Relevance of time‐dependence for clinically viable diffusion imaging of the spinal cord
Purpose Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain. Methods We run Monte Carlo simulations using a...
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 81; číslo 2; s. 1247 - 1264 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.02.2019
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose
Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain.
Methods
We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi‐shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm−2; b = 2855 s mm−2), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers.
Results
Both intra‐/extra‐axonal perpendicular diffusivities and kurtosis excess show time‐dependence in our synthetic spinal cord model. This time‐dependence is reflected mostly in the intra‐axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time‐dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time‐dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two‐compartment SMT metrics. Accounting for large axon calibers improves fitting of multi‐compartment models to a minor extent.
Conclusions
Time‐dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non‐invasive estimation of microstructural properties. The time‐dependence of the perpendicular DW signal may feature strong intra‐axonal contributions due to large spinal axon caliber. Hence, a popular model known as “stick” (zero‐radius cylinder) may be sub‐optimal to describe signals from the largest spinal axons. |
|---|---|
| AbstractList | PurposeTime‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain.MethodsWe run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi‐shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm−2; b = 2855 s mm−2), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers.ResultsBoth intra‐/extra‐axonal perpendicular diffusivities and kurtosis excess show time‐dependence in our synthetic spinal cord model. This time‐dependence is reflected mostly in the intra‐axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time‐dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time‐dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two‐compartment SMT metrics. Accounting for large axon calibers improves fitting of multi‐compartment models to a minor extent.ConclusionsTime‐dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non‐invasive estimation of microstructural properties. The time‐dependence of the perpendicular DW signal may feature strong intra‐axonal contributions due to large spinal axon caliber. Hence, a popular model known as “stick” (zero‐radius cylinder) may be sub‐optimal to describe signals from the largest spinal axons. Time-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the human spinal cord, as its axonal structure is specific and different from the brain. We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi-shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm ; b = 2855 s mm ), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers. Both intra-/extra-axonal perpendicular diffusivities and kurtosis excess show time-dependence in our synthetic spinal cord model. This time-dependence is reflected mostly in the intra-axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time-dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time-dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two-compartment SMT metrics. Accounting for large axon calibers improves fitting of multi-compartment models to a minor extent. Time-dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non-invasive estimation of microstructural properties. The time-dependence of the perpendicular DW signal may feature strong intra-axonal contributions due to large spinal axon caliber. Hence, a popular model known as "stick" (zero-radius cylinder) may be sub-optimal to describe signals from the largest spinal axons. Purpose Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain. Methods We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi‐shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm−2; b = 2855 s mm−2), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers. Results Both intra‐/extra‐axonal perpendicular diffusivities and kurtosis excess show time‐dependence in our synthetic spinal cord model. This time‐dependence is reflected mostly in the intra‐axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time‐dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time‐dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two‐compartment SMT metrics. Accounting for large axon calibers improves fitting of multi‐compartment models to a minor extent. Conclusions Time‐dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non‐invasive estimation of microstructural properties. The time‐dependence of the perpendicular DW signal may feature strong intra‐axonal contributions due to large spinal axon caliber. Hence, a popular model known as “stick” (zero‐radius cylinder) may be sub‐optimal to describe signals from the largest spinal axons. Time-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the human spinal cord, as its axonal structure is specific and different from the brain.PURPOSETime-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the human spinal cord, as its axonal structure is specific and different from the brain.We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi-shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm-2 ; b = 2855 s mm-2 ), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers.METHODSWe run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi-shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm-2 ; b = 2855 s mm-2 ), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers.Both intra-/extra-axonal perpendicular diffusivities and kurtosis excess show time-dependence in our synthetic spinal cord model. This time-dependence is reflected mostly in the intra-axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time-dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time-dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two-compartment SMT metrics. Accounting for large axon calibers improves fitting of multi-compartment models to a minor extent.RESULTSBoth intra-/extra-axonal perpendicular diffusivities and kurtosis excess show time-dependence in our synthetic spinal cord model. This time-dependence is reflected mostly in the intra-axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time-dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time-dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two-compartment SMT metrics. Accounting for large axon calibers improves fitting of multi-compartment models to a minor extent.Time-dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non-invasive estimation of microstructural properties. The time-dependence of the perpendicular DW signal may feature strong intra-axonal contributions due to large spinal axon caliber. Hence, a popular model known as "stick" (zero-radius cylinder) may be sub-optimal to describe signals from the largest spinal axons.CONCLUSIONSTime-dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non-invasive estimation of microstructural properties. The time-dependence of the perpendicular DW signal may feature strong intra-axonal contributions due to large spinal axon caliber. Hence, a popular model known as "stick" (zero-radius cylinder) may be sub-optimal to describe signals from the largest spinal axons. |
| Author | Grussu, Francesco Kaden, Enrico Zhang, Hui Gandini Wheeler‐Kingshott, Claudia A. M. Drobnjak, Ivana Ianuş, Andrada Ourselin, Sébastien Tur, Carmen Schneider, Torben Alexander, Daniel C. Prados, Ferran |
| AuthorAffiliation | 2 Centre for Medical Image Computing, Department of Computer Science University College London London United Kingdom 7 Brain MRI 3T Research Centre C. Mondino National Neurological Institute Pavia Italy 5 Philips United Kingdom Guildford Surrey United Kingdom 6 Clinical Imaging Research Centre National University of Singapore Singapore Singapore 4 Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering University College London London United Kingdom 8 Department of Brain and Behavioural Sciences University of Pavia Pavia Italy 1 Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London United Kingdom 3 Champalimaud Centre for the Unknown Champalimaud Foundation Lisbon Portugal |
| AuthorAffiliation_xml | – name: 5 Philips United Kingdom Guildford Surrey United Kingdom – name: 8 Department of Brain and Behavioural Sciences University of Pavia Pavia Italy – name: 6 Clinical Imaging Research Centre National University of Singapore Singapore Singapore – name: 4 Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering University College London London United Kingdom – name: 3 Champalimaud Centre for the Unknown Champalimaud Foundation Lisbon Portugal – name: 2 Centre for Medical Image Computing, Department of Computer Science University College London London United Kingdom – name: 1 Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London United Kingdom – name: 7 Brain MRI 3T Research Centre C. Mondino National Neurological Institute Pavia Italy |
| Author_xml | – sequence: 1 givenname: Francesco surname: Grussu fullname: Grussu, Francesco email: f.grussu@ucl.ac.uk organization: University College London – sequence: 2 givenname: Andrada surname: Ianuş fullname: Ianuş, Andrada organization: Champalimaud Foundation – sequence: 3 givenname: Carmen surname: Tur fullname: Tur, Carmen organization: University College London – sequence: 4 givenname: Ferran surname: Prados fullname: Prados, Ferran organization: University College London – sequence: 5 givenname: Torben surname: Schneider fullname: Schneider, Torben organization: Philips United Kingdom – sequence: 6 givenname: Enrico surname: Kaden fullname: Kaden, Enrico organization: University College London – sequence: 7 givenname: Sébastien surname: Ourselin fullname: Ourselin, Sébastien organization: University College London – sequence: 8 givenname: Ivana surname: Drobnjak fullname: Drobnjak, Ivana organization: University College London – sequence: 9 givenname: Hui surname: Zhang fullname: Zhang, Hui organization: University College London – sequence: 10 givenname: Daniel C. surname: Alexander fullname: Alexander, Daniel C. organization: National University of Singapore – sequence: 11 givenname: Claudia A. M. surname: Gandini Wheeler‐Kingshott fullname: Gandini Wheeler‐Kingshott, Claudia A. M. organization: University of Pavia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30229564$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9qFTEYxYNU7G114QvIgBtdTJv_M7MRpPgPWoSiC1chN_lym5JJrsnMlbvzEXxGn8Tc3lq0oKtA8jsn5_vOETqIKQJCTwk-IRjT0zGPJ7Tjkj1ACyIobakY-AFa4I7jlpGBH6KjUq4xxsPQ8UfokGFKByH5An25hAAbHQ00yTWTH-Hn9x8W1hAt7C5dyo0JPnqjQ9g2G6-XARrrnZuLT7Hxo175uLoRX0FT1j7q0JiU7WP00OlQ4MnteYw-v33z6ex9e_7x3Yez1-etEXhgLWjhetO73lEjqDTg3EBsx5YgtbSdMNzqvrPCgB4YE5YTLLkTXHRaSLfU7Bi92vuu5-UI1kCcsg5qnWu0vFVJe_X3S_RXapU2SopeYkGrwYtbg5y-zlAmNfpiIAQdIc1FUUJIV79lsqLP76HXac514h0l2MAJG0Slnv2Z6C7K761X4OUeMDmVksHdIQSrXaOqNqpuGq3s6T3W-ElPdfd1GB_-p_jmA2z_ba0uLi_2il9TxbRS |
| CitedBy_id | crossref_primary_10_1007_s12311_020_01147_1 crossref_primary_10_1016_j_neuroimage_2019_116026 crossref_primary_10_1002_nbm_4170 crossref_primary_10_1016_j_jmr_2019_01_007 crossref_primary_10_1016_j_media_2021_101988 crossref_primary_10_1016_j_neuroimage_2023_119930 crossref_primary_10_1016_j_neuroimage_2022_119137 crossref_primary_10_1016_j_neuroimage_2020_117619 crossref_primary_10_1002_nbm_4267 crossref_primary_10_1038_s41598_025_91658_w crossref_primary_10_1016_j_neuroimage_2021_117849 crossref_primary_10_1016_j_nicl_2022_102972 crossref_primary_10_1016_j_neuroimage_2020_116605 crossref_primary_10_1016_j_neuroimage_2022_119826 crossref_primary_10_1371_journal_pone_0214238 crossref_primary_10_1177_1352458519885107 crossref_primary_10_1631_jzus_A2400139 crossref_primary_10_1016_j_nicl_2022_103244 crossref_primary_10_1038_s41596_021_00588_0 crossref_primary_10_3389_fninf_2023_1208073 crossref_primary_10_1016_j_neuroimage_2020_116884 crossref_primary_10_1016_j_mri_2024_01_008 crossref_primary_10_1016_j_neuroimage_2023_120328 |
| Cites_doi | 10.1158/0008-5472.CAN-13-2511 10.1002/nbm.3711 10.1016/j.neuroimage.2016.02.004 10.1016/j.neuroimage.2016.08.022 10.1002/mrm.27101 10.1111/j.1365-2990.1988.tb01341.x 10.1016/j.neuroimage.2016.06.002 10.1002/mrm.10016 10.1016/j.neuroimage.2011.06.006 10.3171/jns.1971.35.2.0141 10.1002/mrm.25631 10.1016/j.jmr.2006.01.016 10.1002/nbm.3450 10.1016/j.neuroimage.2011.09.081 10.1016/j.neuroimage.2013.04.124 10.1016/j.neuroimage.2015.06.038 10.1016/j.neuroimage.2017.08.039. 10.1016/j.neuroimage.2016.01.018 10.1016/j.mri.2008.06.003 10.1016/j.neuroimage.2016.09.018 10.1073/pnas.1316944111 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2013.05.028 10.1002/mrm.26393 10.1002/andp.19053220806 10.1002/nbm.2999 10.1016/j.nicl.2017.05.010 10.1002/mrm.21577 10.1002/mrm.1910330516 10.1002/mrm.25734 10.1016/j.neuroimage.2016.10.009 10.1002/mrm.25901 10.1016/0006-8993(92)90178-C 10.1016/j.neuroimage.2015.05.023 10.1002/nbm.1584 10.1097/00007632-199605010-00002 10.1002/jnr.22757 10.1016/j.neuroimage.2016.11.053 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2012.01.056 10.1016/S1474-4422(13)70157-1 10.1016/j.neuroimage.2014.04.051 10.1016/j.neuroimage.2014.12.009 10.1016/j.neuroimage.2017.02.013 10.1002/cmr.a.20094 10.1016/j.neuroimage.2013.07.014 10.1016/j.neuroimage.2016.08.016 10.1016/j.neuroimage.2007.05.012 10.1016/j.neuroimage.2015.01.045 10.1371/journal.pone.0164890 10.1016/j.neuroimage.2016.02.039 10.1038/nrneurol.2015.80 10.1016/j.neuroimage.2010.05.043 10.1016/j.neuroimage.2015.03.061 10.1002/mrm.21167 10.1038/nrn1119 10.1038/nrdp.2017.18 10.1002/mrm.24987 10.1016/j.neuroimage.2015.11.064 10.1016/j.neuroimage.2017.07.060 10.1016/j.neuroimage.2018.07.020 10.1002/mrm.21260 10.1016/j.neuroimage.2006.10.037 10.1002/mrm.1149 10.1002/mrm.24395 10.1002/mrm.26733 10.1002/mrm.10609 10.1002/nbm.3530 10.1016/S0006-3495(94)80775-1 10.1109/TMI.2009.2015756 10.1016/j.neuroimage.2016.01.047 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine – notice: 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.27463 |
| DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | Grussu et al |
| EISSN | 1522-2594 |
| EndPage | 1264 |
| ExternalDocumentID | PMC6586052 30229564 10_1002_mrm_27463 MRM27463 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: EPSRC grantid: M507970 – fundername: EPSRC grantid: 666992-2 – fundername: Wings for Life (Austria) – fundername: EPSRC grantid: EP/I027084/1 – fundername: International Spinal Research Trust (UK) – fundername: EPSRC grantid: N018702 – fundername: Platform Grant for medical image computing for next-generation healthcare technology grantid: EP/M020533/1 – fundername: UK Multiple Sclerosis Society grantid: 892/08 – fundername: EPSRC grantid: H2020-EU.3.1 – fundername: Department of Health's National Institute for Health Research Biomedical Research Centres grantid: BRC R&D 03/10/RAG0449 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c5093-ea5f8c8f8f2c526ceff91d73be6a6d75c4da87d5cea9335d41064f5457a56fba3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462086300044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Aug 21 17:47:33 EDT 2025 Fri Jul 11 08:31:36 EDT 2025 Sat Nov 29 14:23:54 EST 2025 Thu Apr 03 06:58:47 EDT 2025 Sat Nov 29 02:37:45 EST 2025 Tue Nov 18 21:48:54 EST 2025 Tue Nov 11 03:08:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | white matter Monte Carlo simulations microstructure diffusion time spinal cord |
| Language | English |
| License | Attribution 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5093-ea5f8c8f8f2c526ceff91d73be6a6d75c4da87d5cea9335d41064f5457a56fba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27463 |
| PMID | 30229564 |
| PQID | 2153941395 |
| PQPubID | 1016391 |
| PageCount | 0 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6586052 proquest_miscellaneous_2111741036 proquest_journals_2153941395 pubmed_primary_30229564 crossref_primary_10_1002_mrm_27463 crossref_citationtrail_10_1002_mrm_27463 wiley_primary_10_1002_mrm_27463_MRM27463 |
| PublicationCentury | 2000 |
| PublicationDate | February 2019 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2012; 61 2012; 60 2002; 17 2013; 26 2013; 69 2017; 3 1936; 39 1995; 33 2016; 75 1994; 66 2017; 150 2007; 30 2011; 58 2012; 59 2015; 107 2001; 45 2003; 50 2007; 34 2016; 142 2007; 37 2013; 9 2006; 179 2010; 23 2002; 47 2017; 30 2006; 27 1992; 598 2017; 78 2003; 4 1996; 21 2014; 98 2018; 79 2018; 181 2016; 129 1988; 14 2015; 11 2008; 59 2016; 127 2014; 111 2014; 84 2007; 57 2009; 27 2007; 58 2009; 28 2016; 11 2012; 90 1905; 322 2017; 15 2015; 114 2015; 111 1971; 35 2016; 135 2018 2017 2016; 132 2013; 81 2016 2016; 139 2015; 118 2014; 74 2016; 29 2017; 145 2014; 72 2017; 147 2010; 52 2016; 130 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Grussu F (e_1_2_8_34_1) 2017 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_46_1 Duval T (e_1_2_8_27_1) 2018 e_1_2_8_48_1 e_1_2_8_69_1 Veraart J (e_1_2_8_65_1) 2017 Häggqvist G (e_1_2_8_25_1) 1936; 39 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Grussu F (e_1_2_8_33_1) 2016 Summers P (e_1_2_8_75_1) 2006; 27 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 111 start-page: 590 year: 2015 end-page: 601 article-title: Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo publication-title: Neuroimage. – volume: 118 start-page: 397 year: 2015 end-page: 405 article-title: In vivo histology of the myelin g‐ratio with magnetic resonance imaging publication-title: NeuroImage. – start-page: 2009 year: 2016 – volume: 11 start-page: e0164890 year: 2016 article-title: Reduced field‐of‐view diffusion‐weighted imaging of the lumbosacral enlargement: A pilot in vivo study of the healthy spinal cord at 3T publication-title: PloS One. – volume: 35 start-page: 141 year: 1971 end-page: 147 article-title: Microvasculature of the human spinal cord publication-title: Neurosurgery. – volume: 75 start-page: 1752 year: 2016 end-page: 1763 article-title: Quantitative mapping of the per‐axon diffusion coefficients in brain white matter publication-title: Magn Reson Med. – volume: 21 start-page: 1010 year: 1996 end-page: 1016 article-title: Morphometric study of myelinated fibers in human cervical spinal cord white matter publication-title: Spine – volume: 98 start-page: 528 year: 2014 end-page: 536 article-title: Robust, accurate and fast automatic segmentation of the spinal cord publication-title: NeuroImage. – volume: 139 start-page: 346 year: 2016 end-page: 359 article-title: Multi‐compartment microscopic diffusion imaging publication-title: NeuroImage. – start-page: 282434 year: 2018 article-title: Axons morphometry in the human spinal cord publication-title: bioRxiv – volume: 59 start-page: 2241 year: 2012 end-page: 2254 article-title: Compartment models of the diffusion mr signal in brain white matter: A taxonomy and comparison publication-title: NeuroImage. – volume: 23 start-page: 682 year: 2010 end-page: 697 article-title: Effective medium theory of a diffusion‐weighted signal publication-title: NMR Biomed. – volume: 3 start-page: 17018 year: 2017 article-title: Traumatic spinal cord injury publication-title: Nat Rev Disease Primers. – volume: 75 start-page: 82 year: 2016 end-page: 87 article-title: Conventions and nomenclature for double diffusion encoding NMR and MRI publication-title: Magn Reson Med. – volume: 75 start-page: 688 year: 2016 end-page: 700 article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study publication-title: Magn Reson Med. – volume: 598 start-page: 143 year: 1992 end-page: 153 article-title: Fiber composition of the human corpus callosum publication-title: Brain Res. – volume: 50 start-page: 1077 year: 2003 end-page: 1088 article-title: Characterization and propagation of uncertainty in diffusion‐weighted mr imaging publication-title: Magn Reson Med. – volume: 79 start-page: 3172 year: 2018 end-page: 3193 article-title: On modelling publication-title: Magn Reson Med. – volume: 52 start-page: 1374 year: 2010 end-page: 1389 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: NeuroImage – volume: 322 start-page: 549 year: 1905 end-page: 560 article-title: On the movement of small particles suspended in stationary liquids required by the molecular‐kinetic theory of heat publication-title: Annalen der Physik (in German) – volume: 39 start-page: 1 year: 1936 end-page: 34 article-title: Analyse der faserverteilung in einem Rückenmarkquerschnitt (Th 3) publication-title: Z Mikrosk Anat Forsch. – volume: 150 start-page: 119 year: 2017 end-page: 135 article-title: Machine learning based compartment models with permeability for white matter microstructure imaging publication-title: NeuroImage – volume: 29 start-page: 817 year: 2016 end-page: 832 article-title: Tract‐specific and age‐related variations of the spinal cord microstructure: A multi‐parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT) publication-title: NMR Biomed. – volume: 14 start-page: 505 year: 1988 end-page: 510 article-title: Increased diameter of demyelinated axons in chronic multiple sclerosis of the spinal cord publication-title: Neuropathol Appl Neurobiol. – volume: 9 start-page: 843 year: 2013 end-page: 844 article-title: Will imaging biomarkers transform spinal cord injury trials? publication-title: Lancet Neurol. – volume: 57 start-page: 625 year: 2007 end-page: 630 article-title: Reduced field‐of‐view MRI using outer volume suppression for spinal cord diffusion imaging publication-title: Magn Reson Med. – volume: 4 start-page: 469 year: 2003 end-page: 480 article-title: Looking into the functional architecture of the brain with diffusion MRI publication-title: Nat Rev Neurosci. – volume: 181 start-page: 314 year: 2018 end-page: 322 article-title: Intra‐ and extra‐axonal axial diffusivities in the white matter: Which one is faster? publication-title: NeuroImage. – volume: 129 start-page: 414 year: 2016 end-page: 427 article-title: In vivo observation and biophysical interpretation of time‐dependent diffusion in human white matter publication-title: NeuroImage – volume: 72 start-page: 726 year: 2014 end-page: 736 article-title: Oscillating gradient spin‐echo (OGSE) diffusion tensor imaging of the human brain publication-title: Magn Reson Med. – volume: 30 start-page: 278 year: 2007 end-page: 307 article-title: Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review publication-title: Concepts Magn Reson Part A – volume: 37 start-page: 474 year: 2007 end-page: 488 article-title: Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging publication-title: NeuroImage – volume: 145 start-page: 24 year: 2017 end-page: 43 article-title: SCT: Spinal Cord Toolbox, an open‐source software for processing spinal cord MRI data publication-title: NeuroImage – volume: 61 start-page: 1000 year: 2012 end-page: 1016 article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: NeuroImage – volume: 147 start-page: 517 year: 2017 end-page: 531 article-title: Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding publication-title: NeuroImage. – volume: 132 start-page: 104 year: 2016 end-page: 114 article-title: In vivo quantification of demyelination and recovery using compartment‐specific diffusion MRI metrics validated by electron microscopy publication-title: NeuroImage. – volume: 107 start-page: 242 year: 2015 end-page: 256 article-title: One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI? publication-title: NeuroImage. – volume: 78 start-page: 550 year: 2017 end-page: 564 article-title: Double oscillating diffusion encoding and sensitivity to microscopic anisotropy publication-title: Magn Reson Med. – start-page: 0282 year: 2017 – volume: 111 start-page: 5088 year: 2014 end-page: 5093 article-title: Revealing mesoscopic structural universality with diffusion publication-title: Proc Nat Acad Sci. – volume: 26 start-page: 1647 year: 2013 end-page: 1662 article-title: Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments publication-title: NMR Biomed. – volume: 135 start-page: 345 year: 2016 end-page: 362 article-title: Q‐space trajectory imaging for multidimensional diffusion MRI of the human brain publication-title: NeuroImage – volume: 127 start-page: 135 year: 2016 end-page: 143 article-title: Temperature dependence of water diffusion pools in brain white matter publication-title: NeuroImage – volume: 69 start-page: 1572 year: 2013 end-page: 1580 article-title: Noninvasive mapping of water diffusional exchange in the human brain using filter‐exchange imaging publication-title: Magn Reson Med. – volume: 81 start-page: 335 year: 2013 end-page: 346 article-title: Weighted linear least squares estimation of diffusion mri parameters: Strengths, limitations, and pitfalls publication-title: NeuroImage. – volume: 30 start-page: e3711 year: 2017 article-title: Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion publication-title: NMR Biomed. – volume: 74 start-page: 1902 year: 2014 end-page: 1912 article-title: Noninvasive quantification of solid tumor microstructure using VERDICT MRI publication-title: Cancer Res. – volume: 84 start-page: 1082 year: 2014 end-page: 1093 article-title: The current state‐of‐the‐art of spinal cord imaging: Applications publication-title: NeuroImage. – article-title: Diffusion time dependence of microstructural parameters in fixed spinal cord publication-title: NeuroImage – volume: 34 start-page: 1473 year: 2007 end-page: 1486 article-title: Modeling dendrite density from magnetic resonance diffusion measurements publication-title: NeuroImage – start-page: 0843 year: 2017 – volume: 47 start-page: 24 year: 2002 end-page: 31 article-title: Adc mapping of the human optic nerve: Increased resolution, coverage, and reliability with CSF‐suppressed ZOOM‐EPI publication-title: Magn Reson Med. – volume: 79 start-page: 789 year: 2018 end-page: 795 article-title: Presence of time‐dependent diffusion in the brachial plexus publication-title: Magn Reson Med. – volume: 142 start-page: 394 year: 2016 end-page: 406 article-title: Denoising of diffusion MRI using random matrix theory publication-title: NeuroImage. – volume: 179 start-page: 317 year: 2006 end-page: 322 article-title: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals publication-title: J Magn Reson. – volume: 145 start-page: 11 year: 2017 end-page: 23 article-title: G‐ratio weighted imaging of the human spinal cord in vivo publication-title: NeuroImage. – volume: 118 start-page: 494 year: 2015 end-page: 507 article-title: In vivo mapping of human spinal cord microstructure at 300 mt/m publication-title: NeuroImage. – volume: 114 start-page: 18 year: 2015 end-page: 37 article-title: Mesoscopic structure of neuronal tracts from time‐dependent diffusion publication-title: NeuroImage – volume: 28 start-page: 1354 year: 2009 end-page: 1364 article-title: Convergence and parameter choice for Monte‐Carlo simulations of diffusion MRI publication-title: IEEE Trans Med Imaging – volume: 27 start-page: 1952 year: 2006 end-page: 1961 article-title: A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord publication-title: Am J Neuroradiol. – year: 2017 article-title: Low frequency oscillating gradient spin‐echo sequences improve sensitivity to axon diameter: An experimental study in viable nerve tissue publication-title: NeuroImage. – volume: 58 start-page: 177 year: 2011 end-page: 188 article-title: White matter characterization with diffusional kurtosis imaging publication-title: NeuroImage – volume: 29 start-page: 33 year: 2016 end-page: 47 article-title: Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue publication-title: NMR Biomed. – volume: 45 start-page: 1126 year: 2001 end-page: 1129 article-title: Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease publication-title: Magn Reson Med. – volume: 11 start-page: 327 year: 2015 end-page: 338 article-title: Spinal cord MRI in multiple sclerosis—diagnostic, prognostic and clinical value publication-title: Nat Rev Neurol. – volume: 58 start-page: 185 year: 2007 end-page: 189 article-title: Investigation of human cervical and upper thoracic spinal cord motion: Implications for imaging spinal cord structure and function publication-title: Magn Reson Med. – volume: 59 start-page: 1347 year: 2008 end-page: 1354 article-title: AxCaliber: A method for measuring axon diameter distribution from diffusion MRI publication-title: Magn Reson Med. – volume: 84 start-page: 1070 year: 2014 end-page: 1081 article-title: The current state‐of‐the‐art of spinal cord imaging: Methods publication-title: NeuroImage. – volume: 33 start-page: 697 year: 1995 end-page: 712 article-title: Theoretical model for water diffusion in tissues publication-title: Magn Reson Med. – volume: 130 start-page: 91 year: 2016 end-page: 103 article-title: Including diffusion time dependence in the extra‐axonal space improves in vivo estimates of axonal diameter and density in human white matter publication-title: NeuroImage. – volume: 66 start-page: 259 year: 1994 end-page: 267 article-title: Mr diffusion tensor spectroscopy and imaging publication-title: Biophys J. – volume: 15 start-page: 333 year: 2017 end-page: 342 article-title: Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients publication-title: NeuroImage: Clinical. – volume: 142 start-page: 381 year: 2016 end-page: 393 article-title: Fast imaging of mean, axial and radial diffusion kurtosis publication-title: NeuroImage. – volume: 60 start-page: 1412 year: 2012 end-page: 1425 article-title: Ball and rackets: Inferring fiber fanning from diffusionweighted MRI publication-title: NeuroImage – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage. – volume: 27 start-page: 176 year: 2009 end-page: 187 article-title: On the effects of a varied diffusion time in vivo: Is the diffusion in white matter restricted? publication-title: Magn Reson Imaging. – volume: 90 start-page: 346 year: 2012 end-page: 355 article-title: Harper RM. Regional brain axial and radial diffusivity changes during development publication-title: J Neurosci Res. – ident: e_1_2_8_17_1 doi: 10.1158/0008-5472.CAN-13-2511 – volume: 39 start-page: 1 year: 1936 ident: e_1_2_8_25_1 article-title: Analyse der faserverteilung in einem Rückenmarkquerschnitt (Th 3) publication-title: Z Mikrosk Anat Forsch. – ident: e_1_2_8_39_1 doi: 10.1002/nbm.3711 – ident: e_1_2_8_47_1 doi: 10.1016/j.neuroimage.2016.02.004 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuroimage.2016.08.022 – ident: e_1_2_8_73_1 doi: 10.1002/mrm.27101 – ident: e_1_2_8_67_1 doi: 10.1111/j.1365-2990.1988.tb01341.x – ident: e_1_2_8_37_1 doi: 10.1016/j.neuroimage.2016.06.002 – ident: e_1_2_8_55_1 doi: 10.1002/mrm.10016 – ident: e_1_2_8_5_1 doi: 10.1016/j.neuroimage.2011.06.006 – ident: e_1_2_8_77_1 doi: 10.3171/jns.1971.35.2.0141 – ident: e_1_2_8_38_1 doi: 10.1002/mrm.25631 – ident: e_1_2_8_58_1 doi: 10.1016/j.jmr.2006.01.016 – start-page: 282434 year: 2018 ident: e_1_2_8_27_1 article-title: Axons morphometry in the human spinal cord publication-title: bioRxiv – ident: e_1_2_8_69_1 doi: 10.1002/nbm.3450 – ident: e_1_2_8_36_1 doi: 10.1016/j.neuroimage.2011.09.081 – ident: e_1_2_8_78_1 doi: 10.1016/j.neuroimage.2013.04.124 – ident: e_1_2_8_71_1 doi: 10.1016/j.neuroimage.2015.06.038 – ident: e_1_2_8_49_1 doi: 10.1016/j.neuroimage.2017.08.039. – ident: e_1_2_8_23_1 doi: 10.1016/j.neuroimage.2016.01.018 – ident: e_1_2_8_66_1 doi: 10.1016/j.mri.2008.06.003 – ident: e_1_2_8_45_1 doi: 10.1016/j.neuroimage.2016.09.018 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.1316944111 – ident: e_1_2_8_59_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_8_63_1 doi: 10.1016/j.neuroimage.2013.05.028 – ident: e_1_2_8_10_1 doi: 10.1002/mrm.26393 – ident: e_1_2_8_19_1 doi: 10.1002/andp.19053220806 – ident: e_1_2_8_9_1 doi: 10.1002/nbm.2999 – ident: e_1_2_8_72_1 doi: 10.1016/j.nicl.2017.05.010 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.21577 – ident: e_1_2_8_53_1 doi: 10.1002/mrm.1910330516 – ident: e_1_2_8_43_1 doi: 10.1002/mrm.25734 – ident: e_1_2_8_61_1 doi: 10.1016/j.neuroimage.2016.10.009 – ident: e_1_2_8_79_1 doi: 10.1002/mrm.25901 – ident: e_1_2_8_28_1 doi: 10.1016/0006-8993(92)90178-C – ident: e_1_2_8_48_1 – ident: e_1_2_8_46_1 doi: 10.1016/j.neuroimage.2015.05.023 – start-page: 0843 volume-title: Origin of the time dependence of the diffusion‐weighted signal in spinal cord white matter year: 2017 ident: e_1_2_8_34_1 – ident: e_1_2_8_52_1 doi: 10.1002/nbm.1584 – ident: e_1_2_8_26_1 doi: 10.1097/00007632-199605010-00002 – start-page: 2009 volume-title: Axon diameter distribution in uences diffusion‐derived axonal density estimation in the human spinal cord: In silico and in vivo evidence year: 2016 ident: e_1_2_8_33_1 – ident: e_1_2_8_74_1 doi: 10.1002/jnr.22757 – ident: e_1_2_8_64_1 doi: 10.1016/j.neuroimage.2016.11.053 – ident: e_1_2_8_7_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_8_8_1 doi: 10.1016/j.neuroimage.2012.01.056 – ident: e_1_2_8_30_1 doi: 10.1016/S1474-4422(13)70157-1 – ident: e_1_2_8_62_1 doi: 10.1016/j.neuroimage.2014.04.051 – ident: e_1_2_8_70_1 doi: 10.1016/j.neuroimage.2014.12.009 – ident: e_1_2_8_14_1 doi: 10.1016/j.neuroimage.2017.02.013 – ident: e_1_2_8_3_1 doi: 10.1002/cmr.a.20094 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuroimage.2013.07.014 – ident: e_1_2_8_57_1 doi: 10.1016/j.neuroimage.2016.08.016 – ident: e_1_2_8_6_1 doi: 10.1016/j.neuroimage.2007.05.012 – ident: e_1_2_8_54_1 doi: 10.1016/j.neuroimage.2015.01.045 – ident: e_1_2_8_60_1 doi: 10.1371/journal.pone.0164890 – ident: e_1_2_8_16_1 doi: 10.1016/j.neuroimage.2016.02.039 – ident: e_1_2_8_29_1 doi: 10.1038/nrneurol.2015.80 – ident: e_1_2_8_12_1 doi: 10.1016/j.neuroimage.2010.05.043 – ident: e_1_2_8_21_1 doi: 10.1016/j.neuroimage.2015.03.061 – ident: e_1_2_8_56_1 doi: 10.1002/mrm.21167 – ident: e_1_2_8_2_1 doi: 10.1038/nrn1119 – ident: e_1_2_8_31_1 doi: 10.1038/nrdp.2017.18 – ident: e_1_2_8_41_1 doi: 10.1002/mrm.24987 – ident: e_1_2_8_15_1 doi: 10.1016/j.neuroimage.2015.11.064 – ident: e_1_2_8_40_1 doi: 10.1016/j.neuroimage.2017.07.060 – ident: e_1_2_8_50_1 doi: 10.1016/j.neuroimage.2018.07.020 – ident: e_1_2_8_76_1 doi: 10.1002/mrm.21260 – ident: e_1_2_8_4_1 doi: 10.1016/j.neuroimage.2006.10.037 – ident: e_1_2_8_20_1 doi: 10.1002/mrm.1149 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.24395 – ident: e_1_2_8_24_1 doi: 10.1002/mrm.26733 – ident: e_1_2_8_35_1 doi: 10.1002/mrm.10609 – ident: e_1_2_8_68_1 doi: 10.1002/nbm.3530 – ident: e_1_2_8_42_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_8_44_1 doi: 10.1109/TMI.2009.2015756 – volume: 27 start-page: 1952 year: 2006 ident: e_1_2_8_75_1 article-title: A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord publication-title: Am J Neuroradiol. – ident: e_1_2_8_22_1 doi: 10.1016/j.neuroimage.2016.01.047 – start-page: 0282 volume-title: Universal power‐law scaling of water diffusion in human brain defines what we see with diffusion MRI year: 2017 ident: e_1_2_8_65_1 |
| SSID | ssj0009974 |
| Score | 2.4352264 |
| Snippet | Purpose
Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study... Time-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the... PurposeTime‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1247 |
| SubjectTerms | Adult Algorithms Axons Axons - pathology Brain Brain - diagnostic imaging Computer Simulation Cylinders Diffusion Diffusion Magnetic Resonance Imaging diffusion time Feasibility studies Female Full Papers—Biophysics and Basic Biomedical Research Healthy Volunteers Humans Image Processing, Computer-Assisted - methods Kurtosis Magnetic resonance imaging Male microstructure Monte Carlo Method Monte Carlo simulation Monte Carlo simulations Neuroimaging Spinal cord Spinal Cord - diagnostic imaging Substantia alba Time dependence Time Factors white matter |
| Title | Relevance of time‐dependence for clinically viable diffusion imaging of the spinal cord |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27463 https://www.ncbi.nlm.nih.gov/pubmed/30229564 https://www.proquest.com/docview/2153941395 https://www.proquest.com/docview/2111741036 https://pubmed.ncbi.nlm.nih.gov/PMC6586052 |
| Volume | 81 |
| WOSCitedRecordID | wos000462086300044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qLSA2FMorUCqDWLBJm8ROHIsVajsCiRlVIyqGVWQ7tjpSJ1NNOpXY8Qn9xn4J186jHRWkSmyiPK6Vh--1z3XscwA-OE5wlZkoNFbRECG1CWWsTKgjzksmEZLLRmyCj0b5ZCKO1uBTtxam4YfoB9xcZPj22gW4VPXeNWnobDHbxZQqo_dgI44pdy6dsKNrxl3RUDBz5hoawTpaoSjZ64uudka3EObtiZI3AazvgQab__XsT-BxCzzJ58ZTnsKaqbbg4bD9tb4FD_xcUF0_g59jt-bceQOZW-LE569-X3ZiuXgSYS7pFlSe_iIXU7f6ijillaUbeiPTmVc-8oVPDKnPnPAWcVnuczgeHH7f_xK2CgyhRiBBQyNTm-vc5jbRaZJpY62IS06VyWRW8lSzUua8TLWRgtK0ZJhgMougjMs0s0rSF7BezSvzCohgMtLKslzEimEhJaWWKaOUKWx0rArgY1cVhW7pyZ1KxmnRECsnBX60wn-0AN73pmcNJ8ffjLa7-izasKwLxDdUYLct0gDe9ZcxoNxfElmZ-dLZxJilxdizB_Cyqf7-LjRy6ucZC4CvOEZv4Mi6V69U0xNP2o1IDzPHBF_TO8a_H7wYjod-5_XdTd_AIwRyoplNvg3r54uleQv39cX5tF7s-LjALZ_kO7BxMB4cf8OjH19HfwBVLBcJ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qU14bHuUVKGAQCzahSWzHscQGAaMiZkZo1EplFdmOrY7UyVQznUrs-AS-kS_h2nmUUUFCYhNF8bXixL72uX6cA_DKc4Lr3CaxdZrGCKltrFJtY5MIUTGFkFw1YhNiMimOjuSXLXjbnYVp-CH6CTfvGaG_9g7uJ6T3LlhD58v5G4ypcnoFtvFa8AFsf5gOD0cXpLuyYWEWzPc1knXMQkm212feHI8ugczLeyV_x7BhEBre_r_i34FbLfgk75rWche2bL0D18ft8voOXAv7Qc3qHnyd-nPnvkWQhSNegP7n9x-dYC4-RKhLukOVJ9_I-cyfwCJebWXtp9_IbB7Uj0LmY0tWp158i_hI9z4cDj8evN-PWxWG2CCYoLFV3BWmcIXLDM9yY52TaSWotrnKK8ENq1QhKm6skpTyimGQyRwCM6F47rSiD2BQL2r7CIhkKjHasUKmmmEmrZRRnFHKNHY8TkfwuquL0rQU5V4p46RsyJWzEn9aGX5aBC9709OGl-NPRrtdhZata65KxDhU4tAteQQv-mR0Kr9Somq7WHubFCO1FEf3CB429d-_hSZeAT1nEYiNltEbeMLuzZR6dhyIuxHtYfSY4WeGlvH3gpfj6TjcPP530-dwY_9gPCpHnyafn8BNBHay2V2-C4Oz5do-havm_Gy2Wj5r3eQX_EwY7w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qBapueJRH0xYwiAWb0CS241hiUwEjEMxoVIFUVpHt2OpIncxoplOJHZ_AN_IlvXYeZVSQkNhF8bXi2L72uX6cA_DSc4Lr3CaxdZrGCKltrFJtY5MIUTGFkFw1YhNiNCpOTuR4A950d2Eafoh-wc17RhivvYPbeeUOr1hDp4vpa4ypcnoDbjKOY6zndWbjK8pd2XAwC-ZHGsk6XqEkO-yzrs9G1yDm9ZOSvyPYMAUN7v5f4e_BnRZ6kqOmr9yHDVvvwNaw3VzfgdvhNKhZPoBvx_7Wue8PZOaIl5__9eNnJ5eLLxHoku5K5dl3cjHx96-I11pZ-cU3MpkG7aOQ-dSS5dxLbxEf5z6Er4P3X95-iFsNhtgglKCxVdwVpnCFywzPcmOdk2klqLa5yivBDatUISpurJKU8ophiMkcwjKheO60oo9gs57VdheIZCox2rFCppphJq2UUZxRyjQOO05H8Kpri9K0BOVeJ-OsbKiVsxIrrQyVFsGL3nTesHL8yeiga9CydcxliQiHSpy4JY_geZ-MLuX3SVRtZytvk2KcluLcHsHjpv37r9DE65_nLAKx1jN6A0_XvZ5ST04DbTdiPYwdM_zN0DP-XvByeDwMD3v_bvoMtsbvBuXnj6NP-7CNqE42R8sPYPN8sbJP4Ja5OJ8sF0-Dj1wCdoMW2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relevance+of+time%E2%80%90dependence+for+clinically+viable+diffusion+imaging+of+the+spinal+cord&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Grussu%2C+Francesco&rft.au=Ianu%C5%9F%2C+Andrada&rft.au=Tur%2C+Carmen&rft.au=Prados%2C+Ferran&rft.date=2019-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=2&rft.spage=1247&rft.epage=1264&rft_id=info:doi/10.1002%2Fmrm.27463&rft.externalDBID=10.1002%252Fmrm.27463&rft.externalDocID=MRM27463 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |