Relevance of time‐dependence for clinically viable diffusion imaging of the spinal cord

Purpose Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain. Methods We run Monte Carlo simulations using a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 81; číslo 2; s. 1247 - 1264
Hlavní autoři: Grussu, Francesco, Ianuş, Andrada, Tur, Carmen, Prados, Ferran, Schneider, Torben, Kaden, Enrico, Ourselin, Sébastien, Drobnjak, Ivana, Zhang, Hui, Alexander, Daniel C., Gandini Wheeler‐Kingshott, Claudia A. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.02.2019
John Wiley and Sons Inc
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain. Methods We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi‐shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm−2; b = 2855 s mm−2), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers. Results Both intra‐/extra‐axonal perpendicular diffusivities and kurtosis excess show time‐dependence in our synthetic spinal cord model. This time‐dependence is reflected mostly in the intra‐axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time‐dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time‐dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two‐compartment SMT metrics. Accounting for large axon calibers improves fitting of multi‐compartment models to a minor extent. Conclusions Time‐dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non‐invasive estimation of microstructural properties. The time‐dependence of the perpendicular DW signal may feature strong intra‐axonal contributions due to large spinal axon caliber. Hence, a popular model known as “stick” (zero‐radius cylinder) may be sub‐optimal to describe signals from the largest spinal axons.
AbstractList PurposeTime‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain.MethodsWe run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi‐shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm−2; b = 2855 s mm−2), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers.ResultsBoth intra‐/extra‐axonal perpendicular diffusivities and kurtosis excess show time‐dependence in our synthetic spinal cord model. This time‐dependence is reflected mostly in the intra‐axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time‐dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time‐dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two‐compartment SMT metrics. Accounting for large axon calibers improves fitting of multi‐compartment models to a minor extent.ConclusionsTime‐dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non‐invasive estimation of microstructural properties. The time‐dependence of the perpendicular DW signal may feature strong intra‐axonal contributions due to large spinal axon caliber. Hence, a popular model known as “stick” (zero‐radius cylinder) may be sub‐optimal to describe signals from the largest spinal axons.
Time-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the human spinal cord, as its axonal structure is specific and different from the brain. We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi-shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm ; b = 2855 s mm ), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers. Both intra-/extra-axonal perpendicular diffusivities and kurtosis excess show time-dependence in our synthetic spinal cord model. This time-dependence is reflected mostly in the intra-axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time-dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time-dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two-compartment SMT metrics. Accounting for large axon calibers improves fitting of multi-compartment models to a minor extent. Time-dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non-invasive estimation of microstructural properties. The time-dependence of the perpendicular DW signal may feature strong intra-axonal contributions due to large spinal axon caliber. Hence, a popular model known as "stick" (zero-radius cylinder) may be sub-optimal to describe signals from the largest spinal axons.
Purpose Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain. Methods We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi‐shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm−2; b = 2855 s mm−2), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers. Results Both intra‐/extra‐axonal perpendicular diffusivities and kurtosis excess show time‐dependence in our synthetic spinal cord model. This time‐dependence is reflected mostly in the intra‐axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time‐dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time‐dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two‐compartment SMT metrics. Accounting for large axon calibers improves fitting of multi‐compartment models to a minor extent. Conclusions Time‐dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non‐invasive estimation of microstructural properties. The time‐dependence of the perpendicular DW signal may feature strong intra‐axonal contributions due to large spinal axon caliber. Hence, a popular model known as “stick” (zero‐radius cylinder) may be sub‐optimal to describe signals from the largest spinal axons.
Time-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the human spinal cord, as its axonal structure is specific and different from the brain.PURPOSETime-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the human spinal cord, as its axonal structure is specific and different from the brain.We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi-shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm-2 ; b = 2855 s mm-2 ), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers.METHODSWe run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi-shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm-2 ; b = 2855 s mm-2 ), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers.Both intra-/extra-axonal perpendicular diffusivities and kurtosis excess show time-dependence in our synthetic spinal cord model. This time-dependence is reflected mostly in the intra-axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time-dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time-dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two-compartment SMT metrics. Accounting for large axon calibers improves fitting of multi-compartment models to a minor extent.RESULTSBoth intra-/extra-axonal perpendicular diffusivities and kurtosis excess show time-dependence in our synthetic spinal cord model. This time-dependence is reflected mostly in the intra-axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time-dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time-dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two-compartment SMT metrics. Accounting for large axon calibers improves fitting of multi-compartment models to a minor extent.Time-dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non-invasive estimation of microstructural properties. The time-dependence of the perpendicular DW signal may feature strong intra-axonal contributions due to large spinal axon caliber. Hence, a popular model known as "stick" (zero-radius cylinder) may be sub-optimal to describe signals from the largest spinal axons.CONCLUSIONSTime-dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non-invasive estimation of microstructural properties. The time-dependence of the perpendicular DW signal may feature strong intra-axonal contributions due to large spinal axon caliber. Hence, a popular model known as "stick" (zero-radius cylinder) may be sub-optimal to describe signals from the largest spinal axons.
Author Grussu, Francesco
Kaden, Enrico
Zhang, Hui
Gandini Wheeler‐Kingshott, Claudia A. M.
Drobnjak, Ivana
Ianuş, Andrada
Ourselin, Sébastien
Tur, Carmen
Schneider, Torben
Alexander, Daniel C.
Prados, Ferran
AuthorAffiliation 2 Centre for Medical Image Computing, Department of Computer Science University College London London United Kingdom
7 Brain MRI 3T Research Centre C. Mondino National Neurological Institute Pavia Italy
5 Philips United Kingdom Guildford Surrey United Kingdom
6 Clinical Imaging Research Centre National University of Singapore Singapore Singapore
4 Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering University College London London United Kingdom
8 Department of Brain and Behavioural Sciences University of Pavia Pavia Italy
1 Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London United Kingdom
3 Champalimaud Centre for the Unknown Champalimaud Foundation Lisbon Portugal
AuthorAffiliation_xml – name: 5 Philips United Kingdom Guildford Surrey United Kingdom
– name: 8 Department of Brain and Behavioural Sciences University of Pavia Pavia Italy
– name: 6 Clinical Imaging Research Centre National University of Singapore Singapore Singapore
– name: 4 Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering University College London London United Kingdom
– name: 3 Champalimaud Centre for the Unknown Champalimaud Foundation Lisbon Portugal
– name: 2 Centre for Medical Image Computing, Department of Computer Science University College London London United Kingdom
– name: 1 Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London United Kingdom
– name: 7 Brain MRI 3T Research Centre C. Mondino National Neurological Institute Pavia Italy
Author_xml – sequence: 1
  givenname: Francesco
  surname: Grussu
  fullname: Grussu, Francesco
  email: f.grussu@ucl.ac.uk
  organization: University College London
– sequence: 2
  givenname: Andrada
  surname: Ianuş
  fullname: Ianuş, Andrada
  organization: Champalimaud Foundation
– sequence: 3
  givenname: Carmen
  surname: Tur
  fullname: Tur, Carmen
  organization: University College London
– sequence: 4
  givenname: Ferran
  surname: Prados
  fullname: Prados, Ferran
  organization: University College London
– sequence: 5
  givenname: Torben
  surname: Schneider
  fullname: Schneider, Torben
  organization: Philips United Kingdom
– sequence: 6
  givenname: Enrico
  surname: Kaden
  fullname: Kaden, Enrico
  organization: University College London
– sequence: 7
  givenname: Sébastien
  surname: Ourselin
  fullname: Ourselin, Sébastien
  organization: University College London
– sequence: 8
  givenname: Ivana
  surname: Drobnjak
  fullname: Drobnjak, Ivana
  organization: University College London
– sequence: 9
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: University College London
– sequence: 10
  givenname: Daniel C.
  surname: Alexander
  fullname: Alexander, Daniel C.
  organization: National University of Singapore
– sequence: 11
  givenname: Claudia A. M.
  surname: Gandini Wheeler‐Kingshott
  fullname: Gandini Wheeler‐Kingshott, Claudia A. M.
  organization: University of Pavia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30229564$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9qFTEYxYNU7G114QvIgBtdTJv_M7MRpPgPWoSiC1chN_lym5JJrsnMlbvzEXxGn8Tc3lq0oKtA8jsn5_vOETqIKQJCTwk-IRjT0zGPJ7Tjkj1ACyIobakY-AFa4I7jlpGBH6KjUq4xxsPQ8UfokGFKByH5An25hAAbHQ00yTWTH-Hn9x8W1hAt7C5dyo0JPnqjQ9g2G6-XARrrnZuLT7Hxo175uLoRX0FT1j7q0JiU7WP00OlQ4MnteYw-v33z6ex9e_7x3Yez1-etEXhgLWjhetO73lEjqDTg3EBsx5YgtbSdMNzqvrPCgB4YE5YTLLkTXHRaSLfU7Bi92vuu5-UI1kCcsg5qnWu0vFVJe_X3S_RXapU2SopeYkGrwYtbg5y-zlAmNfpiIAQdIc1FUUJIV79lsqLP76HXac514h0l2MAJG0Slnv2Z6C7K761X4OUeMDmVksHdIQSrXaOqNqpuGq3s6T3W-ElPdfd1GB_-p_jmA2z_ba0uLi_2il9TxbRS
CitedBy_id crossref_primary_10_1007_s12311_020_01147_1
crossref_primary_10_1016_j_neuroimage_2019_116026
crossref_primary_10_1002_nbm_4170
crossref_primary_10_1016_j_jmr_2019_01_007
crossref_primary_10_1016_j_media_2021_101988
crossref_primary_10_1016_j_neuroimage_2023_119930
crossref_primary_10_1016_j_neuroimage_2022_119137
crossref_primary_10_1016_j_neuroimage_2020_117619
crossref_primary_10_1002_nbm_4267
crossref_primary_10_1038_s41598_025_91658_w
crossref_primary_10_1016_j_neuroimage_2021_117849
crossref_primary_10_1016_j_nicl_2022_102972
crossref_primary_10_1016_j_neuroimage_2020_116605
crossref_primary_10_1016_j_neuroimage_2022_119826
crossref_primary_10_1371_journal_pone_0214238
crossref_primary_10_1177_1352458519885107
crossref_primary_10_1631_jzus_A2400139
crossref_primary_10_1016_j_nicl_2022_103244
crossref_primary_10_1038_s41596_021_00588_0
crossref_primary_10_3389_fninf_2023_1208073
crossref_primary_10_1016_j_neuroimage_2020_116884
crossref_primary_10_1016_j_mri_2024_01_008
crossref_primary_10_1016_j_neuroimage_2023_120328
Cites_doi 10.1158/0008-5472.CAN-13-2511
10.1002/nbm.3711
10.1016/j.neuroimage.2016.02.004
10.1016/j.neuroimage.2016.08.022
10.1002/mrm.27101
10.1111/j.1365-2990.1988.tb01341.x
10.1016/j.neuroimage.2016.06.002
10.1002/mrm.10016
10.1016/j.neuroimage.2011.06.006
10.3171/jns.1971.35.2.0141
10.1002/mrm.25631
10.1016/j.jmr.2006.01.016
10.1002/nbm.3450
10.1016/j.neuroimage.2011.09.081
10.1016/j.neuroimage.2013.04.124
10.1016/j.neuroimage.2015.06.038
10.1016/j.neuroimage.2017.08.039.
10.1016/j.neuroimage.2016.01.018
10.1016/j.mri.2008.06.003
10.1016/j.neuroimage.2016.09.018
10.1073/pnas.1316944111
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2013.05.028
10.1002/mrm.26393
10.1002/andp.19053220806
10.1002/nbm.2999
10.1016/j.nicl.2017.05.010
10.1002/mrm.21577
10.1002/mrm.1910330516
10.1002/mrm.25734
10.1016/j.neuroimage.2016.10.009
10.1002/mrm.25901
10.1016/0006-8993(92)90178-C
10.1016/j.neuroimage.2015.05.023
10.1002/nbm.1584
10.1097/00007632-199605010-00002
10.1002/jnr.22757
10.1016/j.neuroimage.2016.11.053
10.1016/j.neuroimage.2012.03.072
10.1016/j.neuroimage.2012.01.056
10.1016/S1474-4422(13)70157-1
10.1016/j.neuroimage.2014.04.051
10.1016/j.neuroimage.2014.12.009
10.1016/j.neuroimage.2017.02.013
10.1002/cmr.a.20094
10.1016/j.neuroimage.2013.07.014
10.1016/j.neuroimage.2016.08.016
10.1016/j.neuroimage.2007.05.012
10.1016/j.neuroimage.2015.01.045
10.1371/journal.pone.0164890
10.1016/j.neuroimage.2016.02.039
10.1038/nrneurol.2015.80
10.1016/j.neuroimage.2010.05.043
10.1016/j.neuroimage.2015.03.061
10.1002/mrm.21167
10.1038/nrn1119
10.1038/nrdp.2017.18
10.1002/mrm.24987
10.1016/j.neuroimage.2015.11.064
10.1016/j.neuroimage.2017.07.060
10.1016/j.neuroimage.2018.07.020
10.1002/mrm.21260
10.1016/j.neuroimage.2006.10.037
10.1002/mrm.1149
10.1002/mrm.24395
10.1002/mrm.26733
10.1002/mrm.10609
10.1002/nbm.3530
10.1016/S0006-3495(94)80775-1
10.1109/TMI.2009.2015756
10.1016/j.neuroimage.2016.01.047
ContentType Journal Article
Copyright 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.27463
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Grussu et al
EISSN 1522-2594
EndPage 1264
ExternalDocumentID PMC6586052
30229564
10_1002_mrm_27463
MRM27463
Genre article
Journal Article
GrantInformation_xml – fundername: EPSRC
  grantid: M507970
– fundername: EPSRC
  grantid: 666992-2
– fundername: Wings for Life (Austria)
– fundername: EPSRC
  grantid: EP/I027084/1
– fundername: International Spinal Research Trust (UK)
– fundername: EPSRC
  grantid: N018702
– fundername: Platform Grant for medical image computing for next-generation healthcare technology
  grantid: EP/M020533/1
– fundername: UK Multiple Sclerosis Society
  grantid: 892/08
– fundername: EPSRC
  grantid: H2020-EU.3.1
– fundername: Department of Health's National Institute for Health Research Biomedical Research Centres
  grantid: BRC R&D 03/10/RAG0449
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c5093-ea5f8c8f8f2c526ceff91d73be6a6d75c4da87d5cea9335d41064f5457a56fba3
IEDL.DBID 24P
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462086300044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 17:47:33 EDT 2025
Fri Jul 11 08:31:36 EDT 2025
Sat Nov 29 14:23:54 EST 2025
Thu Apr 03 06:58:47 EDT 2025
Sat Nov 29 02:37:45 EST 2025
Tue Nov 18 21:48:54 EST 2025
Tue Nov 11 03:08:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords white matter
Monte Carlo simulations
microstructure
diffusion time
spinal cord
Language English
License Attribution
2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5093-ea5f8c8f8f2c526ceff91d73be6a6d75c4da87d5cea9335d41064f5457a56fba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27463
PMID 30229564
PQID 2153941395
PQPubID 1016391
PageCount 0
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6586052
proquest_miscellaneous_2111741036
proquest_journals_2153941395
pubmed_primary_30229564
crossref_primary_10_1002_mrm_27463
crossref_citationtrail_10_1002_mrm_27463
wiley_primary_10_1002_mrm_27463_MRM27463
PublicationCentury 2000
PublicationDate February 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2012; 61
2012; 60
2002; 17
2013; 26
2013; 69
2017; 3
1936; 39
1995; 33
2016; 75
1994; 66
2017; 150
2007; 30
2011; 58
2012; 59
2015; 107
2001; 45
2003; 50
2007; 34
2016; 142
2007; 37
2013; 9
2006; 179
2010; 23
2002; 47
2017; 30
2006; 27
1992; 598
2017; 78
2003; 4
1996; 21
2014; 98
2018; 79
2018; 181
2016; 129
1988; 14
2015; 11
2008; 59
2016; 127
2014; 111
2014; 84
2007; 57
2009; 27
2007; 58
2009; 28
2016; 11
2012; 90
1905; 322
2017; 15
2015; 114
2015; 111
1971; 35
2016; 135
2018
2017
2016; 132
2013; 81
2016
2016; 139
2015; 118
2014; 74
2016; 29
2017; 145
2014; 72
2017; 147
2010; 52
2016; 130
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Grussu F (e_1_2_8_34_1) 2017
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_46_1
Duval T (e_1_2_8_27_1) 2018
e_1_2_8_48_1
e_1_2_8_69_1
Veraart J (e_1_2_8_65_1) 2017
Häggqvist G (e_1_2_8_25_1) 1936; 39
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Grussu F (e_1_2_8_33_1) 2016
Summers P (e_1_2_8_75_1) 2006; 27
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 111
  start-page: 590
  year: 2015
  end-page: 601
  article-title: Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo
  publication-title: Neuroimage.
– volume: 118
  start-page: 397
  year: 2015
  end-page: 405
  article-title: In vivo histology of the myelin g‐ratio with magnetic resonance imaging
  publication-title: NeuroImage.
– start-page: 2009
  year: 2016
– volume: 11
  start-page: e0164890
  year: 2016
  article-title: Reduced field‐of‐view diffusion‐weighted imaging of the lumbosacral enlargement: A pilot in vivo study of the healthy spinal cord at 3T
  publication-title: PloS One.
– volume: 35
  start-page: 141
  year: 1971
  end-page: 147
  article-title: Microvasculature of the human spinal cord
  publication-title: Neurosurgery.
– volume: 75
  start-page: 1752
  year: 2016
  end-page: 1763
  article-title: Quantitative mapping of the per‐axon diffusion coefficients in brain white matter
  publication-title: Magn Reson Med.
– volume: 21
  start-page: 1010
  year: 1996
  end-page: 1016
  article-title: Morphometric study of myelinated fibers in human cervical spinal cord white matter
  publication-title: Spine
– volume: 98
  start-page: 528
  year: 2014
  end-page: 536
  article-title: Robust, accurate and fast automatic segmentation of the spinal cord
  publication-title: NeuroImage.
– volume: 139
  start-page: 346
  year: 2016
  end-page: 359
  article-title: Multi‐compartment microscopic diffusion imaging
  publication-title: NeuroImage.
– start-page: 282434
  year: 2018
  article-title: Axons morphometry in the human spinal cord
  publication-title: bioRxiv
– volume: 59
  start-page: 2241
  year: 2012
  end-page: 2254
  article-title: Compartment models of the diffusion mr signal in brain white matter: A taxonomy and comparison
  publication-title: NeuroImage.
– volume: 23
  start-page: 682
  year: 2010
  end-page: 697
  article-title: Effective medium theory of a diffusion‐weighted signal
  publication-title: NMR Biomed.
– volume: 3
  start-page: 17018
  year: 2017
  article-title: Traumatic spinal cord injury
  publication-title: Nat Rev Disease Primers.
– volume: 75
  start-page: 82
  year: 2016
  end-page: 87
  article-title: Conventions and nomenclature for double diffusion encoding NMR and MRI
  publication-title: Magn Reson Med.
– volume: 75
  start-page: 688
  year: 2016
  end-page: 700
  article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study
  publication-title: Magn Reson Med.
– volume: 598
  start-page: 143
  year: 1992
  end-page: 153
  article-title: Fiber composition of the human corpus callosum
  publication-title: Brain Res.
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  article-title: Characterization and propagation of uncertainty in diffusion‐weighted mr imaging
  publication-title: Magn Reson Med.
– volume: 79
  start-page: 3172
  year: 2018
  end-page: 3193
  article-title: On modelling
  publication-title: Magn Reson Med.
– volume: 52
  start-page: 1374
  year: 2010
  end-page: 1389
  article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI
  publication-title: NeuroImage
– volume: 322
  start-page: 549
  year: 1905
  end-page: 560
  article-title: On the movement of small particles suspended in stationary liquids required by the molecular‐kinetic theory of heat
  publication-title: Annalen der Physik (in German)
– volume: 39
  start-page: 1
  year: 1936
  end-page: 34
  article-title: Analyse der faserverteilung in einem Rückenmarkquerschnitt (Th 3)
  publication-title: Z Mikrosk Anat Forsch.
– volume: 150
  start-page: 119
  year: 2017
  end-page: 135
  article-title: Machine learning based compartment models with permeability for white matter microstructure imaging
  publication-title: NeuroImage
– volume: 29
  start-page: 817
  year: 2016
  end-page: 832
  article-title: Tract‐specific and age‐related variations of the spinal cord microstructure: A multi‐parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT)
  publication-title: NMR Biomed.
– volume: 14
  start-page: 505
  year: 1988
  end-page: 510
  article-title: Increased diameter of demyelinated axons in chronic multiple sclerosis of the spinal cord
  publication-title: Neuropathol Appl Neurobiol.
– volume: 9
  start-page: 843
  year: 2013
  end-page: 844
  article-title: Will imaging biomarkers transform spinal cord injury trials?
  publication-title: Lancet Neurol.
– volume: 57
  start-page: 625
  year: 2007
  end-page: 630
  article-title: Reduced field‐of‐view MRI using outer volume suppression for spinal cord diffusion imaging
  publication-title: Magn Reson Med.
– volume: 4
  start-page: 469
  year: 2003
  end-page: 480
  article-title: Looking into the functional architecture of the brain with diffusion MRI
  publication-title: Nat Rev Neurosci.
– volume: 181
  start-page: 314
  year: 2018
  end-page: 322
  article-title: Intra‐ and extra‐axonal axial diffusivities in the white matter: Which one is faster?
  publication-title: NeuroImage.
– volume: 129
  start-page: 414
  year: 2016
  end-page: 427
  article-title: In vivo observation and biophysical interpretation of time‐dependent diffusion in human white matter
  publication-title: NeuroImage
– volume: 72
  start-page: 726
  year: 2014
  end-page: 736
  article-title: Oscillating gradient spin‐echo (OGSE) diffusion tensor imaging of the human brain
  publication-title: Magn Reson Med.
– volume: 30
  start-page: 278
  year: 2007
  end-page: 307
  article-title: Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review
  publication-title: Concepts Magn Reson Part A
– volume: 37
  start-page: 474
  year: 2007
  end-page: 488
  article-title: Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging
  publication-title: NeuroImage
– volume: 145
  start-page: 24
  year: 2017
  end-page: 43
  article-title: SCT: Spinal Cord Toolbox, an open‐source software for processing spinal cord MRI data
  publication-title: NeuroImage
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: NeuroImage
– volume: 147
  start-page: 517
  year: 2017
  end-page: 531
  article-title: Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding
  publication-title: NeuroImage.
– volume: 132
  start-page: 104
  year: 2016
  end-page: 114
  article-title: In vivo quantification of demyelination and recovery using compartment‐specific diffusion MRI metrics validated by electron microscopy
  publication-title: NeuroImage.
– volume: 107
  start-page: 242
  year: 2015
  end-page: 256
  article-title: One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI?
  publication-title: NeuroImage.
– volume: 78
  start-page: 550
  year: 2017
  end-page: 564
  article-title: Double oscillating diffusion encoding and sensitivity to microscopic anisotropy
  publication-title: Magn Reson Med.
– start-page: 0282
  year: 2017
– volume: 111
  start-page: 5088
  year: 2014
  end-page: 5093
  article-title: Revealing mesoscopic structural universality with diffusion
  publication-title: Proc Nat Acad Sci.
– volume: 26
  start-page: 1647
  year: 2013
  end-page: 1662
  article-title: Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments
  publication-title: NMR Biomed.
– volume: 135
  start-page: 345
  year: 2016
  end-page: 362
  article-title: Q‐space trajectory imaging for multidimensional diffusion MRI of the human brain
  publication-title: NeuroImage
– volume: 127
  start-page: 135
  year: 2016
  end-page: 143
  article-title: Temperature dependence of water diffusion pools in brain white matter
  publication-title: NeuroImage
– volume: 69
  start-page: 1572
  year: 2013
  end-page: 1580
  article-title: Noninvasive mapping of water diffusional exchange in the human brain using filter‐exchange imaging
  publication-title: Magn Reson Med.
– volume: 81
  start-page: 335
  year: 2013
  end-page: 346
  article-title: Weighted linear least squares estimation of diffusion mri parameters: Strengths, limitations, and pitfalls
  publication-title: NeuroImage.
– volume: 30
  start-page: e3711
  year: 2017
  article-title: Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion
  publication-title: NMR Biomed.
– volume: 74
  start-page: 1902
  year: 2014
  end-page: 1912
  article-title: Noninvasive quantification of solid tumor microstructure using VERDICT MRI
  publication-title: Cancer Res.
– volume: 84
  start-page: 1082
  year: 2014
  end-page: 1093
  article-title: The current state‐of‐the‐art of spinal cord imaging: Applications
  publication-title: NeuroImage.
– article-title: Diffusion time dependence of microstructural parameters in fixed spinal cord
  publication-title: NeuroImage
– volume: 34
  start-page: 1473
  year: 2007
  end-page: 1486
  article-title: Modeling dendrite density from magnetic resonance diffusion measurements
  publication-title: NeuroImage
– start-page: 0843
  year: 2017
– volume: 47
  start-page: 24
  year: 2002
  end-page: 31
  article-title: Adc mapping of the human optic nerve: Increased resolution, coverage, and reliability with CSF‐suppressed ZOOM‐EPI
  publication-title: Magn Reson Med.
– volume: 79
  start-page: 789
  year: 2018
  end-page: 795
  article-title: Presence of time‐dependent diffusion in the brachial plexus
  publication-title: Magn Reson Med.
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: NeuroImage.
– volume: 179
  start-page: 317
  year: 2006
  end-page: 322
  article-title: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals
  publication-title: J Magn Reson.
– volume: 145
  start-page: 11
  year: 2017
  end-page: 23
  article-title: G‐ratio weighted imaging of the human spinal cord in vivo
  publication-title: NeuroImage.
– volume: 118
  start-page: 494
  year: 2015
  end-page: 507
  article-title: In vivo mapping of human spinal cord microstructure at 300 mt/m
  publication-title: NeuroImage.
– volume: 114
  start-page: 18
  year: 2015
  end-page: 37
  article-title: Mesoscopic structure of neuronal tracts from time‐dependent diffusion
  publication-title: NeuroImage
– volume: 28
  start-page: 1354
  year: 2009
  end-page: 1364
  article-title: Convergence and parameter choice for Monte‐Carlo simulations of diffusion MRI
  publication-title: IEEE Trans Med Imaging
– volume: 27
  start-page: 1952
  year: 2006
  end-page: 1961
  article-title: A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord
  publication-title: Am J Neuroradiol.
– year: 2017
  article-title: Low frequency oscillating gradient spin‐echo sequences improve sensitivity to axon diameter: An experimental study in viable nerve tissue
  publication-title: NeuroImage.
– volume: 58
  start-page: 177
  year: 2011
  end-page: 188
  article-title: White matter characterization with diffusional kurtosis imaging
  publication-title: NeuroImage
– volume: 29
  start-page: 33
  year: 2016
  end-page: 47
  article-title: Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue
  publication-title: NMR Biomed.
– volume: 45
  start-page: 1126
  year: 2001
  end-page: 1129
  article-title: Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease
  publication-title: Magn Reson Med.
– volume: 11
  start-page: 327
  year: 2015
  end-page: 338
  article-title: Spinal cord MRI in multiple sclerosis—diagnostic, prognostic and clinical value
  publication-title: Nat Rev Neurol.
– volume: 58
  start-page: 185
  year: 2007
  end-page: 189
  article-title: Investigation of human cervical and upper thoracic spinal cord motion: Implications for imaging spinal cord structure and function
  publication-title: Magn Reson Med.
– volume: 59
  start-page: 1347
  year: 2008
  end-page: 1354
  article-title: AxCaliber: A method for measuring axon diameter distribution from diffusion MRI
  publication-title: Magn Reson Med.
– volume: 84
  start-page: 1070
  year: 2014
  end-page: 1081
  article-title: The current state‐of‐the‐art of spinal cord imaging: Methods
  publication-title: NeuroImage.
– volume: 33
  start-page: 697
  year: 1995
  end-page: 712
  article-title: Theoretical model for water diffusion in tissues
  publication-title: Magn Reson Med.
– volume: 130
  start-page: 91
  year: 2016
  end-page: 103
  article-title: Including diffusion time dependence in the extra‐axonal space improves in vivo estimates of axonal diameter and density in human white matter
  publication-title: NeuroImage.
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  article-title: Mr diffusion tensor spectroscopy and imaging
  publication-title: Biophys J.
– volume: 15
  start-page: 333
  year: 2017
  end-page: 342
  article-title: Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients
  publication-title: NeuroImage: Clinical.
– volume: 142
  start-page: 381
  year: 2016
  end-page: 393
  article-title: Fast imaging of mean, axial and radial diffusion kurtosis
  publication-title: NeuroImage.
– volume: 60
  start-page: 1412
  year: 2012
  end-page: 1425
  article-title: Ball and rackets: Inferring fiber fanning from diffusionweighted MRI
  publication-title: NeuroImage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage.
– volume: 27
  start-page: 176
  year: 2009
  end-page: 187
  article-title: On the effects of a varied diffusion time in vivo: Is the diffusion in white matter restricted?
  publication-title: Magn Reson Imaging.
– volume: 90
  start-page: 346
  year: 2012
  end-page: 355
  article-title: Harper RM. Regional brain axial and radial diffusivity changes during development
  publication-title: J Neurosci Res.
– ident: e_1_2_8_17_1
  doi: 10.1158/0008-5472.CAN-13-2511
– volume: 39
  start-page: 1
  year: 1936
  ident: e_1_2_8_25_1
  article-title: Analyse der faserverteilung in einem Rückenmarkquerschnitt (Th 3)
  publication-title: Z Mikrosk Anat Forsch.
– ident: e_1_2_8_39_1
  doi: 10.1002/nbm.3711
– ident: e_1_2_8_47_1
  doi: 10.1016/j.neuroimage.2016.02.004
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuroimage.2016.08.022
– ident: e_1_2_8_73_1
  doi: 10.1002/mrm.27101
– ident: e_1_2_8_67_1
  doi: 10.1111/j.1365-2990.1988.tb01341.x
– ident: e_1_2_8_37_1
  doi: 10.1016/j.neuroimage.2016.06.002
– ident: e_1_2_8_55_1
  doi: 10.1002/mrm.10016
– ident: e_1_2_8_5_1
  doi: 10.1016/j.neuroimage.2011.06.006
– ident: e_1_2_8_77_1
  doi: 10.3171/jns.1971.35.2.0141
– ident: e_1_2_8_38_1
  doi: 10.1002/mrm.25631
– ident: e_1_2_8_58_1
  doi: 10.1016/j.jmr.2006.01.016
– start-page: 282434
  year: 2018
  ident: e_1_2_8_27_1
  article-title: Axons morphometry in the human spinal cord
  publication-title: bioRxiv
– ident: e_1_2_8_69_1
  doi: 10.1002/nbm.3450
– ident: e_1_2_8_36_1
  doi: 10.1016/j.neuroimage.2011.09.081
– ident: e_1_2_8_78_1
  doi: 10.1016/j.neuroimage.2013.04.124
– ident: e_1_2_8_71_1
  doi: 10.1016/j.neuroimage.2015.06.038
– ident: e_1_2_8_49_1
  doi: 10.1016/j.neuroimage.2017.08.039.
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neuroimage.2016.01.018
– ident: e_1_2_8_66_1
  doi: 10.1016/j.mri.2008.06.003
– ident: e_1_2_8_45_1
  doi: 10.1016/j.neuroimage.2016.09.018
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.1316944111
– ident: e_1_2_8_59_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_8_63_1
  doi: 10.1016/j.neuroimage.2013.05.028
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.26393
– ident: e_1_2_8_19_1
  doi: 10.1002/andp.19053220806
– ident: e_1_2_8_9_1
  doi: 10.1002/nbm.2999
– ident: e_1_2_8_72_1
  doi: 10.1016/j.nicl.2017.05.010
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.21577
– ident: e_1_2_8_53_1
  doi: 10.1002/mrm.1910330516
– ident: e_1_2_8_43_1
  doi: 10.1002/mrm.25734
– ident: e_1_2_8_61_1
  doi: 10.1016/j.neuroimage.2016.10.009
– ident: e_1_2_8_79_1
  doi: 10.1002/mrm.25901
– ident: e_1_2_8_28_1
  doi: 10.1016/0006-8993(92)90178-C
– ident: e_1_2_8_48_1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2015.05.023
– start-page: 0843
  volume-title: Origin of the time dependence of the diffusion‐weighted signal in spinal cord white matter
  year: 2017
  ident: e_1_2_8_34_1
– ident: e_1_2_8_52_1
  doi: 10.1002/nbm.1584
– ident: e_1_2_8_26_1
  doi: 10.1097/00007632-199605010-00002
– start-page: 2009
  volume-title: Axon diameter distribution in uences diffusion‐derived axonal density estimation in the human spinal cord: In silico and in vivo evidence
  year: 2016
  ident: e_1_2_8_33_1
– ident: e_1_2_8_74_1
  doi: 10.1002/jnr.22757
– ident: e_1_2_8_64_1
  doi: 10.1016/j.neuroimage.2016.11.053
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_8_8_1
  doi: 10.1016/j.neuroimage.2012.01.056
– ident: e_1_2_8_30_1
  doi: 10.1016/S1474-4422(13)70157-1
– ident: e_1_2_8_62_1
  doi: 10.1016/j.neuroimage.2014.04.051
– ident: e_1_2_8_70_1
  doi: 10.1016/j.neuroimage.2014.12.009
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuroimage.2017.02.013
– ident: e_1_2_8_3_1
  doi: 10.1002/cmr.a.20094
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuroimage.2013.07.014
– ident: e_1_2_8_57_1
  doi: 10.1016/j.neuroimage.2016.08.016
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neuroimage.2007.05.012
– ident: e_1_2_8_54_1
  doi: 10.1016/j.neuroimage.2015.01.045
– ident: e_1_2_8_60_1
  doi: 10.1371/journal.pone.0164890
– ident: e_1_2_8_16_1
  doi: 10.1016/j.neuroimage.2016.02.039
– ident: e_1_2_8_29_1
  doi: 10.1038/nrneurol.2015.80
– ident: e_1_2_8_12_1
  doi: 10.1016/j.neuroimage.2010.05.043
– ident: e_1_2_8_21_1
  doi: 10.1016/j.neuroimage.2015.03.061
– ident: e_1_2_8_56_1
  doi: 10.1002/mrm.21167
– ident: e_1_2_8_2_1
  doi: 10.1038/nrn1119
– ident: e_1_2_8_31_1
  doi: 10.1038/nrdp.2017.18
– ident: e_1_2_8_41_1
  doi: 10.1002/mrm.24987
– ident: e_1_2_8_15_1
  doi: 10.1016/j.neuroimage.2015.11.064
– ident: e_1_2_8_40_1
  doi: 10.1016/j.neuroimage.2017.07.060
– ident: e_1_2_8_50_1
  doi: 10.1016/j.neuroimage.2018.07.020
– ident: e_1_2_8_76_1
  doi: 10.1002/mrm.21260
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuroimage.2006.10.037
– ident: e_1_2_8_20_1
  doi: 10.1002/mrm.1149
– ident: e_1_2_8_13_1
  doi: 10.1002/mrm.24395
– ident: e_1_2_8_24_1
  doi: 10.1002/mrm.26733
– ident: e_1_2_8_35_1
  doi: 10.1002/mrm.10609
– ident: e_1_2_8_68_1
  doi: 10.1002/nbm.3530
– ident: e_1_2_8_42_1
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_8_44_1
  doi: 10.1109/TMI.2009.2015756
– volume: 27
  start-page: 1952
  year: 2006
  ident: e_1_2_8_75_1
  article-title: A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord
  publication-title: Am J Neuroradiol.
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroimage.2016.01.047
– start-page: 0282
  volume-title: Universal power‐law scaling of water diffusion in human brain defines what we see with diffusion MRI
  year: 2017
  ident: e_1_2_8_65_1
SSID ssj0009974
Score 2.4352264
Snippet Purpose Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study...
Time-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the...
PurposeTime‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1247
SubjectTerms Adult
Algorithms
Axons
Axons - pathology
Brain
Brain - diagnostic imaging
Computer Simulation
Cylinders
Diffusion
Diffusion Magnetic Resonance Imaging
diffusion time
Feasibility studies
Female
Full Papers—Biophysics and Basic Biomedical Research
Healthy Volunteers
Humans
Image Processing, Computer-Assisted - methods
Kurtosis
Magnetic resonance imaging
Male
microstructure
Monte Carlo Method
Monte Carlo simulation
Monte Carlo simulations
Neuroimaging
Spinal cord
Spinal Cord - diagnostic imaging
Substantia alba
Time dependence
Time Factors
white matter
Title Relevance of time‐dependence for clinically viable diffusion imaging of the spinal cord
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27463
https://www.ncbi.nlm.nih.gov/pubmed/30229564
https://www.proquest.com/docview/2153941395
https://www.proquest.com/docview/2111741036
https://pubmed.ncbi.nlm.nih.gov/PMC6586052
Volume 81
WOSCitedRecordID wos000462086300044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qLSA2FMorUCqDWLBJm8ROHIsVajsCiRlVIyqGVWQ7tjpSJ1NNOpXY8Qn9xn4J186jHRWkSmyiPK6Vh--1z3XscwA-OE5wlZkoNFbRECG1CWWsTKgjzksmEZLLRmyCj0b5ZCKO1uBTtxam4YfoB9xcZPj22gW4VPXeNWnobDHbxZQqo_dgI44pdy6dsKNrxl3RUDBz5hoawTpaoSjZ64uudka3EObtiZI3AazvgQab__XsT-BxCzzJ58ZTnsKaqbbg4bD9tb4FD_xcUF0_g59jt-bceQOZW-LE569-X3ZiuXgSYS7pFlSe_iIXU7f6ijillaUbeiPTmVc-8oVPDKnPnPAWcVnuczgeHH7f_xK2CgyhRiBBQyNTm-vc5jbRaZJpY62IS06VyWRW8lSzUua8TLWRgtK0ZJhgMougjMs0s0rSF7BezSvzCohgMtLKslzEimEhJaWWKaOUKWx0rArgY1cVhW7pyZ1KxmnRECsnBX60wn-0AN73pmcNJ8ffjLa7-izasKwLxDdUYLct0gDe9ZcxoNxfElmZ-dLZxJilxdizB_Cyqf7-LjRy6ucZC4CvOEZv4Mi6V69U0xNP2o1IDzPHBF_TO8a_H7wYjod-5_XdTd_AIwRyoplNvg3r54uleQv39cX5tF7s-LjALZ_kO7BxMB4cf8OjH19HfwBVLBcJ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qU14bHuUVKGAQCzahSWzHscQGAaMiZkZo1EplFdmOrY7UyVQznUrs-AS-kS_h2nmUUUFCYhNF8bXixL72uX6cA_DKc4Lr3CaxdZrGCKltrFJtY5MIUTGFkFw1YhNiMimOjuSXLXjbnYVp-CH6CTfvGaG_9g7uJ6T3LlhD58v5G4ypcnoFtvFa8AFsf5gOD0cXpLuyYWEWzPc1knXMQkm212feHI8ugczLeyV_x7BhEBre_r_i34FbLfgk75rWche2bL0D18ft8voOXAv7Qc3qHnyd-nPnvkWQhSNegP7n9x-dYC4-RKhLukOVJ9_I-cyfwCJebWXtp9_IbB7Uj0LmY0tWp158i_hI9z4cDj8evN-PWxWG2CCYoLFV3BWmcIXLDM9yY52TaSWotrnKK8ENq1QhKm6skpTyimGQyRwCM6F47rSiD2BQL2r7CIhkKjHasUKmmmEmrZRRnFHKNHY8TkfwuquL0rQU5V4p46RsyJWzEn9aGX5aBC9709OGl-NPRrtdhZata65KxDhU4tAteQQv-mR0Kr9Somq7WHubFCO1FEf3CB429d-_hSZeAT1nEYiNltEbeMLuzZR6dhyIuxHtYfSY4WeGlvH3gpfj6TjcPP530-dwY_9gPCpHnyafn8BNBHay2V2-C4Oz5do-havm_Gy2Wj5r3eQX_EwY7w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qBapueJRH0xYwiAWb0CS241hiUwEjEMxoVIFUVpHt2OpIncxoplOJHZ_AN_IlvXYeZVSQkNhF8bXi2L72uX6cA_DSc4Lr3CaxdZrGCKltrFJtY5MIUTGFkFw1YhNiNCpOTuR4A950d2Eafoh-wc17RhivvYPbeeUOr1hDp4vpa4ypcnoDbjKOY6zndWbjK8pd2XAwC-ZHGsk6XqEkO-yzrs9G1yDm9ZOSvyPYMAUN7v5f4e_BnRZ6kqOmr9yHDVvvwNaw3VzfgdvhNKhZPoBvx_7Wue8PZOaIl5__9eNnJ5eLLxHoku5K5dl3cjHx96-I11pZ-cU3MpkG7aOQ-dSS5dxLbxEf5z6Er4P3X95-iFsNhtgglKCxVdwVpnCFywzPcmOdk2klqLa5yivBDatUISpurJKU8ophiMkcwjKheO60oo9gs57VdheIZCox2rFCppphJq2UUZxRyjQOO05H8Kpri9K0BOVeJ-OsbKiVsxIrrQyVFsGL3nTesHL8yeiga9CydcxliQiHSpy4JY_geZ-MLuX3SVRtZytvk2KcluLcHsHjpv37r9DE65_nLAKx1jN6A0_XvZ5ST04DbTdiPYwdM_zN0DP-XvByeDwMD3v_bvoMtsbvBuXnj6NP-7CNqE42R8sPYPN8sbJP4Ja5OJ8sF0-Dj1wCdoMW2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relevance+of+time%E2%80%90dependence+for+clinically+viable+diffusion+imaging+of+the+spinal+cord&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Grussu%2C+Francesco&rft.au=Ianu%C5%9F%2C+Andrada&rft.au=Tur%2C+Carmen&rft.au=Prados%2C+Ferran&rft.date=2019-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=2&rft.spage=1247&rft.epage=1264&rft_id=info:doi/10.1002%2Fmrm.27463&rft.externalDBID=10.1002%252Fmrm.27463&rft.externalDocID=MRM27463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon