A probiotic modulates the microbiome and immunity in multiple sclerosis

Objective Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS) patients. Methods MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Str...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of neurology Ročník 83; číslo 6; s. 1147 - 1161
Hlavní autoři: Tankou, Stephanie K., Regev, Keren, Healy, Brian C., Tjon, Emily, Laghi, Luca, Cox, Laura M., Kivisäkk, Pia, Pierre, Isabelle V., Hrishikesh, Lokhande, Gandhi, Roopali, Cook, Sandra, Glanz, Bonnie, Stankiewicz, James, Weiner, Howard L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.06.2018
Témata:
ISSN:0364-5134, 1531-8249, 1531-8249
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS) patients. Methods MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice‐daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2‐month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics. Results Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti‐inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA‐DQA1 in controls. Probiotic‐induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls. Interpretation Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018
AbstractList ObjectiveEffect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS) patients.MethodsMS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice‐daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2‐month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics.ResultsProbiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti‐inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA‐DQA1 in controls. Probiotic‐induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls.InterpretationOur results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018
Objective Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS) patients. Methods MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice‐daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2‐month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics. Results Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti‐inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA‐DQA1 in controls. Probiotic‐induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls. Interpretation Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018
Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients.OBJECTIVEEffect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients.MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice-daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2-month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics.METHODSMS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice-daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2-month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics.Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA-DQA1 in controls. Probiotic-induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls.RESULTSProbiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA-DQA1 in controls. Probiotic-induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls.Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018.INTERPRETATIONOur results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018.
Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients. MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice-daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2-month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics. Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA-DQA1 in controls. Probiotic-induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls. Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018.
Author Glanz, Bonnie
Gandhi, Roopali
Tankou, Stephanie K.
Tjon, Emily
Laghi, Luca
Cook, Sandra
Cox, Laura M.
Kivisäkk, Pia
Pierre, Isabelle V.
Stankiewicz, James
Weiner, Howard L.
Healy, Brian C.
Hrishikesh, Lokhande
Regev, Keren
AuthorAffiliation 1 Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
2 Evergrande Center for Immunologic Diseases
3 University of Bologna, Department of Agricultural and Food Sciences, Cesena 47521, Italy
AuthorAffiliation_xml – name: 3 University of Bologna, Department of Agricultural and Food Sciences, Cesena 47521, Italy
– name: 1 Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
– name: 2 Evergrande Center for Immunologic Diseases
Author_xml – sequence: 1
  givenname: Stephanie K.
  surname: Tankou
  fullname: Tankou, Stephanie K.
  email: stankou@bwh.harvard.edu
  organization: Evergrande Center for Immunologic Diseases
– sequence: 2
  givenname: Keren
  surname: Regev
  fullname: Regev, Keren
  organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School
– sequence: 3
  givenname: Brian C.
  surname: Healy
  fullname: Healy, Brian C.
  organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School
– sequence: 4
  givenname: Emily
  surname: Tjon
  fullname: Tjon, Emily
  organization: Evergrande Center for Immunologic Diseases
– sequence: 5
  givenname: Luca
  surname: Laghi
  fullname: Laghi, Luca
  organization: University of Bologna, Department of Agricultural and Food Sciences
– sequence: 6
  givenname: Laura M.
  surname: Cox
  fullname: Cox, Laura M.
  organization: Evergrande Center for Immunologic Diseases
– sequence: 7
  givenname: Pia
  surname: Kivisäkk
  fullname: Kivisäkk, Pia
  organization: Evergrande Center for Immunologic Diseases
– sequence: 8
  givenname: Isabelle V.
  surname: Pierre
  fullname: Pierre, Isabelle V.
  organization: Evergrande Center for Immunologic Diseases
– sequence: 9
  givenname: Lokhande
  surname: Hrishikesh
  fullname: Hrishikesh, Lokhande
  organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School
– sequence: 10
  givenname: Roopali
  surname: Gandhi
  fullname: Gandhi, Roopali
  organization: Evergrande Center for Immunologic Diseases
– sequence: 11
  givenname: Sandra
  surname: Cook
  fullname: Cook, Sandra
  organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School
– sequence: 12
  givenname: Bonnie
  surname: Glanz
  fullname: Glanz, Bonnie
  organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School
– sequence: 13
  givenname: James
  surname: Stankiewicz
  fullname: Stankiewicz, James
  organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School
– sequence: 14
  givenname: Howard L.
  surname: Weiner
  fullname: Weiner, Howard L.
  organization: Evergrande Center for Immunologic Diseases
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29679417$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtPHDEQhC1EFJYlh_yByFIu4TDgx3jGvkRaoUAioeTC3fJ6eoKRH5uxh2j_fQy7oICSkw_9Vbm66xgdxhQBofeUnFFC2LmJ5owJ1rYHaEEFp41krTpEC8K7thGUt0foOOc7QojqKHmLjpjqetXSfoGuVngzpbVLxVkc0jB7UyDjcgs4OPs4CYBNHLALYY6ubLGLOMy-uI0HnK2HKWWXT9Cb0fgM7_bvEt1cfrm5-Npc_7j6drG6bqwgqm2k4HYcBci17AW1g-VCKGGF5FYOYy_BAGEdYcRI2Qou-Zoo3kGvLKMWgC_R553tZl4HGCzEMhmvN5MLZtrqZJx-OYnuVv9M97qjklKuqsGnvcGUfs2Qiw4uW_DeREhz1owwqQSj9esl-vgKvUvzFOt2leo7WSHOKvXh70TPUZ5OXIHzHVCvmfMEo7aumOLSQ0DnNSX6oURdS9SPJVbF6SvFk-m_2L37b-dh-39Qr76vdoo_b1CrGw
CitedBy_id crossref_primary_10_2147_DDDT_S489454
crossref_primary_10_1002_glia_23711
crossref_primary_10_1007_s44192_022_00011_4
crossref_primary_10_3390_microorganisms9030496
crossref_primary_10_1016_j_jneuroim_2019_577126
crossref_primary_10_1038_s41591_019_0377_7
crossref_primary_10_3390_brainsci15030253
crossref_primary_10_1172_JCI143774
crossref_primary_10_1016_j_micres_2025_128286
crossref_primary_10_1016_j_jocn_2020_11_011
crossref_primary_10_3390_cancers13112810
crossref_primary_10_3389_fnins_2022_901846
crossref_primary_10_1016_j_addr_2021_114021
crossref_primary_10_3389_fbioe_2019_00435
crossref_primary_10_4103_1673_5374_387974
crossref_primary_10_1186_s13063_019_3454_9
crossref_primary_10_1186_s40168_024_01819_8
crossref_primary_10_3390_microorganisms10030617
crossref_primary_10_1016_j_chom_2019_10_008
crossref_primary_10_1007_s11940_021_00693_1
crossref_primary_10_1038_s41577_022_00727_y
crossref_primary_10_1080_10408398_2020_1843396
crossref_primary_10_3389_fcimb_2022_1095053
crossref_primary_10_1016_j_clnu_2024_05_036
crossref_primary_10_1186_s12974_025_03417_3
crossref_primary_10_1007_s00115_019_0756_9
crossref_primary_10_3389_fimmu_2023_1176016
crossref_primary_10_3390_microorganisms10071428
crossref_primary_10_3390_nu16244404
crossref_primary_10_3390_nu17111769
crossref_primary_10_3389_fvets_2022_971647
crossref_primary_10_1080_19490976_2021_1943289
crossref_primary_10_1038_s41598_024_64369_x
crossref_primary_10_1128_CMR_00338_20
crossref_primary_10_1155_2021_6699268
crossref_primary_10_1016_j_xcrm_2025_101982
crossref_primary_10_1016_j_jaut_2022_102957
crossref_primary_10_1128_iai_00503_24
crossref_primary_10_3390_ijms20174121
crossref_primary_10_3390_microorganisms9061132
crossref_primary_10_3389_fimmu_2021_628741
crossref_primary_10_1186_s40168_022_01408_7
crossref_primary_10_3390_biom12030433
crossref_primary_10_1073_pnas_2002817117
crossref_primary_10_3389_fneur_2022_917527
crossref_primary_10_1007_s12602_024_10438_6
crossref_primary_10_1016_j_bbadis_2020_165779
crossref_primary_10_2174_1381612828666220919085742
crossref_primary_10_3390_biology14040435
crossref_primary_10_1073_pnas_2020106117
crossref_primary_10_1016_j_conb_2020_01_005
crossref_primary_10_1111_ijcp_14724
crossref_primary_10_1080_10408398_2021_1920884
crossref_primary_10_1080_1040841X_2022_2044286
crossref_primary_10_1111_cen3_12499
crossref_primary_10_31083_j_jin2307127
crossref_primary_10_3389_fneur_2019_00574
crossref_primary_10_1002_advs_202307971
crossref_primary_10_1038_s41573_022_00477_5
crossref_primary_10_1016_j_neurot_2024_e00469
crossref_primary_10_1016_j_bbi_2020_08_027
crossref_primary_10_1016_j_heliyon_2024_e33214
crossref_primary_10_1155_2020_2058272
crossref_primary_10_1016_j_msard_2021_103031
crossref_primary_10_3390_medicina60010006
crossref_primary_10_3390_nu13113866
crossref_primary_10_1111_febs_17161
crossref_primary_10_1016_j_autrev_2019_03_016
crossref_primary_10_3390_metabo10030120
crossref_primary_10_1177_2055217319888767
crossref_primary_10_3389_fnins_2022_1002266
crossref_primary_10_1208_s12249_024_02764_3
crossref_primary_10_1177_13524585211016722
crossref_primary_10_3389_fimmu_2020_00575
crossref_primary_10_3390_ijerph17113979
crossref_primary_10_1016_j_bbi_2019_07_019
crossref_primary_10_3390_ijms241915024
crossref_primary_10_1177_13524585211016723
crossref_primary_10_1111_cns_70320
crossref_primary_10_1007_s00415_023_12140_z
crossref_primary_10_1016_j_tins_2020_06_002
crossref_primary_10_1007_s12017_024_08783_4
crossref_primary_10_3390_ijms21207551
crossref_primary_10_1186_s13073_024_01364_x
crossref_primary_10_1016_j_neurot_2024_e00476
crossref_primary_10_3389_fnins_2021_616883
crossref_primary_10_1002_eji_201847807
crossref_primary_10_1016_j_maturitas_2018_11_002
crossref_primary_10_1016_j_msard_2025_106319
crossref_primary_10_1177_1099800418811639
crossref_primary_10_1007_s10495_025_02160_7
crossref_primary_10_1016_j_ebiom_2025_105743
crossref_primary_10_1186_s40814_023_01306_1
crossref_primary_10_1186_s12974_019_1611_4
crossref_primary_10_3390_ijms232214478
crossref_primary_10_1177_1352458520923955
crossref_primary_10_1016_j_microb_2025_100497
crossref_primary_10_1016_j_clim_2020_108380
crossref_primary_10_1016_j_micres_2025_128240
crossref_primary_10_1016_j_bbi_2020_07_036
crossref_primary_10_1186_s40168_022_01364_2
crossref_primary_10_1097_CM9_0000000000002212
crossref_primary_10_1038_s41398_023_02436_z
crossref_primary_10_1073_pnas_2413953122
crossref_primary_10_1111_cen3_12673
crossref_primary_10_1016_j_msard_2024_106151
crossref_primary_10_3389_fmicb_2023_1191445
crossref_primary_10_1016_j_jneuroim_2024_578422
crossref_primary_10_1016_j_phrs_2024_107456
crossref_primary_10_1016_S1474_4422_19_30356_4
crossref_primary_10_1039_D0FO03203D
crossref_primary_10_1016_j_msard_2024_105453
crossref_primary_10_1007_s11010_023_04853_6
crossref_primary_10_1016_j_nbd_2019_104714
crossref_primary_10_1038_s41598_023_46047_6
crossref_primary_10_4103_1673_5374_335139
crossref_primary_10_3389_fcimb_2023_1224155
crossref_primary_10_1080_14737175_2020_1775585
crossref_primary_10_1002_ana_26084
crossref_primary_10_3389_fncel_2022_1028653
crossref_primary_10_1007_s12602_025_10632_0
crossref_primary_10_3233_JHD_220556
crossref_primary_10_1111_imr_13343
crossref_primary_10_1038_s41522_022_00307_x
crossref_primary_10_3389_fcimb_2023_1167312
crossref_primary_10_1016_j_nexres_2025_100441
crossref_primary_10_1073_pnas_1905955116
crossref_primary_10_1007_s10072_018_3641_6
crossref_primary_10_1212_NXI_0000000000000632
crossref_primary_10_3390_antiox11112287
crossref_primary_10_1016_j_ebiom_2025_105721
crossref_primary_10_3390_nu11040788
crossref_primary_10_1016_j_msard_2024_105762
crossref_primary_10_1155_2020_8854119
crossref_primary_10_1016_j_lfs_2022_120605
crossref_primary_10_3390_jcm12247610
crossref_primary_10_3390_ijms24010142
crossref_primary_10_3390_nu16111695
crossref_primary_10_1016_j_pharmthera_2021_107988
crossref_primary_10_3389_fimmu_2021_718220
crossref_primary_10_1016_j_intimp_2023_111091
crossref_primary_10_3389_fnut_2023_1209238
crossref_primary_10_3389_fimmu_2025_1513599
crossref_primary_10_3390_molecules25214891
crossref_primary_10_3389_fimmu_2021_747143
crossref_primary_10_1038_s41582_024_01046_7
crossref_primary_10_1016_j_jpsychires_2023_01_006
crossref_primary_10_3390_nu14132711
crossref_primary_10_3390_genes13050930
crossref_primary_10_3390_cells12131760
crossref_primary_10_3390_ijms25179489
crossref_primary_10_3390_jcm10061299
crossref_primary_10_1007_s12026_024_09471_y
crossref_primary_10_1111_cen3_12591
crossref_primary_10_3390_metabo9010015
crossref_primary_10_1016_j_immuni_2020_09_016
crossref_primary_10_1515_revneuro_2019_0005
crossref_primary_10_1038_s41598_024_59250_w
crossref_primary_10_1038_s41582_022_00697_8
crossref_primary_10_3390_microorganisms8060921
crossref_primary_10_1016_j_xcrm_2025_102055
crossref_primary_10_1016_j_clnu_2021_02_015
crossref_primary_10_3390_cells9040906
crossref_primary_10_1007_s40263_023_00986_w
crossref_primary_10_3389_fmicb_2025_1558833
crossref_primary_10_1089_aid_2022_0123
Cites_doi 10.1016/j.clnu.2016.08.015
10.1002/mnfr.201300028
10.1038/nm.3914
10.1371/journal.pone.0157623
10.1371/journal.pone.0137429
10.4049/jimmunol.1001443
10.1016/j.celrep.2017.07.031
10.1155/2016/5190846
10.4049/jimmunol.174.6.3237
10.1111/j.1572-0241.2005.41794.x
10.1371/journal.pone.0009009
10.1038/nbt.2676
10.1016/j.biopha.2017.08.117
10.1073/pnas.1711235114
10.1016/j.copbio.2013.08.004
10.1038/ncomms12015
10.1523/JNEUROSCI.0575-15.2015
10.1038/nmeth.f.303
10.1021/ac051632c
10.1073/pnas.1000082107
10.1093/bioinformatics/bts611
10.1111/j.1442-9993.2001.01070.pp.x
10.1073/pnas.1711233114
10.1136/gutjnl-2016-312377
10.1084/jem.20151345
10.1016/S0016-5085(03)00171-9
10.1366/000370210792434350
10.1038/nm.4106
10.1186/s12974-015-0460-z
10.1038/ismej.2012.8
10.1038/srep28484
10.1002/iid3.160
10.1038/nature10554
10.1093/nar/gkl923
10.4049/jimmunol.0900747
10.1155/2016/7569431
10.1126/sciadv.1700492
ContentType Journal Article
Copyright 2018 American Neurological Association
2018 American Neurological Association.
Copyright_xml – notice: 2018 American Neurological Association
– notice: 2018 American Neurological Association.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
5PM
DOI 10.1002/ana.25244
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 1161
ExternalDocumentID PMC6181139
29679417
10_1002_ana_25244
ANA25244
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Teva Neuroscience
– fundername: Ann Romney Center for Neurologic Diseases
– fundername: NINDS NIH HHS
  grantid: R01 NS087226
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACRZS
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
5PM
ID FETCH-LOGICAL-c5094-853cff5e8b8751cdc35595c583c8df78eae026020a8845383b0936e79c21cee3
IEDL.DBID DRFUL
ISICitedReferencesCount 190
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439994300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-5134
1531-8249
IngestDate Tue Nov 04 02:05:10 EST 2025
Thu Oct 02 05:11:23 EDT 2025
Thu Dec 04 04:22:03 EST 2025
Mon Jul 21 06:02:15 EDT 2025
Sat Nov 29 03:41:27 EST 2025
Tue Nov 18 21:13:53 EST 2025
Wed Jan 22 16:19:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2018 American Neurological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5094-853cff5e8b8751cdc35595c583c8df78eae026020a8845383b0936e79c21cee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6181139
PMID 29679417
PQID 2076821332
PQPubID 946345
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181139
proquest_miscellaneous_2028952138
proquest_journals_2076821332
pubmed_primary_29679417
crossref_citationtrail_10_1002_ana_25244
crossref_primary_10_1002_ana_25244
wiley_primary_10_1002_ana_25244_ANA25244
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 479
2017; 5
2015; 35
2015; 12
2017; 20
2017; 3
2005; 174
2006; 78
2017; 66
2015; 10
2010; 185
2014; 25
2016; 2016
2001; 26
2017; 114
2007; 35
2016; 11
2017; 95
2016; 6
2016; 7
2010; 64
2011; 108
2005; 100
2017; 36
2013; 57
2013; 31
2015; 21
2009; 183
2012; 28
2016; 213
2012; 6
2003; 124
2010; 5
2010; 7
2016; 22
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 213
  start-page: 2603
  year: 2016
  end-page: 2620
  article-title: Gut dysbiosis impairs recovery after spinal cord injury
  publication-title: J Exp Med
– volume: 22
  start-page: 586
  year: 2016
  end-page: 597
  article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor
  publication-title: Nat Med
– volume: 12
  start-page: 245
  year: 2015
  article-title: Identification of a novel mechanism of action of fingolimod (FTY720) on human effector T cell function through TCF‐1 upregulation
  publication-title: J Neuroinflammation
– volume: 21
  start-page: 895
  year: 2015
  end-page: 905
  article-title: The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment
  publication-title: Nat Med
– volume: 2016
  start-page: 5190846
  year: 2016
  article-title: Effects of a multispecies probiotic mixture on glycemic control and inflammatory status in women with gestational diabetes: a randomized controlled clinical trial
  publication-title: J Nutr Metab
– volume: 64
  start-page: 1007
  year: 2010
  end-page: 1016
  article-title: Optimal choice of baseline correction for multivariate calibration of spectra
  publication-title: Appl Spectrosc
– volume: 36
  start-page: 1245
  year: 2017
  end-page: 1249
  article-title: Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double‐blind, placebo‐controlled trial
  publication-title: Clin Nutr
– volume: 183
  start-page: 6041
  year: 2009
  end-page: 6050
  article-title: Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis
  publication-title: J Immunol
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  article-title: QIIME allows analysis of high‐throughput community sequencing data
  publication-title: Nat Meth
– volume: 26
  start-page: 32
  year: 2001
  end-page: 46
  article-title: A new method for non‐parametric multivariate analysis of variance
  publication-title: Austral Ecol
– volume: 100
  start-page: 1539
  year: 2005
  end-page: 1546
  article-title: VSL#3 probiotic‐mixture induces remission in patients with active ulcerative colitis
  publication-title: Am J Gastroenterol
– volume: 5
  start-page: 244
  year: 2017
  end-page: 260
  article-title: Probiotic supplementation promotes a reduction in T‐cell activation, an increase in Th17 frequencies, and a recovery of intestinal epithelium integrity and mitochondrial morphology in ART‐treated HIV‐1‐positive patients
  publication-title: Immun Inflamm Dis
– volume: 6
  start-page: 1621
  year: 2012
  end-page: 1624
  article-title: Ultra‐high‐throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J
– volume: 11
  start-page: e0157623
  year: 2016
  article-title: Age‐related 1H NMR characterization of cerebrospinal fluid in newborn and young healthy piglets
  publication-title: PLoS One
– volume: 57
  start-page: 2233
  year: 2013
  end-page: 2244
  article-title: Probiotic VSL#3‐induced TGF‐β ameliorates food allergy inflammation in a mouse model of peanut sensitization through the induction of regulatory T cells in the gut mucosa
  publication-title: Mol Nutr Food Res
– volume: 174
  start-page: 3237
  year: 2005
  end-page: 3246
  article-title: Probiotics ameliorate recurrent Th1‐mediated murine colitis by inducing IL‐10 and IL‐10‐dependent TGF‐betabearing regulatory cells
  publication-title: J Immunol
– volume: 35
  start-page: 10821
  year: 2015
  end-page: 10830
  article-title: Probiotics improve inflammation‐associated sickness behavior by altering communication between the peripheral immune system and the brain
  publication-title: J Neurosci
– volume: 31
  start-page: 814
  year: 2013
  end-page: 821
  article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
  publication-title: Nat Biotechnol
– volume: 28
  start-page: 3211
  year: 2012
  end-page: 3217
  article-title: SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data
  publication-title: Bioinformatics
– volume: 95
  start-page: 1535
  year: 2017
  end-page: 1548
  article-title: Bifidobacterium animalis in combination with human origin of ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4 T cell subset balance
  publication-title: Biomed Pharmacother
– volume: 2016
  start-page: 7569431
  year: 2016
  article-title: Oral probiotic VSL#3 prevents autoimmune diabetes by modulating microbiota and promoting indoleamine 2,3‐dioxygenase‐enriched tolerogenic intestinal environment
  publication-title: J Diabetes Res
– volume: 10
  start-page: e0137429
  year: 2015
  article-title: Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters
  publication-title: PLoS One
– volume: 185
  start-page: 4101
  year: 2010
  end-page: 4108
  article-title: Central nervous system demyelinating disease protection by the human commensal bacteroides fragilis depends on polysaccharide A expression
  publication-title: J Immunol
– volume: 114
  start-page: 10719
  year: 2017
  end-page: 10724
  article-title: Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 114
  start-page: 10713
  year: 2017
  end-page: 10718
  article-title: Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models
  publication-title: Proc Natl Acad Sci U S A
– volume: 20
  start-page: 1269
  year: 2017
  end-page: 1277
  article-title: Human gut‐derived commensal bacteria suppress CNS inflammatory and demyelinating disease
  publication-title: Cell Rep
– volume: 78
  start-page: 4281
  year: 2006
  end-page: 4290
  article-title: Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. application in 1H NMR metabonomics
  publication-title: Anal Chem
– volume: 479
  start-page: 538
  year: 2011
  end-page: 541
  article-title: Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination
  publication-title: Nature
– volume: 35
  start-page: D521
  issue: Database
  year: 2007
  end-page: D526
  article-title: HMDB: The Human Metabolome Database
  publication-title: Nucleic Acids Research
– volume: 7
  start-page: 12015
  year: 2016
  article-title: Alterations of the human gut microbiome in multiple sclerosis
  publication-title: Nat Commun
– volume: 66
  start-page: 1252
  year: 2017
  end-page: 1261
  article-title: Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease
  publication-title: Gut
– volume: 5
  start-page: e9009
  year: 2010
  article-title: A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL‐10 producing regulatory T cells
  publication-title: PLoS One
– volume: 108
  start-page: 4615
  year: 2011
  end-page: 4622
  article-title: Proinflammatory T‐cell responses to gut microbiota promote experimental autoimmune encephalomyelitis
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  start-page: 51
  year: 2014
  end-page: 59
  article-title: Universal quantitative NMR analysis of complex natural samples
  publication-title: Curr Opin Biotechnol
– volume: 6
  start-page: 28484
  year: 2016
  article-title: Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls
  publication-title: Sci Rep
– volume: 3
  start-page: e1700492
  year: 2017
  article-title: High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis
  publication-title: Sci Adv
– volume: 124
  start-page: 1202
  year: 2003
  end-page: 1209
  article-title: Prophylaxis of pouchitis onset with probiotic therapy: a double‐blind, placebo‐controlled trial
  publication-title: Gastroenterology
– ident: e_1_2_8_37_1
  doi: 10.1016/j.clnu.2016.08.015
– ident: e_1_2_8_16_1
  doi: 10.1002/mnfr.201300028
– ident: e_1_2_8_3_1
  doi: 10.1038/nm.3914
– ident: e_1_2_8_28_1
  doi: 10.1371/journal.pone.0157623
– ident: e_1_2_8_4_1
  doi: 10.1371/journal.pone.0137429
– ident: e_1_2_8_8_1
  doi: 10.4049/jimmunol.1001443
– ident: e_1_2_8_11_1
  doi: 10.1016/j.celrep.2017.07.031
– ident: e_1_2_8_23_1
  doi: 10.1155/2016/5190846
– ident: e_1_2_8_15_1
  doi: 10.4049/jimmunol.174.6.3237
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1572-0241.2005.41794.x
– ident: e_1_2_8_39_1
  doi: 10.1371/journal.pone.0009009
– ident: e_1_2_8_27_1
  doi: 10.1038/nbt.2676
– ident: e_1_2_8_38_1
  doi: 10.1016/j.biopha.2017.08.117
– ident: e_1_2_8_14_1
  doi: 10.1073/pnas.1711235114
– ident: e_1_2_8_29_1
  doi: 10.1016/j.copbio.2013.08.004
– ident: e_1_2_8_2_1
  doi: 10.1038/ncomms12015
– ident: e_1_2_8_20_1
  doi: 10.1523/JNEUROSCI.0575-15.2015
– ident: e_1_2_8_25_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_8_33_1
  doi: 10.1021/ac051632c
– ident: e_1_2_8_36_1
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1000082107
– ident: e_1_2_8_26_1
  doi: 10.1093/bioinformatics/bts611
– ident: e_1_2_8_35_1
  doi: 10.1111/j.1442-9993.2001.01070.pp.x
– ident: e_1_2_8_13_1
  doi: 10.1073/pnas.1711233114
– ident: e_1_2_8_32_1
  doi: 10.1136/gutjnl-2016-312377
– ident: e_1_2_8_19_1
  doi: 10.1084/jem.20151345
– ident: e_1_2_8_22_1
  doi: 10.1016/S0016-5085(03)00171-9
– ident: e_1_2_8_31_1
  doi: 10.1366/000370210792434350
– ident: e_1_2_8_10_1
  doi: 10.1038/nm.4106
– ident: e_1_2_8_34_1
  doi: 10.1186/s12974-015-0460-z
– ident: e_1_2_8_24_1
  doi: 10.1038/ismej.2012.8
– ident: e_1_2_8_5_1
  doi: 10.1038/srep28484
– ident: e_1_2_8_18_1
  doi: 10.1002/iid3.160
– ident: e_1_2_8_7_1
  doi: 10.1038/nature10554
– ident: e_1_2_8_30_1
  doi: 10.1093/nar/gkl923
– ident: e_1_2_8_6_1
  doi: 10.4049/jimmunol.0900747
– ident: e_1_2_8_17_1
  doi: 10.1155/2016/7569431
– ident: e_1_2_8_12_1
  doi: 10.1126/sciadv.1700492
SSID ssj0009610
Score 2.6342738
Snippet Objective Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS)...
Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients. MS...
ObjectiveEffect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS)...
Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS)...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1147
SubjectTerms Abundance
Adult
Alleles
Bifidobacterium
Bifidobacterium - genetics
Bifidobacterium - immunology
CD80 antigen
Dendritic cells
DQA1 protein
Dysbacteriosis
Encyclopedias
Female
Fluorescence
Gastrointestinal Microbiome - physiology
Genomes
Histocompatibility antigen HLA
Humans
Immune response
Immune system
Immunity
Inflammation
Intestinal microflora
Lactobacillus
Lactobacillus - genetics
Lactobacillus - immunology
Leukocytes
Leukocytes (mononuclear)
Leukocytes, Mononuclear - metabolism
Male
Metabolism
Metabolomics
Microbiomes
Microbiota
Microbiota - genetics
Microbiota - immunology
Middle Aged
Monocytes
Multiple sclerosis
Multiple Sclerosis - genetics
Multiple Sclerosis - immunology
Oral administration
Patients
Peripheral blood mononuclear cells
Probiotics
Probiotics - metabolism
RNA, Ribosomal, 16S - genetics
rRNA 16S
Supplements
Synergistic effect
Young Adult
Title A probiotic modulates the microbiome and immunity in multiple sclerosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.25244
https://www.ncbi.nlm.nih.gov/pubmed/29679417
https://www.proquest.com/docview/2076821332
https://www.proquest.com/docview/2028952138
https://pubmed.ncbi.nlm.nih.gov/PMC6181139
Volume 83
WOSCitedRecordID wos000439994300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1531-8249
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009610
  issn: 0364-5134
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BglAvtLzatBS5iAOXwMZ52eppRbvtAVYVgmpvkWNPRKRuFpGlUv89Y-cBK4pUqbdInjz8mJlvMvY3AEdDjFCblPtk65RPHi-0Omd8xIQLw7VRrn7Kz_N0MhHTqfyxAp-7szANP0T_w81qhrPXVsFVXp8-koaqSp3wmLzTKqxxWrfxANa-XI6vzx85dxNHRmAzbX4chFFHLDTkp_3Ny-7oGcZ8vlXyKYR1Pmj8-r--_g1sttCTjZq1sgUrWG3DxkWbXN-BbyN261iZqJ3N5sYW9sKaEUJks7Lha5ohU5VhpTtUsvjDyop1OxJZTQ-lPpb1LlyNv16dfffbOgu-tvR5PnlsXRQxipyCl0AbTRhExjoWoRamSAUqtMxjfKiEiMhAhvlQhgmmUvOAfGy4B4NqXuE7YFJiUEjFMcopzNShyE2B0hBqyyPNDXpw3I12plsOclsK41fWsCfzjMYlc-PiwWEvetsQb_xNaL-bsqzVvTrjNrnIKfbmHnzqm0lrbCpEVTi_tzIUaBJyCYUHb5sZ7t_CZUJGKkg9SJfmvhewjNzLLVV545i5E8JLBKmpm27uX_7wbDQZuYv3_y76AV4RWhPNPrV9GCzu7vEjrOvfi7K-O4DVdCoOWhV4AEGDCUs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFkEvPAuEltZUPXBJd-O8bKmXFbAt6naFqqXqLXLsiYjEZqtmW4l_z9h5lFVBQuIWyZPEr5n5xo9vAA6GGKE2KffJ1imfPF5odc74iAkXhmujXP6Ui0k6nYrLS_l1DY66uzANP0S_4GY1w9lrq-B2QXpwxxqqKnXIY3JPD2AjomlE83vj0_n42-SOdDdxbAR2q82PgzDqmIWGfNC_vOqP7oHM-2clf8ewzgmNn_5f9Z_BkxZ8slEzW57DGlYv4NFZu73-Eo5H7MrxMlE5my-MTe2FNSOMyOZlw9g0R6Yqw0p3rWT5k5UV684kspo-So0s6y2YjT_PPp74baYFX1sCPZ98ti6KGEVO4UugjSYUImMdi1ALU6QCFVruMT5UQkRkIsN8KMMEU6l5QF42fAXr1aLCN8CkxKCQimOUU6CpQ5GbAqUh3JZHmhv04EPX3ZluWchtMowfWcOfzDPql8z1iwf7vehVQ73xJ6GdbsyyVvvqjNvtRU7RN_fgfV9MemM3Q1SFixsrQ6EmYZdQePC6GeL-L1wmZKaC1IN0ZfB7AcvJvVpSld8dN3dCiIlANTXTDf7fK56NpiP38PbfRffg8cnsbJJNvkxPt2GTsJtoTq3twPry-gbfwUN9uyzr691WE34B1_kMUw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpUJcSumDptDWrXroJWXjvGyJywrYFnW7QhWtuEWOPRGR2OyKLJX67zt2HrCCSpW4RfIksT2ZmW9i-xuAj0OMUJuU--TrlE8RL7Q2Z3zEhAvDtVGufsqvSTqdivNzeboGB91ZmIYfov_hZi3D-Wtr4Lgwxf4Na6iq1GceU3h6BOuRLSIzgPWjH-OfkxvS3cSxEdilNj8OwqhjFhry_f7m1Xh0B2Te3St5G8O6IDTeelj3n8KTFnyyUfO1bMMaVs9g43u7vP4cvozYwvEyUTubzY0t7YU1I4zIZmXD2DRDpirDSnesZPmHlRXr9iSymh5KgyzrF3A2Pj47_Oq3lRZ8bQn0fIrZuihiFDmlL4E2mlCIjHUsQi1MkQpUaLnH-FAJEZGLDPOhDBNMpeYBRdnwJQyqeYWvgEmJQSEVxyinRFOHIjcFSkO4LY80N-jBp266M92ykNtiGJdZw5_MM5qXzM2LBx960UVDvXGf0F6ns6y1vjrjdnmRU_bNPXjfN5Pd2MUQVeH82spQqknYJRQe7DQq7t_CZUJuKkg9SFeU3wtYTu7Vlqq8cNzcCSEmAtU0TKf8f3c8G01H7uL1_4u-g43To3E2OZl-24VNgm6i2bS2B4Pl1TW-gcf697Ksr962hvAXUt4Lzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+probiotic+modulates+the+microbiome+and+immunity+in+multiple+sclerosis&rft.jtitle=Annals+of+neurology&rft.au=Tankou%2C+Stephanie+K.&rft.au=Regev%2C+Keren&rft.au=Healy%2C+Brian+C.&rft.au=Tjon%2C+Emily&rft.date=2018-06-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=83&rft.issue=6&rft.spage=1147&rft.epage=1161&rft_id=info:doi/10.1002%2Fana.25244&rft.externalDBID=10.1002%252Fana.25244&rft.externalDocID=ANA25244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon