjnDglqjLk61E9y8iimdfN8h3J6tHECvuLD-F4_Ono4-egI14ItEODCZByrZk2KAQTqS1KHZWRMJwWKFNjQllohSrRGPMYFUW36IkRWVm68NHQRzCo6gqfACkSTQ1PdJgWhinBCxaVSMOijJBHiqZDeLNSf647VHJHjvE9b_GU49zqKfd6GsKrXnTRQnH8SWhv1Yd5543LPI7tojCiXIRDeNlXWz9yhyOqwvrCytjIyIHVCfuIx22X92-hoWPqcjV8zRh6AYfRvV5Tzb95rG4upB3lhP1Mbwx_b3iezTJfePrvoi9g63A0zicH0y-7cMeGcrJNJN6DwXlzgc_glv5xPl82zzvHuAKMqhJO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+MRI+using+model%E2%80%90based+deep+learning+and+SToRM+priors%3A+MoDL%E2%80%90SToRM&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Biswas%2C+Sampurna&rft.au=Aggarwal%2C+Hemant+K.&rft.au=Jacob%2C+Mathews&rft.date=2019-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=82&rft.issue=1&rft.spage=485&rft.epage=494&rft_id=info:doi/10.1002%2Fmrm.27706&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27706 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |