Dynamic MRI using model‐based deep learning and SToRM priors: MoDL‐SToRM

Purpose To introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi‐channel measurements. Methods Image recovery is formulated as an optimization prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 82; H. 1; S. 485 - 494
Hauptverfasser: Biswas, Sampurna, Aggarwal, Hemant K., Jacob, Mathews
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.07.2019
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose To introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi‐channel measurements. Methods Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data. Results The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time. Conclusions The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient‐specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.
AbstractList Purpose To introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi‐channel measurements. Methods Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data. Results The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time. Conclusions The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient‐specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.
PurposeTo introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi‐channel measurements.MethodsImage recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.ResultsThe experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.ConclusionsThe results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient‐specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.
To introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi-channel measurements.PURPOSETo introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi-channel measurements.Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.METHODSImage recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.RESULTSThe experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient-specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.CONCLUSIONSThe results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient-specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.
To introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi-channel measurements. Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data. The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time. The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient-specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.
Author Aggarwal, Hemant K.
Biswas, Sampurna
Jacob, Mathews
Author_xml – sequence: 1
  givenname: Sampurna
  surname: Biswas
  fullname: Biswas, Sampurna
  organization: The University of Iowa
– sequence: 2
  givenname: Hemant K.
  surname: Aggarwal
  fullname: Aggarwal, Hemant K.
  organization: The University of Iowa
– sequence: 3
  givenname: Mathews
  surname: Jacob
  fullname: Jacob, Mathews
  email: mathews-jacob@uiowa.edu
  organization: The University of Iowa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30860286$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1uEzEUhS1URNPCghdAI7GBxbT-m7HNAgm1_FTKCCmUteXYd4qrGTu1M6DseASekSfBaVIEFaxs-X7n6FyfI3QQYgCEnhJ8QjCmp2MaT6gQuH2AZqShtKaN4gdohgXHNSOKH6KjnK8xxkoJ_ggdMixbTGU7Q_PzTTCjt1W3uKim7MNVNUYHw8_vP5Ymg6scwKoawKSwnZngqk-XcdFVq-Rjyq-qLp7PC3z7-Bg97M2Q4cn-PEaf3729PPtQzz--vzh7M69tg1VbAxPWcutASi7bclWW9EQ6wZagWuewWloDprFABQXDQIqGUQDe96RhzLFj9Hrnu5qWIzgLYZ3MoEuk0aSNjsbrvyfBf9FX8asWUjWMyGLwYm-Q4s0Eea1Hny0MgwkQp6wpUZgrymRb0Of30Os4pVDW05SSlhMmJC7Usz8T_Y5y99EFON0BNsWcE_Ta-rVZ-7gN6AdNsN5WqUuV-rbKonh5T3Fn-i927_7ND7D5P6i7RbdT_AKkbq7j
CitedBy_id crossref_primary_10_1088_1361_6560_ad33b7
crossref_primary_10_1109_TBME_2022_3158904
crossref_primary_10_1155_2021_2803857
crossref_primary_10_3390_children12040416
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_1002_mrm_30105
crossref_primary_10_1016_j_patrec_2024_09_018
crossref_primary_10_1109_TMI_2022_3153849
crossref_primary_10_3390_electronics11040586
crossref_primary_10_1016_j_compbiomed_2023_106998
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1109_JBHI_2022_3193299
crossref_primary_10_1002_mrm_29313
crossref_primary_10_1016_j_mri_2021_08_007
crossref_primary_10_1007_s11831_022_09785_w
crossref_primary_10_1002_mp_14809
crossref_primary_10_1038_s42256_020_00273_z
crossref_primary_10_1002_mrm_28827
crossref_primary_10_1148_radiol_2021202624
crossref_primary_10_3390_diagnostics11101935
crossref_primary_10_1109_TCI_2021_3085534
crossref_primary_10_1002_nbm_5051
crossref_primary_10_1002_mrm_30131
crossref_primary_10_1109_TMI_2022_3220757
crossref_primary_10_1109_TCI_2024_3452008
crossref_primary_10_1002_mrm_28177
crossref_primary_10_1016_j_patcog_2020_107252
crossref_primary_10_1109_TCI_2022_3148062
crossref_primary_10_1109_TMI_2021_3096218
crossref_primary_10_1109_TCI_2024_3402347
crossref_primary_10_1016_j_mri_2020_09_021
crossref_primary_10_1002_nbm_5011
crossref_primary_10_1109_TMI_2021_3084288
crossref_primary_10_1002_mrm_28659
crossref_primary_10_1016_j_pnmrs_2025_101561
crossref_primary_10_1007_s11684_020_0761_1
crossref_primary_10_1002_mp_17188
crossref_primary_10_3389_fcvm_2020_00017
crossref_primary_10_1109_TMI_2022_3207774
crossref_primary_10_1109_TCI_2024_3440008
crossref_primary_10_1016_j_ejmp_2021_02_020
crossref_primary_10_1109_TMI_2019_2946501
crossref_primary_10_1145_3708498
crossref_primary_10_1109_TMI_2022_3168559
crossref_primary_10_1016_j_media_2021_102190
crossref_primary_10_1016_j_mri_2022_06_012
crossref_primary_10_1016_j_media_2023_102872
crossref_primary_10_1016_j_media_2025_103485
crossref_primary_10_1007_s13534_024_00425_9
crossref_primary_10_1109_TMI_2021_3096232
crossref_primary_10_3389_fcvm_2022_826283
crossref_primary_10_1002_mp_16643
crossref_primary_10_1002_nbm_4661
crossref_primary_10_1109_JSTSP_2020_2998402
crossref_primary_10_1002_mrm_29526
crossref_primary_10_1088_1361_6560_acc003
crossref_primary_10_3390_bioengineering10030334
crossref_primary_10_1109_TMI_2022_3147426
crossref_primary_10_1002_nbm_70114
crossref_primary_10_1016_j_bspc_2021_102579
crossref_primary_10_1109_TCI_2021_3131564
crossref_primary_10_1109_TCI_2021_3125564
crossref_primary_10_1109_TMI_2021_3073381
crossref_primary_10_1109_MSP_2019_2942180
crossref_primary_10_1002_mrm_28917
crossref_primary_10_1016_j_jocmr_2024_101051
Cites_doi 10.1002/(SICI)1098-1098(1997)8:6<551::AID-IMA7>3.0.CO;2-9
10.1109/TMI.2017.2760978
10.1002/mrm.21757
10.1109/TMI.2013.2255133
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.10611
10.1038/s41551-018-0217-y
10.1109/ISBI.2010.5490154
10.1002/mrm.26977
10.1109/TMI.2017.2723871
10.1109/ISBI.2015.7163877
10.1109/ISBI.2018.8363663
10.1002/mrm.26215
10.1109/ICASSP.2014.6854938
10.1002/mrm.24524
10.1002/mrm.22444
10.1002/mrm.24980
10.1002/mrm.25665
10.1109/TMI.2015.2509245
10.1002/mrm.24751
10.1109/TIP.2014.2315156
10.1109/ISBI.2012.6235741
10.1097/00004424-199409000-00009
10.1002/mrm.20641
10.1109/TMI.2012.2203921
10.1109/TIP.2017.2713099
10.1109/TMI.2018.2865356.
10.1109/TBME.2014.2320463
10.1109/TMI.2010.2100850
ContentType Journal Article
Copyright 2019 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.27706
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 494
ExternalDocumentID PMC7895318
30860286
10_1002_mrm_27706
MRM27706
Genre technicalNote
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: 1R01EB019961‐01A1
– fundername: NIBIB NIH HHS
  grantid: R01 EB019961
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c5096-e37cc4cde88486cc49c1f18d73be96dd09bcaea5ce272ea3e87532ee4ff1533d3
IEDL.DBID DRFUL
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481978800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 14:27:05 EDT 2025
Thu Oct 02 10:40:25 EDT 2025
Sat Nov 29 14:33:52 EST 2025
Wed Feb 19 02:29:20 EST 2025
Sat Nov 29 02:37:46 EST 2025
Tue Nov 18 21:49:00 EST 2025
Wed Jan 22 16:58:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords free breathing cardiac MR
non-local prior
learned prior
subject specific prior
alternating minimization
model-based
Language English
License 2019 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5096-e37cc4cde88486cc49c1f18d73be96dd09bcaea5ce272ea3e87532ee4ff1533d3
Notes Funding information
NIH, Grant/Award Number: 1R01EB019961‐01A1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7895318
PMID 30860286
PQID 2216413780
PQPubID 1016391
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895318
proquest_miscellaneous_2190492386
proquest_journals_2216413780
pubmed_primary_30860286
crossref_citationtrail_10_1002_mrm_27706
crossref_primary_10_1002_mrm_27706
wiley_primary_10_1002_mrm_27706_MRM27706
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 61
2018b
2010
2018a
2011; 30
2016; 75
2013; 70
1999; 42
2017; 29
1994; 29
2003; 50
2014; 61
2014; 23
2012; 31
2016; 35
1997; 8
2010; 64
2018; 2
2013; 32
2017; 36
2017; 77
2005; 54
2017
2012b
2012a
2015
2014
2014; 72
2014; 71
2018; 37
2018; 79
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Poddar S (e_1_2_5_29_1)
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – start-page: 319
  year: 2015
  end-page: 322
– start-page: 671
  year: 2018b
  end-page: 674
– volume: 72
  start-page: 707
  year: 2014
  end-page: 717
  article-title: Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI
  publication-title: Magn Reson Med
– volume: 36
  start-page: 2297
  year: 2017
  end-page: 2307
  article-title: A kernel‐based low‐rank (KLR) model for low‐dimensional manifold recovery in highly accelerated dynamic MRI
  publication-title: IEEE Trans Med Imaging
– volume: 79
  start-page: 3055
  year: 2018
  end-page: 3071
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
– volume: 29
  start-page: 848
  year: 1994
  end-page: 851
  article-title: Breath‐holding capability of adults. Implications for spiral computed tomography, fast‐acquisition magnetic resonance imaging, and angiography
  publication-title: Investigative Radiol
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: Sense: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 8
  start-page: 551
  year: 1997
  end-page: 557
  article-title: Dynamic imaging by model estimation
  publication-title: Int J Imaging Syst Technol
– volume: 70
  start-page: 800
  year: 2013
  end-page: 812
  article-title: Motion‐adaptive spatio‐temporal regularization for accelerated dynamic MRI
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1238
  year: 2017
  end-page: 1248
  article-title: Accelerated dynamic MRI using patch regularization for implicit motion compensation
  publication-title: Magn Reson Med
– start-page: 1
  year: 2017
  end-page: 11
– volume: 64
  start-page: 501
  year: 2010
  end-page: 513
  article-title: Patient‐adaptive reconstruction and acquisition in dynamic imaging with sensitivity encoding (paradise)
  publication-title: Magn Reson Med
– volume: 31
  start-page: 1809
  year: 2012
  end-page: 1820
  article-title: Image reconstruction from highly undersampled (k, t)‐space data with joint partial separability and sparsity constraints
  publication-title: IEEE Trans Med Imaging
– start-page: 6904
  year: 2014
  end-page: 6908
– volume: 2
  start-page: 215
  year: 2018
  article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging
  publication-title: Nat Biomed Eng
– volume: 23
  start-page: 2423
  year: 2014
  end-page: 2435
  article-title: Generalized higher degree total variation (HDTV) regularization
  publication-title: IEEE Trans Image Process
– volume: 29
  start-page: 4509
  year: 2017
  end-page: 4522
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans Image Process
– article-title: Recovery of noisy points on band‐limited surfaces: kernel methods re‐explained
  publication-title: CoRR
– start-page: 1
  year: 2018a
  end-page: 1
  article-title: MoDL: model‐based deep learning architecture for inverse problems
  publication-title: IEEE Trans Med Imaging
– volume: 30
  start-page: 1042
  year: 2011
  end-page: 1054
  article-title: Accelerated dynamic MRI exploiting sparsity and low‐rank structure: kt SLR
  publication-title: IEEE Trans Med Imaging
– volume: 50
  start-page: 1031
  year: 2003
  end-page: 1042
  article-title: k‐t blast and k‐t sense: dynamic MRI with high frame rate exploiting spatiotemporal correlations
  publication-title: Magn Reson Med
– volume: 32
  start-page: 1132
  year: 2013
  end-page: 1145
  article-title: Blind compressive sensing dynamic MRI
  publication-title: IEEE Trans Med Imaging
– volume: 61
  start-page: 103
  year: 2009
  end-page: 116
  article-title: k‐t focus: a general compressed sensing framework for high‐resolution dynamic MRI
  publication-title: Magn Reson Med
– start-page: 1060
  year: 2012b
– volume: 75
  year: 2016
  article-title: Xd‐grasp: golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing
  publication-title: Magn Reson Med
– volume: 61
  start-page: 2451
  year: 2014
  end-page: 2457
  article-title: Improved subspace estimation for low‐rank model‐based accelerated cardiac imaging
  publication-title: IEEE Trans Biomed Eng
– year: 2012a
– volume: 54
  start-page: 1172
  year: 2005
  end-page: 1184
  article-title: k‐t grappa: A k‐space implementation for dynamic MRI with high reduction factor
  publication-title: Magn Reson Med
– volume: 37
  start-page: 491
  year: 2018
  end-page: 503
  article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
– start-page: 988
  year: 2010
  end-page: 991
– year: 2017
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: Espirit—an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1106
  year: 2016
  end-page: 1115
  article-title: Dynamic MRI using smoothness regularization on manifolds (storm)
  publication-title: IEEE Trans Med Imaging
– start-page: 15
  year: 2017
  end-page: 18
– ident: e_1_2_5_5_1
  doi: 10.1002/(SICI)1098-1098(1997)8:6<551::AID-IMA7>3.0.CO;2-9
– ident: e_1_2_5_21_1
  doi: 10.1109/TMI.2017.2760978
– ident: e_1_2_5_8_1
  doi: 10.1002/mrm.21757
– ident: e_1_2_5_20_1
– ident: e_1_2_5_12_1
  doi: 10.1109/TMI.2013.2255133
– ident: e_1_2_5_4_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_5_7_1
  doi: 10.1002/mrm.10611
– ident: e_1_2_5_25_1
  doi: 10.1038/s41551-018-0217-y
– ident: e_1_2_5_35_1
  doi: 10.1109/ISBI.2010.5490154
– ident: e_1_2_5_32_1
  doi: 10.1002/mrm.26977
– ident: e_1_2_5_16_1
  doi: 10.1109/TMI.2017.2723871
– ident: e_1_2_5_28_1
  doi: 10.1109/ISBI.2015.7163877
– ident: e_1_2_5_17_1
– ident: e_1_2_5_31_1
  doi: 10.1109/ISBI.2018.8363663
– ident: e_1_2_5_15_1
  doi: 10.1002/mrm.26215
– ident: e_1_2_5_27_1
  doi: 10.1109/ICASSP.2014.6854938
– ident: e_1_2_5_14_1
  doi: 10.1002/mrm.24524
– ident: e_1_2_5_6_1
  doi: 10.1002/mrm.22444
– ident: e_1_2_5_22_1
  doi: 10.1002/mrm.24980
– ident: e_1_2_5_23_1
  doi: 10.1002/mrm.25665
– ident: e_1_2_5_26_1
  doi: 10.1109/TMI.2015.2509245
– ident: e_1_2_5_36_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_5_34_1
  doi: 10.1109/TIP.2014.2315156
– ident: e_1_2_5_13_1
  doi: 10.1109/ISBI.2012.6235741
– ident: e_1_2_5_33_1
  doi: 10.1109/ISBI.2012.6235741
– ident: e_1_2_5_2_1
  doi: 10.1097/00004424-199409000-00009
– ident: e_1_2_5_9_1
– ident: e_1_2_5_3_1
  doi: 10.1002/mrm.20641
– ident: e_1_2_5_10_1
  doi: 10.1109/TMI.2012.2203921
– ident: e_1_2_5_18_1
  doi: 10.1109/TIP.2017.2713099
– ident: e_1_2_5_30_1
  doi: 10.1109/TMI.2018.2865356.
– ident: e_1_2_5_24_1
  doi: 10.1109/TBME.2014.2320463
– ident: e_1_2_5_29_1
  article-title: Recovery of noisy points on band‐limited surfaces: kernel methods re‐explained
  publication-title: CoRR
– ident: e_1_2_5_19_1
– ident: e_1_2_5_11_1
  doi: 10.1109/TMI.2010.2100850
SSID ssj0009974
Score 2.5764706
Snippet Purpose To introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing &...
To introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated...
PurposeTo introduce a novel framework to combine deep‐learned priors along with complementary image regularization penalties to reconstruct free breathing &...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms Algorithms
alternating minimization
Artificial neural networks
Breathing
Cardiac Imaging Techniques - methods
Conjugate gradient method
Consistency
Data recovery
Databases, Factual
Deep Learning
free breathing cardiac MR
Heart
Heart - diagnostic imaging
Humans
Image acquisition
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Iterative algorithms
Iterative methods
learned prior
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Manifolds
Measurement methods
model‐based
Neural networks
Noise reduction
non‐local prior
Optimization
Regularization
Respiration
Smoothness
subject specific prior
Title Dynamic MRI using model‐based deep learning and SToRM priors: MoDL‐SToRM
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27706
https://www.ncbi.nlm.nih.gov/pubmed/30860286
https://www.proquest.com/docview/2216413780
https://www.proquest.com/docview/2190492386
https://pubmed.ncbi.nlm.nih.gov/PMC7895318
Volume 82
WOSCitedRecordID wos000481978800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Backfiles
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLSAu_BQoW0plEAcuaRPbiW04IZYVlTYrtLRib5FjO2WlNlklbc99BJ6RJ6ntZFNWBQmJmxNPEsee8YzjyfcBvGUhV7FkOogpKwKrFDLgPOdBIgiNrVLJnGpPNsGmUz6fi68b8GH1L0yLD9F_cHOW4edrZ-Aybw5uQEPP6rN9zJiD297EVm_jAWyOZuPjyQ3mrmhBmBl1U42gK2ChEB_0F6-7o1sx5u1Uyd9DWO-Dxo_-q_WP4WEXeqKPra48gQ1TbsH9tNtc34J7PhtUNU9hMmp56lE6O0QuM_4EecacX1c_ndfTSBuzRB3hxAmSpUbfjqpZipb1oqqb9yitRhMr7E8-g-Px56NPX4KOdiFQDgsmMIQpRZU2nFOe2KJQURFxzUhuRKJ1KHIljYyVwQwbSYxb8mBjaFG44FGT5zAoq9K8AJTHimgWqzDJNZWc5TQqDAnzIjIskiQZwrtV72eqwyR31BinWYumjDPbT5nvpyG86UWXLRDHn4R2V0OYdbbYZBjbJWFEGA-H8LqvtlbktkZkaaoLK2PjIgdVx-0tttsR759CQsfT5WrYmi70Ag6he72mXPzwSN2MCzvHcfuaXhf-3vAsnaW-sPPvoi_hgY3eRJs7vAuD8_rCvIK76vJ80dR7cIfN-V5nEvbo--H0Gq9VENo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5V5a8Xfgq0CwUM4sAlbRI7sY24IErVFZsVWhbRW-TYTlmpTVbZlnMfoc_Ik-BxsimrgoTEzYoniTOescf25PsAXvNQ6ERxEySMl4EzChUIUYgglZQlzqhUwYwnm-DjsTg6kp_X4N3yX5gWH6LfcEPP8OM1OjhuSO9doYaeNqe7MeeIt32DuUADiRu-DcdXkLuyxWDmDEcayZa4QmG819-6OhtdCzGvZ0r-HsH6Kejg3v81_j7c7UJP8r61lQewZqtNuJ11h-ubcMtng-rFQxjttzz1JJsMCWbGHxPPmPPz4hJnPUOMtXPSEU4cE1UZ8mVaTzIyb2Z1s3hLsnp_5IT9xUfw9eDj9MNh0NEuBBqxYAJLudZMGysEE6krSh2VkTCcFlamxoSy0MqqRNuYx1ZRi0ue2FpWlhg8GvoY1qu6sttAikRTwxMdpoVhSvCCRaWlYVFGlkeKpgN4s1R_rjtMcqTGOMlbNOU4d3rKvZ4G8KoXnbdAHH8S2ln2Yd754iKPY7ckjCgX4QBe9tXOi_BoRFW2PncyLi5CqDrhHrHVdnn_FhoiTxfW8BVj6AUQoXu1ppp990jdXEg3xgn3md4Y_t7wPJtkvvDk30VfwJ3DaTbKR8Pxp6ew4SI52eYR78D6WXNun8FN_eNstmiee7_4BcpJEaU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VW6i4UCh_SwsYxIFLaBI7sY24IJYVFZtVtbRSb5FjT8pKNFllW848As_YJ6ntZFNWBQmJmxVPEmc8Y4_tyfcBvOah0IniJkgYLwNrFCoQohBBKilLrFGpghlPNsGnU3FyIg834P3qX5gWH6LfcHOe4cdr5-C4MOX-NWroWXP2Nubc4W1vMkciM4DN0Wx8PLkG3ZUtCjNnbqyRbIUsFMb7_c3r89GNIPNmruTvMayfhMbb_9f8e3C3Cz7Jh9Za7sMGVjuwlXXH6ztw2-eD6uUDmIxapnqSzQ6Iy40_JZ4z5_LnLzfvGWIQF6SjnDglqjLk61E9y8iimdfN8h3J6tHECvuLD-F4_Ono4-egI14ItEODCZByrZk2KAQTqS1KHZWRMJwWKFNjQllohSrRGPMYFUW36IkRWVm68NHQRzCo6gqfACkSTQ1PdJgWhinBCxaVSMOijJBHiqZDeLNSf647VHJHjvE9b_GU49zqKfd6GsKrXnTRQnH8SWhv1Yd5543LPI7tojCiXIRDeNlXWz9yhyOqwvrCytjIyIHVCfuIx22X92-hoWPqcjV8zRh6AYfRvV5Tzb95rG4upB3lhP1Mbwx_b3iezTJfePrvoi9g63A0zicH0y-7cMeGcrJNJN6DwXlzgc_glv5xPl82zzvHuAKMqhJO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+MRI+using+model%E2%80%90based+deep+learning+and+SToRM+priors%3A+MoDL%E2%80%90SToRM&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Biswas%2C+Sampurna&rft.au=Aggarwal%2C+Hemant+K.&rft.au=Jacob%2C+Mathews&rft.date=2019-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=82&rft.issue=1&rft.spage=485&rft.epage=494&rft_id=info:doi/10.1002%2Fmrm.27706&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon