A probiotic modulates the microbiome and immunity in multiple sclerosis
Objective Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS) patients. Methods MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Str...
Uložené v:
| Vydané v: | Annals of neurology Ročník 83; číslo 6; s. 1147 - 1161 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Wiley Subscription Services, Inc
01.06.2018
|
| Predmet: | |
| ISSN: | 0364-5134, 1531-8249, 1531-8249 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Objective
Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS) patients.
Methods
MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice‐daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2‐month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics.
Results
Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti‐inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA‐DQA1 in controls. Probiotic‐induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls.
Interpretation
Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018 |
|---|---|
| AbstractList | ObjectiveEffect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS) patients.MethodsMS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice‐daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2‐month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics.ResultsProbiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti‐inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA‐DQA1 in controls. Probiotic‐induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls.InterpretationOur results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018 Objective Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS) patients. Methods MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice‐daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2‐month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics. Results Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti‐inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA‐DQA1 in controls. Probiotic‐induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls. Interpretation Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018 Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients. MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice-daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2-month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics. Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA-DQA1 in controls. Probiotic-induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls. Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018. Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients.OBJECTIVEEffect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients.MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice-daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2-month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics.METHODSMS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice-daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2-month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics.Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA-DQA1 in controls. Probiotic-induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls.RESULTSProbiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA-DQA1 in controls. Probiotic-induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls.Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018.INTERPRETATIONOur results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018. |
| Author | Glanz, Bonnie Gandhi, Roopali Tankou, Stephanie K. Tjon, Emily Laghi, Luca Cook, Sandra Cox, Laura M. Kivisäkk, Pia Pierre, Isabelle V. Stankiewicz, James Weiner, Howard L. Healy, Brian C. Hrishikesh, Lokhande Regev, Keren |
| AuthorAffiliation | 1 Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA 2 Evergrande Center for Immunologic Diseases 3 University of Bologna, Department of Agricultural and Food Sciences, Cesena 47521, Italy |
| AuthorAffiliation_xml | – name: 3 University of Bologna, Department of Agricultural and Food Sciences, Cesena 47521, Italy – name: 1 Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA – name: 2 Evergrande Center for Immunologic Diseases |
| Author_xml | – sequence: 1 givenname: Stephanie K. surname: Tankou fullname: Tankou, Stephanie K. email: stankou@bwh.harvard.edu organization: Evergrande Center for Immunologic Diseases – sequence: 2 givenname: Keren surname: Regev fullname: Regev, Keren organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School – sequence: 3 givenname: Brian C. surname: Healy fullname: Healy, Brian C. organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School – sequence: 4 givenname: Emily surname: Tjon fullname: Tjon, Emily organization: Evergrande Center for Immunologic Diseases – sequence: 5 givenname: Luca surname: Laghi fullname: Laghi, Luca organization: University of Bologna, Department of Agricultural and Food Sciences – sequence: 6 givenname: Laura M. surname: Cox fullname: Cox, Laura M. organization: Evergrande Center for Immunologic Diseases – sequence: 7 givenname: Pia surname: Kivisäkk fullname: Kivisäkk, Pia organization: Evergrande Center for Immunologic Diseases – sequence: 8 givenname: Isabelle V. surname: Pierre fullname: Pierre, Isabelle V. organization: Evergrande Center for Immunologic Diseases – sequence: 9 givenname: Lokhande surname: Hrishikesh fullname: Hrishikesh, Lokhande organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School – sequence: 10 givenname: Roopali surname: Gandhi fullname: Gandhi, Roopali organization: Evergrande Center for Immunologic Diseases – sequence: 11 givenname: Sandra surname: Cook fullname: Cook, Sandra organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School – sequence: 12 givenname: Bonnie surname: Glanz fullname: Glanz, Bonnie organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School – sequence: 13 givenname: James surname: Stankiewicz fullname: Stankiewicz, James organization: Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School – sequence: 14 givenname: Howard L. surname: Weiner fullname: Weiner, Howard L. organization: Evergrande Center for Immunologic Diseases |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29679417$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtPHDEQhC1EFJYlh_yByFIu4TDgx3jGvkRaoUAioeTC3fJ6eoKRH5uxh2j_fQy7oICSkw_9Vbm66xgdxhQBofeUnFFC2LmJ5owJ1rYHaEEFp41krTpEC8K7thGUt0foOOc7QojqKHmLjpjqetXSfoGuVngzpbVLxVkc0jB7UyDjcgs4OPs4CYBNHLALYY6ubLGLOMy-uI0HnK2HKWWXT9Cb0fgM7_bvEt1cfrm5-Npc_7j6drG6bqwgqm2k4HYcBci17AW1g-VCKGGF5FYOYy_BAGEdYcRI2Qou-Zoo3kGvLKMWgC_R553tZl4HGCzEMhmvN5MLZtrqZJx-OYnuVv9M97qjklKuqsGnvcGUfs2Qiw4uW_DeREhz1owwqQSj9esl-vgKvUvzFOt2leo7WSHOKvXh70TPUZ5OXIHzHVCvmfMEo7aumOLSQ0DnNSX6oURdS9SPJVbF6SvFk-m_2L37b-dh-39Qr76vdoo_b1CrGw |
| CitedBy_id | crossref_primary_10_2147_DDDT_S489454 crossref_primary_10_1002_glia_23711 crossref_primary_10_1007_s44192_022_00011_4 crossref_primary_10_3390_microorganisms9030496 crossref_primary_10_1016_j_jneuroim_2019_577126 crossref_primary_10_1038_s41591_019_0377_7 crossref_primary_10_3390_brainsci15030253 crossref_primary_10_1172_JCI143774 crossref_primary_10_1016_j_micres_2025_128286 crossref_primary_10_1016_j_jocn_2020_11_011 crossref_primary_10_3390_cancers13112810 crossref_primary_10_3389_fnins_2022_901846 crossref_primary_10_1016_j_addr_2021_114021 crossref_primary_10_3389_fbioe_2019_00435 crossref_primary_10_4103_1673_5374_387974 crossref_primary_10_1186_s13063_019_3454_9 crossref_primary_10_1186_s40168_024_01819_8 crossref_primary_10_3390_microorganisms10030617 crossref_primary_10_1016_j_chom_2019_10_008 crossref_primary_10_1007_s11940_021_00693_1 crossref_primary_10_1038_s41577_022_00727_y crossref_primary_10_1080_10408398_2020_1843396 crossref_primary_10_3389_fcimb_2022_1095053 crossref_primary_10_1016_j_clnu_2024_05_036 crossref_primary_10_1186_s12974_025_03417_3 crossref_primary_10_1007_s00115_019_0756_9 crossref_primary_10_3389_fimmu_2023_1176016 crossref_primary_10_3390_microorganisms10071428 crossref_primary_10_3390_nu16244404 crossref_primary_10_3390_nu17111769 crossref_primary_10_3389_fvets_2022_971647 crossref_primary_10_1080_19490976_2021_1943289 crossref_primary_10_1038_s41598_024_64369_x crossref_primary_10_1128_CMR_00338_20 crossref_primary_10_1155_2021_6699268 crossref_primary_10_1016_j_xcrm_2025_101982 crossref_primary_10_1016_j_jaut_2022_102957 crossref_primary_10_1128_iai_00503_24 crossref_primary_10_3390_ijms20174121 crossref_primary_10_3390_microorganisms9061132 crossref_primary_10_3389_fimmu_2021_628741 crossref_primary_10_1186_s40168_022_01408_7 crossref_primary_10_3390_biom12030433 crossref_primary_10_1073_pnas_2002817117 crossref_primary_10_3389_fneur_2022_917527 crossref_primary_10_1007_s12602_024_10438_6 crossref_primary_10_1016_j_bbadis_2020_165779 crossref_primary_10_2174_1381612828666220919085742 crossref_primary_10_3390_biology14040435 crossref_primary_10_1073_pnas_2020106117 crossref_primary_10_1016_j_conb_2020_01_005 crossref_primary_10_1111_ijcp_14724 crossref_primary_10_1080_10408398_2021_1920884 crossref_primary_10_1080_1040841X_2022_2044286 crossref_primary_10_1111_cen3_12499 crossref_primary_10_31083_j_jin2307127 crossref_primary_10_3389_fneur_2019_00574 crossref_primary_10_1002_advs_202307971 crossref_primary_10_1038_s41573_022_00477_5 crossref_primary_10_1016_j_neurot_2024_e00469 crossref_primary_10_1016_j_bbi_2020_08_027 crossref_primary_10_1016_j_heliyon_2024_e33214 crossref_primary_10_1155_2020_2058272 crossref_primary_10_1016_j_msard_2021_103031 crossref_primary_10_3390_medicina60010006 crossref_primary_10_3390_nu13113866 crossref_primary_10_1111_febs_17161 crossref_primary_10_1016_j_autrev_2019_03_016 crossref_primary_10_3390_metabo10030120 crossref_primary_10_1177_2055217319888767 crossref_primary_10_3389_fnins_2022_1002266 crossref_primary_10_1208_s12249_024_02764_3 crossref_primary_10_1177_13524585211016722 crossref_primary_10_3389_fimmu_2020_00575 crossref_primary_10_3390_ijerph17113979 crossref_primary_10_1016_j_bbi_2019_07_019 crossref_primary_10_3390_ijms241915024 crossref_primary_10_1177_13524585211016723 crossref_primary_10_1111_cns_70320 crossref_primary_10_1007_s00415_023_12140_z crossref_primary_10_1016_j_tins_2020_06_002 crossref_primary_10_1007_s12017_024_08783_4 crossref_primary_10_3390_ijms21207551 crossref_primary_10_1186_s13073_024_01364_x crossref_primary_10_1016_j_neurot_2024_e00476 crossref_primary_10_3389_fnins_2021_616883 crossref_primary_10_1002_eji_201847807 crossref_primary_10_1016_j_maturitas_2018_11_002 crossref_primary_10_1016_j_msard_2025_106319 crossref_primary_10_1177_1099800418811639 crossref_primary_10_1007_s10495_025_02160_7 crossref_primary_10_1016_j_ebiom_2025_105743 crossref_primary_10_1186_s40814_023_01306_1 crossref_primary_10_1186_s12974_019_1611_4 crossref_primary_10_3390_ijms232214478 crossref_primary_10_1177_1352458520923955 crossref_primary_10_1016_j_microb_2025_100497 crossref_primary_10_1016_j_clim_2020_108380 crossref_primary_10_1016_j_micres_2025_128240 crossref_primary_10_1016_j_bbi_2020_07_036 crossref_primary_10_1186_s40168_022_01364_2 crossref_primary_10_1097_CM9_0000000000002212 crossref_primary_10_1038_s41398_023_02436_z crossref_primary_10_1073_pnas_2413953122 crossref_primary_10_1111_cen3_12673 crossref_primary_10_1016_j_msard_2024_106151 crossref_primary_10_3389_fmicb_2023_1191445 crossref_primary_10_1016_j_jneuroim_2024_578422 crossref_primary_10_1016_j_phrs_2024_107456 crossref_primary_10_1016_S1474_4422_19_30356_4 crossref_primary_10_1039_D0FO03203D crossref_primary_10_1016_j_msard_2024_105453 crossref_primary_10_1007_s11010_023_04853_6 crossref_primary_10_1016_j_nbd_2019_104714 crossref_primary_10_1038_s41598_023_46047_6 crossref_primary_10_4103_1673_5374_335139 crossref_primary_10_3389_fcimb_2023_1224155 crossref_primary_10_1080_14737175_2020_1775585 crossref_primary_10_1002_ana_26084 crossref_primary_10_3389_fncel_2022_1028653 crossref_primary_10_1007_s12602_025_10632_0 crossref_primary_10_3233_JHD_220556 crossref_primary_10_1111_imr_13343 crossref_primary_10_1038_s41522_022_00307_x crossref_primary_10_3389_fcimb_2023_1167312 crossref_primary_10_1016_j_nexres_2025_100441 crossref_primary_10_1073_pnas_1905955116 crossref_primary_10_1007_s10072_018_3641_6 crossref_primary_10_1212_NXI_0000000000000632 crossref_primary_10_3390_antiox11112287 crossref_primary_10_1016_j_ebiom_2025_105721 crossref_primary_10_3390_nu11040788 crossref_primary_10_1016_j_msard_2024_105762 crossref_primary_10_1155_2020_8854119 crossref_primary_10_1016_j_lfs_2022_120605 crossref_primary_10_3390_jcm12247610 crossref_primary_10_3390_ijms24010142 crossref_primary_10_3390_nu16111695 crossref_primary_10_1016_j_pharmthera_2021_107988 crossref_primary_10_3389_fimmu_2021_718220 crossref_primary_10_1016_j_intimp_2023_111091 crossref_primary_10_3389_fnut_2023_1209238 crossref_primary_10_3389_fimmu_2025_1513599 crossref_primary_10_3390_molecules25214891 crossref_primary_10_3389_fimmu_2021_747143 crossref_primary_10_1038_s41582_024_01046_7 crossref_primary_10_1016_j_jpsychires_2023_01_006 crossref_primary_10_3390_nu14132711 crossref_primary_10_3390_genes13050930 crossref_primary_10_3390_cells12131760 crossref_primary_10_3390_ijms25179489 crossref_primary_10_3390_jcm10061299 crossref_primary_10_1007_s12026_024_09471_y crossref_primary_10_1111_cen3_12591 crossref_primary_10_3390_metabo9010015 crossref_primary_10_1016_j_immuni_2020_09_016 crossref_primary_10_1515_revneuro_2019_0005 crossref_primary_10_1038_s41598_024_59250_w crossref_primary_10_1038_s41582_022_00697_8 crossref_primary_10_3390_microorganisms8060921 crossref_primary_10_1016_j_xcrm_2025_102055 crossref_primary_10_1016_j_clnu_2021_02_015 crossref_primary_10_3390_cells9040906 crossref_primary_10_1007_s40263_023_00986_w crossref_primary_10_3389_fmicb_2025_1558833 crossref_primary_10_1089_aid_2022_0123 |
| Cites_doi | 10.1016/j.clnu.2016.08.015 10.1002/mnfr.201300028 10.1038/nm.3914 10.1371/journal.pone.0157623 10.1371/journal.pone.0137429 10.4049/jimmunol.1001443 10.1016/j.celrep.2017.07.031 10.1155/2016/5190846 10.4049/jimmunol.174.6.3237 10.1111/j.1572-0241.2005.41794.x 10.1371/journal.pone.0009009 10.1038/nbt.2676 10.1016/j.biopha.2017.08.117 10.1073/pnas.1711235114 10.1016/j.copbio.2013.08.004 10.1038/ncomms12015 10.1523/JNEUROSCI.0575-15.2015 10.1038/nmeth.f.303 10.1021/ac051632c 10.1073/pnas.1000082107 10.1093/bioinformatics/bts611 10.1111/j.1442-9993.2001.01070.pp.x 10.1073/pnas.1711233114 10.1136/gutjnl-2016-312377 10.1084/jem.20151345 10.1016/S0016-5085(03)00171-9 10.1366/000370210792434350 10.1038/nm.4106 10.1186/s12974-015-0460-z 10.1038/ismej.2012.8 10.1038/srep28484 10.1002/iid3.160 10.1038/nature10554 10.1093/nar/gkl923 10.4049/jimmunol.0900747 10.1155/2016/7569431 10.1126/sciadv.1700492 |
| ContentType | Journal Article |
| Copyright | 2018 American Neurological Association 2018 American Neurological Association. |
| Copyright_xml | – notice: 2018 American Neurological Association – notice: 2018 American Neurological Association. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 5PM |
| DOI | 10.1002/ana.25244 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1531-8249 |
| EndPage | 1161 |
| ExternalDocumentID | PMC6181139 29679417 10_1002_ana_25244 ANA25244 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Teva Neuroscience – fundername: Ann Romney Center for Neurologic Diseases – fundername: NINDS NIH HHS grantid: R01 NS087226 |
| GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACRZS ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZI AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c5094-853cff5e8b8751cdc35595c583c8df78eae026020a8845383b0936e79c21cee3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 190 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439994300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0364-5134 1531-8249 |
| IngestDate | Tue Nov 04 02:05:10 EST 2025 Thu Oct 02 05:11:23 EDT 2025 Thu Dec 04 04:22:03 EST 2025 Mon Jul 21 06:02:15 EDT 2025 Sat Nov 29 03:41:27 EST 2025 Tue Nov 18 21:13:53 EST 2025 Wed Jan 22 16:19:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | 2018 American Neurological Association. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5094-853cff5e8b8751cdc35595c583c8df78eae026020a8845383b0936e79c21cee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6181139 |
| PMID | 29679417 |
| PQID | 2076821332 |
| PQPubID | 946345 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181139 proquest_miscellaneous_2028952138 proquest_journals_2076821332 pubmed_primary_29679417 crossref_citationtrail_10_1002_ana_25244 crossref_primary_10_1002_ana_25244 wiley_primary_10_1002_ana_25244_ANA25244 |
| PublicationCentury | 2000 |
| PublicationDate | June 2018 2018-06-00 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Minneapolis |
| PublicationTitle | Annals of neurology |
| PublicationTitleAlternate | Ann Neurol |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2011; 479 2017; 5 2015; 35 2015; 12 2017; 20 2017; 3 2005; 174 2006; 78 2017; 66 2015; 10 2010; 185 2014; 25 2016; 2016 2001; 26 2017; 114 2007; 35 2016; 11 2017; 95 2016; 6 2016; 7 2010; 64 2011; 108 2005; 100 2017; 36 2013; 57 2013; 31 2015; 21 2009; 183 2012; 28 2016; 213 2012; 6 2003; 124 2010; 5 2010; 7 2016; 22 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 213 start-page: 2603 year: 2016 end-page: 2620 article-title: Gut dysbiosis impairs recovery after spinal cord injury publication-title: J Exp Med – volume: 22 start-page: 586 year: 2016 end-page: 597 article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor publication-title: Nat Med – volume: 12 start-page: 245 year: 2015 article-title: Identification of a novel mechanism of action of fingolimod (FTY720) on human effector T cell function through TCF‐1 upregulation publication-title: J Neuroinflammation – volume: 21 start-page: 895 year: 2015 end-page: 905 article-title: The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment publication-title: Nat Med – volume: 2016 start-page: 5190846 year: 2016 article-title: Effects of a multispecies probiotic mixture on glycemic control and inflammatory status in women with gestational diabetes: a randomized controlled clinical trial publication-title: J Nutr Metab – volume: 64 start-page: 1007 year: 2010 end-page: 1016 article-title: Optimal choice of baseline correction for multivariate calibration of spectra publication-title: Appl Spectrosc – volume: 36 start-page: 1245 year: 2017 end-page: 1249 article-title: Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double‐blind, placebo‐controlled trial publication-title: Clin Nutr – volume: 183 start-page: 6041 year: 2009 end-page: 6050 article-title: Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis publication-title: J Immunol – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nat Meth – volume: 26 start-page: 32 year: 2001 end-page: 46 article-title: A new method for non‐parametric multivariate analysis of variance publication-title: Austral Ecol – volume: 100 start-page: 1539 year: 2005 end-page: 1546 article-title: VSL#3 probiotic‐mixture induces remission in patients with active ulcerative colitis publication-title: Am J Gastroenterol – volume: 5 start-page: 244 year: 2017 end-page: 260 article-title: Probiotic supplementation promotes a reduction in T‐cell activation, an increase in Th17 frequencies, and a recovery of intestinal epithelium integrity and mitochondrial morphology in ART‐treated HIV‐1‐positive patients publication-title: Immun Inflamm Dis – volume: 6 start-page: 1621 year: 2012 end-page: 1624 article-title: Ultra‐high‐throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J – volume: 11 start-page: e0157623 year: 2016 article-title: Age‐related 1H NMR characterization of cerebrospinal fluid in newborn and young healthy piglets publication-title: PLoS One – volume: 57 start-page: 2233 year: 2013 end-page: 2244 article-title: Probiotic VSL#3‐induced TGF‐β ameliorates food allergy inflammation in a mouse model of peanut sensitization through the induction of regulatory T cells in the gut mucosa publication-title: Mol Nutr Food Res – volume: 174 start-page: 3237 year: 2005 end-page: 3246 article-title: Probiotics ameliorate recurrent Th1‐mediated murine colitis by inducing IL‐10 and IL‐10‐dependent TGF‐betabearing regulatory cells publication-title: J Immunol – volume: 35 start-page: 10821 year: 2015 end-page: 10830 article-title: Probiotics improve inflammation‐associated sickness behavior by altering communication between the peripheral immune system and the brain publication-title: J Neurosci – volume: 31 start-page: 814 year: 2013 end-page: 821 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nat Biotechnol – volume: 28 start-page: 3211 year: 2012 end-page: 3217 article-title: SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data publication-title: Bioinformatics – volume: 95 start-page: 1535 year: 2017 end-page: 1548 article-title: Bifidobacterium animalis in combination with human origin of ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4 T cell subset balance publication-title: Biomed Pharmacother – volume: 2016 start-page: 7569431 year: 2016 article-title: Oral probiotic VSL#3 prevents autoimmune diabetes by modulating microbiota and promoting indoleamine 2,3‐dioxygenase‐enriched tolerogenic intestinal environment publication-title: J Diabetes Res – volume: 10 start-page: e0137429 year: 2015 article-title: Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters publication-title: PLoS One – volume: 185 start-page: 4101 year: 2010 end-page: 4108 article-title: Central nervous system demyelinating disease protection by the human commensal bacteroides fragilis depends on polysaccharide A expression publication-title: J Immunol – volume: 114 start-page: 10719 year: 2017 end-page: 10724 article-title: Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice publication-title: Proc Natl Acad Sci U S A – volume: 114 start-page: 10713 year: 2017 end-page: 10718 article-title: Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 1269 year: 2017 end-page: 1277 article-title: Human gut‐derived commensal bacteria suppress CNS inflammatory and demyelinating disease publication-title: Cell Rep – volume: 78 start-page: 4281 year: 2006 end-page: 4290 article-title: Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. application in 1H NMR metabonomics publication-title: Anal Chem – volume: 479 start-page: 538 year: 2011 end-page: 541 article-title: Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination publication-title: Nature – volume: 35 start-page: D521 issue: Database year: 2007 end-page: D526 article-title: HMDB: The Human Metabolome Database publication-title: Nucleic Acids Research – volume: 7 start-page: 12015 year: 2016 article-title: Alterations of the human gut microbiome in multiple sclerosis publication-title: Nat Commun – volume: 66 start-page: 1252 year: 2017 end-page: 1261 article-title: Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease publication-title: Gut – volume: 5 start-page: e9009 year: 2010 article-title: A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL‐10 producing regulatory T cells publication-title: PLoS One – volume: 108 start-page: 4615 year: 2011 end-page: 4622 article-title: Proinflammatory T‐cell responses to gut microbiota promote experimental autoimmune encephalomyelitis publication-title: Proc Natl Acad Sci U S A – volume: 25 start-page: 51 year: 2014 end-page: 59 article-title: Universal quantitative NMR analysis of complex natural samples publication-title: Curr Opin Biotechnol – volume: 6 start-page: 28484 year: 2016 article-title: Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls publication-title: Sci Rep – volume: 3 start-page: e1700492 year: 2017 article-title: High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis publication-title: Sci Adv – volume: 124 start-page: 1202 year: 2003 end-page: 1209 article-title: Prophylaxis of pouchitis onset with probiotic therapy: a double‐blind, placebo‐controlled trial publication-title: Gastroenterology – ident: e_1_2_8_37_1 doi: 10.1016/j.clnu.2016.08.015 – ident: e_1_2_8_16_1 doi: 10.1002/mnfr.201300028 – ident: e_1_2_8_3_1 doi: 10.1038/nm.3914 – ident: e_1_2_8_28_1 doi: 10.1371/journal.pone.0157623 – ident: e_1_2_8_4_1 doi: 10.1371/journal.pone.0137429 – ident: e_1_2_8_8_1 doi: 10.4049/jimmunol.1001443 – ident: e_1_2_8_11_1 doi: 10.1016/j.celrep.2017.07.031 – ident: e_1_2_8_23_1 doi: 10.1155/2016/5190846 – ident: e_1_2_8_15_1 doi: 10.4049/jimmunol.174.6.3237 – ident: e_1_2_8_21_1 doi: 10.1111/j.1572-0241.2005.41794.x – ident: e_1_2_8_39_1 doi: 10.1371/journal.pone.0009009 – ident: e_1_2_8_27_1 doi: 10.1038/nbt.2676 – ident: e_1_2_8_38_1 doi: 10.1016/j.biopha.2017.08.117 – ident: e_1_2_8_14_1 doi: 10.1073/pnas.1711235114 – ident: e_1_2_8_29_1 doi: 10.1016/j.copbio.2013.08.004 – ident: e_1_2_8_2_1 doi: 10.1038/ncomms12015 – ident: e_1_2_8_20_1 doi: 10.1523/JNEUROSCI.0575-15.2015 – ident: e_1_2_8_25_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_8_33_1 doi: 10.1021/ac051632c – ident: e_1_2_8_36_1 – ident: e_1_2_8_9_1 doi: 10.1073/pnas.1000082107 – ident: e_1_2_8_26_1 doi: 10.1093/bioinformatics/bts611 – ident: e_1_2_8_35_1 doi: 10.1111/j.1442-9993.2001.01070.pp.x – ident: e_1_2_8_13_1 doi: 10.1073/pnas.1711233114 – ident: e_1_2_8_32_1 doi: 10.1136/gutjnl-2016-312377 – ident: e_1_2_8_19_1 doi: 10.1084/jem.20151345 – ident: e_1_2_8_22_1 doi: 10.1016/S0016-5085(03)00171-9 – ident: e_1_2_8_31_1 doi: 10.1366/000370210792434350 – ident: e_1_2_8_10_1 doi: 10.1038/nm.4106 – ident: e_1_2_8_34_1 doi: 10.1186/s12974-015-0460-z – ident: e_1_2_8_24_1 doi: 10.1038/ismej.2012.8 – ident: e_1_2_8_5_1 doi: 10.1038/srep28484 – ident: e_1_2_8_18_1 doi: 10.1002/iid3.160 – ident: e_1_2_8_7_1 doi: 10.1038/nature10554 – ident: e_1_2_8_30_1 doi: 10.1093/nar/gkl923 – ident: e_1_2_8_6_1 doi: 10.4049/jimmunol.0900747 – ident: e_1_2_8_17_1 doi: 10.1155/2016/7569431 – ident: e_1_2_8_12_1 doi: 10.1126/sciadv.1700492 |
| SSID | ssj0009610 |
| Score | 2.6342738 |
| Snippet | Objective
Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS)... Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients. MS... ObjectiveEffect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis (MS)... Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS)... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1147 |
| SubjectTerms | Abundance Adult Alleles Bifidobacterium Bifidobacterium - genetics Bifidobacterium - immunology CD80 antigen Dendritic cells DQA1 protein Dysbacteriosis Encyclopedias Female Fluorescence Gastrointestinal Microbiome - physiology Genomes Histocompatibility antigen HLA Humans Immune response Immune system Immunity Inflammation Intestinal microflora Lactobacillus Lactobacillus - genetics Lactobacillus - immunology Leukocytes Leukocytes (mononuclear) Leukocytes, Mononuclear - metabolism Male Metabolism Metabolomics Microbiomes Microbiota Microbiota - genetics Microbiota - immunology Middle Aged Monocytes Multiple sclerosis Multiple Sclerosis - genetics Multiple Sclerosis - immunology Oral administration Patients Peripheral blood mononuclear cells Probiotics Probiotics - metabolism RNA, Ribosomal, 16S - genetics rRNA 16S Supplements Synergistic effect Young Adult |
| Title | A probiotic modulates the microbiome and immunity in multiple sclerosis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.25244 https://www.ncbi.nlm.nih.gov/pubmed/29679417 https://www.proquest.com/docview/2076821332 https://www.proquest.com/docview/2028952138 https://pubmed.ncbi.nlm.nih.gov/PMC6181139 |
| Volume | 83 |
| WOSCitedRecordID | wos000439994300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1531-8249 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009610 issn: 0364-5134 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7WVcSL70d9LFE8eKlukz5SPC3q6kEXEYW9lTRNseB2xa6C_95J-tBFBcFbIdNHMpnMN53kG4BDkQSp9PS5rTBMbdf3uR0r5dhJGouUeQF6fW6KTQSDAR8Ow9sWnNZnYUp-iOaHm7YMs15rAxdxcfJJGipycUw99E4zMEtx3nptmD2_6z9cf3Lu-oaMQGfabM9hbk0s1KUnzc3T7ugbxvy-VfIrhDU-qL_0r69fhsUKepJeOVdWoKXyVZi_qZLra3DZI8-GlQnbyWic6MJeqiCIEMkoK_maRoqIPCGZOVQyeSdZTuodiaTAh2Ifs2Id7vsX92dXdlVnwZaaPs9Gjy3T1FM8xuDFkYlEDBJ60uNM8iQNuBJKM4_RruDcxQWSxd2Q-SoIJXXQx7INaOfjXG0BUQodnvJjhJHMZT6GcjRRiMm01qUbdi04qkc7khUHuS6F8RSV7Mk0wnGJzLhYcNCIPpfEGz8J7dYqiyrbKyKqk4sUY29qwX7TjFajUyEiV-NXLYOBJiIXxi3YLDXcvIWGPi5STmBBMKX7RkAzck-35NmjYeb2ES8hpMZuGt3__uFRb9AzF9t_F92BBURrvNyntgvtycur2oM5-TbJipcOzARD3qlM4AMacAgz |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB7WA_XF-6hnFB98qW6THin4sqir4rqIrOBbadMUC25X7K7gv3eSHrqoIPhWyLRNMpnMNzm-ATgMYy8Rjrq35fuJabsuNyMpLTNOojBhjoden-tkE163yx8f_bsGnFZ3YQp-iHrBTVmGnq-VgasF6ZNP1tAwC4-pg-5pAqZsHEY4vqfO79sPnU_SXVezEaitNtOxmF0xCzXpSf3yuD_6BjK_n5X8imG1E2ov_K_6izBfgk_SKkbLEjRktgwzt-X2-gpctsiL5mXCctIfxCq1l8wJYkTSTwvGpr4kYRaTVF8rGb6TNCPVmUSS40exkWm-Cr32Re_syiwzLZhCEeiZ6LNFkjiSRxi-WCIWiEJ8RzicCR4nHpehVNxjtBlybuMUyaKmz1zp-YJa6GXZGkxmg0xuAJESXZ50IwSSzGYuBnM0lojKlN6F7TcNOKq6OxAlC7lKhvEcFPzJNMB-CXS_GHBQi74U1Bs_CW1XOgtK68sDqrYXKUbf1ID9uhjtRm2GhJkcjJQMhpqIXRg3YL1Qcf0X6rs4TVmeAd6Y8msBxck9XpKlT5qb20XEhKAam6mV_3vFg1a3pR82_y66B7NXvdtO0Lnu3mzBHGI3Xpxa24bJ4etI7sC0eBum-etuaQkfqsALOw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-VDk28bMD4CBQwaA-8ZG3sfDjSXqqVAqJUFSrS3qLEuYhINK2adtL--52dj64qSEi8RfIlsX053-9y9u8AzuM0yJSnz22FYWa7vi_tBNGx0yyJM-EF5PWlKTYRTKfy-jqcdeCyOQtT8UO0P9y0ZZj1Whs4rtKsv2MNjYv4gnvknh7AkauLyHThaPRj_HOyI931DRuBTrXZniPchllowPvtzfv-6ABkHu6VvI9hjRMan_5f9x_DSQ0-2bD6Wp5AB4uncPy9Tq-fwechWxleJmpni2WqS3thyQgjskVeMTYtkMVFynJzrGRzy_KCNXsSWUkPpUHm5TOYjz_Nr77YdaUFW2kCPZt8tsoyD2VC4YujUkUoJPSUJ4WSaRZIjFFzj_FBLKVLS6RIBqHwMQgVd8jLiufQLZYFvgSGSC4P_YSApHCFT8EcT5FQmda7csOBBR-b6Y5UzUKui2H8jir-ZB7RvERmXiz40IquKuqNPwn1Gp1FtfWVEdfpRU7RN7fgfdtMdqOTIXGBy62WoVCTsIuQFryoVNy-hYc-LVNOYEGwp_xWQHNy77cU-S_Dze0TYiJQTcM0yv97x6PhdGguXv276Ds4no3G0eTr9NtreETQTVab1nrQ3ay3-AYeqptNXq7f1oZwBya9CrY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+probiotic+modulates+the+microbiome+and+immunity+in+multiple+sclerosis&rft.jtitle=Annals+of+neurology&rft.au=Tankou%2C+Stephanie+K.&rft.au=Regev%2C+Keren&rft.au=Healy%2C+Brian+C.&rft.au=Tjon%2C+Emily&rft.date=2018-06-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=83&rft.issue=6&rft.spage=1147&rft.epage=1161&rft_id=info:doi/10.1002%2Fana.25244&rft.externalDBID=10.1002%252Fana.25244&rft.externalDocID=ANA25244 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |