Noncoding RNAs in Alzheimer's disease
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical...
Gespeichert in:
| Veröffentlicht in: | Wiley interdisciplinary reviews. RNA Jg. 9; H. 2; S. e1463 - n/a |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2018
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 1757-7004, 1757-7012, 1757-7012 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule‐associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463
This article is categorized under:
RNA in Disease and Development > RNA in Disease
Schematic of the three main domains of AD pathogenesis. Top, APP is cleaved by α, β, and γ secretases; the generation and aggregation of amyloidogenic Aβ peptides outside of the cell leads to the formation of amyloid plaques. Bottom, the hyperphosphorylation of Tau protein results in formation of intracellular neurofibrillary tangles. Right, amyloid plaques and neurofibrillary tangles create a toxic environment characterized by neuroinflammation and neurodegeneration. Key, top right |
|---|---|
| AbstractList | Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease.Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule‐associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463This article is categorized under:RNA in Disease and Development > RNA in Disease Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and post-transcriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated post-transcriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule‐associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease Schematic of the three main domains of AD pathogenesis. Top, APP is cleaved by α, β, and γ secretases; the generation and aggregation of amyloidogenic Aβ peptides outside of the cell leads to the formation of amyloid plaques. Bottom, the hyperphosphorylation of Tau protein results in formation of intracellular neurofibrillary tangles. Right, amyloid plaques and neurofibrillary tangles create a toxic environment characterized by neuroinflammation and neurodegeneration. Key, top right Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule‐associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease. |
| Author | Abdelmohsen, Kotb Idda, M. Laura Gorospe, Myriam Munk, Rachel |
| Author_xml | – sequence: 1 givenname: M. Laura surname: Idda fullname: Idda, M. Laura email: marialaura.idda@nih.gov organization: National Institutes of Health – sequence: 2 givenname: Rachel surname: Munk fullname: Munk, Rachel organization: National Institutes of Health – sequence: 3 givenname: Kotb surname: Abdelmohsen fullname: Abdelmohsen, Kotb organization: National Institutes of Health – sequence: 4 givenname: Myriam surname: Gorospe fullname: Gorospe, Myriam organization: National Institutes of Health |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29327503$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1LwzAYhYMobs5d-AekIKJedMtH07Q3whh-wZggipchbdMto0tm0zrmrzd1c-hAc5OQPO_h5JwjsK-NlgCcINhDEOL-stSih4KQ7IE2YpT5DCK8vz3DoAW61s6gWwHEDKFD0MIxwYxC0gbnY6NTkyk98Z7GA-sp7Q2Kj6lUc1leWC9TVgorj8FBLgoru5u9A15ub56H9_7o8e5hOBj5KYUx8UUeChFGMk4TzBKCoiCDJE4SSCWhJMtJQgXMRJJTd5lTlsSMiIhFVDKCKGWkA67Xuos6mcsslboqRcEXpZqLcsWNUPz3i1ZTPjHvnEYBwxF0ApcbgdK81dJWfK5sKotCaGlqy1EcxSGClGGHnu2gM1O7LAvLscvV2QldTB1w-tPR1sp3gg64WgNpaawtZb5FEORNQbwpiDcFOba_w6aqEpUyzWdU8d_EUhVy9bc0f3XtfU18AgVnoCQ |
| CitedBy_id | crossref_primary_10_1186_s40035_024_00397_x crossref_primary_10_3390_ijms24054736 crossref_primary_10_1186_s12974_023_02856_0 crossref_primary_10_1007_s12035_021_02323_y crossref_primary_10_1007_s12035_023_03626_y crossref_primary_10_1016_j_talanta_2024_125656 crossref_primary_10_1155_2021_6830560 crossref_primary_10_1016_j_biocel_2020_105747 crossref_primary_10_3390_ijms25189936 crossref_primary_10_3390_ijms232113171 crossref_primary_10_1007_s12035_018_1344_x crossref_primary_10_1016_j_bbagrm_2019_05_002 crossref_primary_10_12677_BIPHY_2022_101001 crossref_primary_10_3390_ijms23147682 crossref_primary_10_1186_s12867_019_0140_0 crossref_primary_10_1002_jcb_28867 crossref_primary_10_1007_s12640_022_00609_0 crossref_primary_10_1002_jcb_27658 crossref_primary_10_3390_ijms21030767 crossref_primary_10_3892_etm_2021_10745 crossref_primary_10_1016_j_aca_2019_02_054 crossref_primary_10_1111_jnc_14724 crossref_primary_10_1177_09603271231191436 crossref_primary_10_3390_brainsci14080818 crossref_primary_10_1038_s42003_025_07502_4 crossref_primary_10_1002_mco2_173 crossref_primary_10_3390_antiox13050606 crossref_primary_10_3389_fnins_2024_1421675 crossref_primary_10_3389_fgene_2019_00153 crossref_primary_10_1007_s12031_019_01345_5 crossref_primary_10_3233_NIB_190159 crossref_primary_10_1016_j_biopha_2020_110228 crossref_primary_10_1080_01616412_2025_2534077 crossref_primary_10_1007_s12035_023_03900_z crossref_primary_10_1177_15333175221091424 crossref_primary_10_1186_s13287_024_03863_5 crossref_primary_10_3390_ijms22105370 crossref_primary_10_1097_QAI_0000000000002187 crossref_primary_10_1016_j_bbrc_2018_08_007 crossref_primary_10_3389_fnagi_2021_709568 crossref_primary_10_3390_ijms222313012 crossref_primary_10_1002_iid3_558 crossref_primary_10_3233_JAD_215194 crossref_primary_10_1134_S0006297918090031 crossref_primary_10_1016_j_bcp_2019_113638 crossref_primary_10_1016_j_snb_2023_133373 crossref_primary_10_1007_s12035_025_04878_6 crossref_primary_10_3390_genes12111829 crossref_primary_10_1080_14737175_2018_1481389 crossref_primary_10_1016_j_aquaculture_2021_736357 crossref_primary_10_1016_j_biopha_2024_116836 crossref_primary_10_1007_s00401_018_1880_5 crossref_primary_10_1007_s12031_021_01900_z crossref_primary_10_1016_j_ijbiomac_2022_11_166 crossref_primary_10_1038_s41598_021_04209_4 crossref_primary_10_1007_s11596_020_2283_0 crossref_primary_10_3389_fneur_2020_538301 crossref_primary_10_1007_s12035_023_03908_5 crossref_primary_10_3389_fnins_2022_878287 crossref_primary_10_3389_fnagi_2021_691512 crossref_primary_10_1016_j_ymthe_2023_02_008 crossref_primary_10_1016_j_phrs_2019_104316 crossref_primary_10_3389_fnagi_2022_955461 crossref_primary_10_1007_s12031_024_02262_y crossref_primary_10_1016_j_scitotenv_2024_170670 crossref_primary_10_1038_s43587_025_00816_2 crossref_primary_10_1002_anse_202200083 crossref_primary_10_1007_s11011_024_01431_7 crossref_primary_10_1038_s41380_022_01476_z crossref_primary_10_3389_fneur_2022_929290 crossref_primary_10_1038_s41598_022_10554_9 crossref_primary_10_3389_fnmol_2024_1423340 crossref_primary_10_1016_j_apsb_2023_10_015 crossref_primary_10_1016_j_arr_2025_102699 crossref_primary_10_3892_ijmm_2022_5208 crossref_primary_10_1021_acschemneuro_5c00173 crossref_primary_10_1016_j_pneurobio_2020_101746 crossref_primary_10_3390_biom15060806 crossref_primary_10_1038_s41598_022_21676_5 crossref_primary_10_1016_j_lfs_2022_120652 crossref_primary_10_1038_s41392_022_01251_0 crossref_primary_10_1007_s13205_020_2163_0 crossref_primary_10_3390_ijms26010328 crossref_primary_10_1016_j_cca_2023_117731 crossref_primary_10_1080_07391102_2023_2230279 crossref_primary_10_3390_proteomes9010013 crossref_primary_10_1016_j_bbrc_2022_11_107 crossref_primary_10_3390_biom13010018 crossref_primary_10_3390_ijms21103517 crossref_primary_10_1038_s41598_022_22822_9 crossref_primary_10_2217_imt_2019_0204 crossref_primary_10_3389_fneur_2020_549006 crossref_primary_10_1016_j_arr_2021_101425 crossref_primary_10_1007_s44446_025_00026_2 crossref_primary_10_1016_j_drudis_2024_104052 crossref_primary_10_1093_nar_gkaa707 crossref_primary_10_1111_jcmm_16586 crossref_primary_10_3389_fnagi_2021_654978 crossref_primary_10_1016_j_prp_2018_11_012 crossref_primary_10_1080_14737159_2019_1626719 crossref_primary_10_3233_JAD_231281 crossref_primary_10_1007_s13337_018_0492_y crossref_primary_10_1002_iub_2472 crossref_primary_10_1016_j_bcp_2021_114469 crossref_primary_10_3390_ijms20133148 crossref_primary_10_1007_s12035_025_04895_5 crossref_primary_10_1016_j_omtn_2020_01_010 crossref_primary_10_3233_JAD_230872 crossref_primary_10_3390_ijms21249582 crossref_primary_10_1002_ca_23792 crossref_primary_10_3389_fnmol_2021_685143 crossref_primary_10_1007_s10238_021_00789_7 crossref_primary_10_1007_s10709_022_00166_6 crossref_primary_10_1155_2020_2638130 crossref_primary_10_1016_j_mad_2018_03_005 crossref_primary_10_2147_JIR_S422114 crossref_primary_10_3892_br_2021_1481 crossref_primary_10_1016_j_lfs_2020_117637 crossref_primary_10_3390_molecules27217207 crossref_primary_10_4103_1673_5374_353481 crossref_primary_10_3390_ijms22073478 crossref_primary_10_1002_jcb_27966 crossref_primary_10_1007_s11033_025_10284_x crossref_primary_10_1007_s12264_024_01336_6 crossref_primary_10_3390_ijms23095237 crossref_primary_10_1038_s41467_025_60378_0 crossref_primary_10_3390_ijms241512498 crossref_primary_10_3748_wjg_v27_i1_55 crossref_primary_10_1007_s00221_021_06236_z |
| Cites_doi | 10.1016/j.celrep.2014.04.050 10.1042/BST20160376 10.4088/JCP.v68n0419 10.18632/oncotarget.3523 10.1515/bmc-2016-0014 10.1016/j.ncrna.2016.11.002 10.1186/alzrt107 10.1186/1471-2350-13-35 10.1261/rna.048272.114 10.1038/nature11993 10.1039/C6MB00699J 10.1080/15476286.2014.996091 10.1212/01.wnl.0000437306.37850.22 10.1016/j.tem.2016.12.001 10.1016/j.neurobiolaging.2015.07.015 10.1038/nrm.2015.32 10.3389/fncel.2014.00427 10.1111/j.1471-4159.2010.07097.x 10.1007/s12035-014-8742-5 10.1016/j.lfs.2017.05.023 10.1091/mbc.10.9.2905 10.1038/ng.2802 10.1038/srep19946 10.1016/S0962-8924(98)01363-4 10.1016/j.febslet.2015.02.001 10.1038/nn.3435 10.1016/j.freeradbiomed.2015.02.028 10.1016/bs.ircmb.2017.03.008 10.1007/s00415-005-0689-z 10.1016/j.ygeno.2006.06.007 10.1073/pnas.1602532113 10.1016/j.celrep.2015.04.011 10.1016/j.ejcb.2017.09.004 10.3390/ijms140816010 10.1038/nrg.2015.10 10.1073/pnas.0710263105 10.1038/nbt.2890 10.1194/jlr.R075630 10.1093/hmg/ddv377 10.1016/j.tibs.2004.12.007 10.3389/fncel.2014.00037 10.3233/JAD-142919 10.1038/nm1784 10.15252/emmm.201100899 10.1038/nrn2194 10.1186/gb-2010-11-5-r56 10.1261/rna.5167604 10.1016/j.neulet.2015.05.007 10.1101/gad.1262504 10.1038/nrg3722 10.1261/rna.050815.115 10.1016/j.molcel.2017.02.017 10.7150/thno.19353 10.3892/mmr.2014.2351 10.1016/j.jbiotec.2016.09.011 10.3389/fnmol.2017.00022 10.1096/fj.201700431R 10.2337/db11-0171 10.1016/j.neurobiolaging.2010.04.034 10.1016/j.expneurol.2011.11.013 10.3233/JAD-150398 10.1186/s12859-016-1093-7 10.1111/jnc.12437 10.1096/fj.09-133462 10.1016/j.tcb.2012.08.013 10.18632/oncotarget.9175 10.1111/j.1460-9568.2007.05864.x 10.1161/STR.0b013e3182299496 10.1134/S0006297913030024 10.1172/JCI21746 10.1111/jnc.13212 10.4161/rna.8.4.15584 10.1016/S1474-4422(10)70119-8 10.1523/JNEUROSCI.3883-11.2011 10.1111/jnc.13507 10.1080/15476286.2017.1279788 10.1186/1471-2202-11-14 10.1074/jbc.M113.518241 10.3389/fnmol.2014.00067 10.3233/JAD-2010-091603 10.1523/JNEUROSCI.5065-07.2008 10.3233/JAD-2010-101674 10.1016/j.canlet.2015.06.003 10.1016/j.jmb.2012.11.024 10.1038/nrneurol.2012.263 10.15252/embj.201797397 10.1093/hmg/ddq311 10.3892/mmr.2015.3728 10.1101/cshperspect.a006288 10.15252/embj.201695810 10.1074/jbc.M112.381392 10.1186/1750-1326-6-70 10.1016/j.jalz.2010.04.006 10.1007/s12035-016-9793-6 10.3389/fphys.2015.00040 10.1523/JNEUROSCI.2053-15.2015 10.1016/j.neurobiolaging.2017.03.021 10.1016/j.psyneuen.2015.10.019 10.1038/cr.2017.31 10.1007/s12017-011-8154-x 10.1074/jbc.M110.112664 10.1523/JNEUROSCI.1997-12.2013 10.1016/j.febslet.2004.03.117 10.1016/j.gpb.2016.12.005 10.1016/j.ejpb.2008.08.021 10.1242/dmm.009761 10.1016/j.cbpa.2014.10.024 10.1007/s11095-007-9324-2 10.1016/j.molcel.2010.09.027 10.1016/0092-8674(93)90312-E 10.1016/j.arr.2014.03.004 10.1146/annurev-biochem-051410-092902 10.1523/JNEUROSCI.1165-14.2014 10.1016/j.bbrc.2016.08.037 10.3389/fgene.2013.00307 10.3233/JAD-2009-1051 10.1016/j.toxlet.2011.11.032 10.1016/j.molcel.2017.02.021 10.1016/j.ccell.2016.03.010 10.1111/febs.14045 10.4161/cc.7.20.6833 10.1186/s13024-017-0191-y 10.15252/embj.201387576 10.1016/j.pneurobio.2015.10.003 10.3390/genes7120116 10.1016/0921-8777(91)90063-U 10.3389/fncel.2015.00124 10.1016/j.pneurobio.2017.03.004 10.1016/j.molcel.2008.08.022 10.1016/j.brainresbull.2012.05.018 10.1016/j.neuron.2013.04.014 10.1161/ATVBAHA.116.307023 10.1016/j.yjmcc.2015.01.011 10.1186/1471-2164-8-39 10.1155/2017/2062384 10.1038/nbt.2158 10.3389/fnins.2015.00351 10.3389/fgene.2012.00327 10.1146/annurev-pathol-012513-104715 10.1177/1759091417719201 10.1242/dev.128074 10.1016/j.ajpath.2012.06.033 10.1016/j.expneurol.2010.05.017 10.1038/nrm2632 10.3109/10408360903335821 10.1016/j.cell.2012.02.057 |
| ContentType | Journal Article |
| Copyright | Published 2018. This article is a U.S. Government work and is in the public domain in the USA. 2018 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: Published 2018. This article is a U.S. Government work and is in the public domain in the USA. – notice: 2018 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7X8 5PM |
| DOI | 10.1002/wrna.1463 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Nucleic Acids Abstracts CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1757-7012 |
| EndPage | n/a |
| ExternalDocumentID | PMC5847280 29327503 10_1002_wrna_1463 WRNA1463 |
| Genre | reviewArticle Journal Article Research Support, N.I.H., Intramural Review |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA AG000518 – fundername: Intramural NIH HHS grantid: Z99 AG999999 |
| GroupedDBID | --- 05W 0R~ 1OC 1VH 31~ 33P 4.4 53G 5DZ 8-0 8-1 AAESR AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFZJQ AGHNM AGQPQ AGYGG AHBTC AIAGR AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBD EBS EJD EMOBN FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ SV3 WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR ZZTAW ~S- AAYXX CITATION ALUQN CGR CUY CVF ECM EIF NPM 7TM 7X8 5PM |
| ID | FETCH-LOGICAL-c5093-af6aa68e9cb27b3184d039bb05e353df3b5a0dabf59bbf57b973a8785e7315573 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 174 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425434400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1757-7004 1757-7012 |
| IngestDate | Tue Nov 04 01:59:53 EST 2025 Thu Oct 02 07:46:13 EDT 2025 Fri Jul 25 10:47:19 EDT 2025 Mon Jul 21 06:05:33 EDT 2025 Sat Nov 29 07:48:49 EST 2025 Tue Nov 18 22:43:35 EST 2025 Tue Nov 11 03:14:37 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | lncRNA noncoding RNA circRNA neurofibrillary tangles neurodegeneration miRNA posttranscriptional gene regulation amyloid plaques |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Published 2018. This article is a U.S. Government work and is in the public domain in the USA. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5093-af6aa68e9cb27b3184d039bb05e353df3b5a0dabf59bbf57b973a8785e7315573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5847280 |
| PMID | 29327503 |
| PQID | 2002557629 |
| PQPubID | 2034619 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5847280 proquest_miscellaneous_1989610572 proquest_journals_2002557629 pubmed_primary_29327503 crossref_primary_10_1002_wrna_1463 crossref_citationtrail_10_1002_wrna_1463 wiley_primary_10_1002_wrna_1463_WRNA1463 |
| PublicationCentury | 2000 |
| PublicationDate | March/April 2018 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: March/April 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Oxford |
| PublicationTitle | Wiley interdisciplinary reviews. RNA |
| PublicationTitleAlternate | Wiley Interdiscip Rev RNA |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2011; 116 2010; 11 2013; 3 2004; 567 2013; 4 2010; 19 2013; 127 2011; 60 2010; 225 2016; 143 2008; 105 2008; 32 2012; 13 2017; 156 2013; 6 2016; 36 2013; 9 2010; 21 2009; 10 2015; 135 2015; 83 2015; 134 2008; 28 2007; 8 2014; 15 2017; 284 2014; 17 2007; 68 2010; 6 2014; 10 2010; 9 2009; 17 2015; 51 2017; 66 2015; 365 2012; 181 2010; 285 2016; 17 2011; 6 2012; 33 2011; 8 2010; 40 2012; 30 2016; 6 2016; 7 2016; 1 2017; 58 2015; 598 2013; 78 2009; 71 2017; 55 2013; 81 2016; 29 2012; 235 2017; S0006‐3223 2014; 34 2014; 33 1998; 8 2015; 35 2017; 5 2017; 7 2009; 46 2017; 8 2015; 36 2005; 252 2015; 589 2013; 23 2017; 45 2013; 288 2008; 7 2011; 13 2017; 9 2012; 209 2015; 45 2015; 48 2017; 31 2013; 14 2013; 16 2017; 36 1993; 75 2016; 113 2005; 30 1999; 10 2011; 24 2016; 238 2016; 478 2014; 9 2014; 8 2014; 7 2014; 6 2007; 24 2007; 26 2014; 289 2009; 23 2015; 12 2012; 81 2015; 6 2015; 19 1991; 254 2017; 28 2013; 45 2017; 27 2015; 11 2008; 14 2011; 31 2016; 54 2015; 9 2012; 149 2017; 334 2004; 10 2015; 24 2012; 2 2004; 113 2017; 15 2013; 33 2004; 18 2017; 14 2006; 88 2017; 10 2017; 13 2017; 12 2015; 21 2011; 42 2016; 63 2017; 182 2017 2013; 495 2016; 137 2013 2012; 4 2012; 88 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Kim C. (e_1_2_9_59_1) 2017 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 Zhao N. (e_1_2_9_150_1) 2017; 0006 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 Sims R. (e_1_2_9_121_1) 2017; 5 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 Han D. (e_1_2_9_46_1) 2017; 12 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 Abu Hamdeh S. (e_1_2_9_4_1) 2017; 15 e_1_2_9_81_1 e_1_2_9_113_1 Zhang B. (e_1_2_9_147_1) 2015; 19 e_1_2_9_117_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 Liu Q. (e_1_2_9_75_1) 2016; 6 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 19 start-page: 3959 year: 2010 end-page: 3969 article-title: Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration publication-title: Human Molecular Genetics – volume: 27 start-page: 626 year: 2017 end-page: 641 article-title: Extensive translation of circular RNAs driven by N6‐methyladenosine publication-title: Cell Research – volume: 8 start-page: 665 year: 2011 end-page: 673 article-title: A complex crosstalk between polymorphic microRNA target sites and AD prognosis publication-title: RNA Biology – volume: 10 start-page: 1129 year: 2017 article-title: APP as a protective factor in acute neuronal insults publication-title: Frontiers in Molecular Neuroscience – volume: 182 start-page: 104 year: 2017 end-page: 111 article-title: miR‐34a knockout attenuates cognitive deficits in APP/PS1 mice through inhibition of the amyloidogenic processing of APP publication-title: Life Sciences – volume: 66 start-page: 22 year: 2017 end-page: 37 article-title: Circ‐ZNF609 is a circular RNA that can be translated and functions in myogenesis publication-title: Molecular Cell – volume: 134 start-page: 1139 year: 2015 end-page: 1151 article-title: Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA‐195 down‐regulation publication-title: Journal of Neurochemistry – volume: 26 start-page: 2444 year: 2007 end-page: 2457 article-title: A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during beta‐amyloid‐induced apoptosis publication-title: The European Journal of Neuroscience – volume: 334 start-page: 177 year: 2017 end-page: 205 article-title: Senescence‐associated microRNAs publication-title: International Review of Cell and Molecular Biology – volume: 137 start-page: 436 year: 2016 end-page: 445 article-title: miR‐186 is decreased in aged brain and suppresses BACE1 expression publication-title: Journal of Neurochemistry – volume: 478 start-page: 852 year: 2016 end-page: 857 article-title: miR‐106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer's disease publication-title: Biochemical and Biophysical Research Communications – volume: 17 start-page: 34 year: 2014 end-page: 42 article-title: Non‐coding RNA regulation of synaptic plasticity and memory: Implications for aging publication-title: Ageing Research Reviews – volume: 17 start-page: 205 year: 2016 end-page: 211 article-title: The biogenesis and emerging roles of circular RNAs publication-title: Nature Reviews. Molecular Cell Biology – volume: 45 start-page: 805 year: 2017 end-page: 812 article-title: Long noncoding RNAs: Lincs between human health and disease publication-title: Biochemical Society Transactions – volume: 2 start-page: a006288 year: 2012 end-page: a006288 article-title: Physiological functions of APP family proteins publication-title: Cold Spring Harbor Perspectives in Medicine – volume: 6 start-page: 40 year: 2015 article-title: The emerging role of microRNAs in Alzheimer's disease publication-title: Frontiers in Physiology – volume: 4 year: 2013 article-title: Circular RNA (circRNA) in Alzheimer's disease (AD) publication-title: Frontiers in Genetics – volume: 8 start-page: 663 year: 2007 end-page: 672 article-title: Tau‐mediated neurodegeneration in Alzheimer's disease and related disorders publication-title: Nature Reviews. Neuroscience – volume: 127 start-page: 739 year: 2013 end-page: 749 article-title: Alternative polyadenylation and miR‐34 family members regulate tau expression publication-title: Journal of Neurochemistry – volume: 33 start-page: 522 year: 2012 end-page: 534 article-title: MicroRNA‐16 targets amyloid precursor protein to potentially modulate Alzheimer's‐associated pathogenesis in SAMP8 mice publication-title: Neurobiology of Aging – volume: 30 start-page: 106 year: 2005 end-page: 114 article-title: siRNA and miRNA: An insight into RISCs publication-title: Trends in Biochemical Sciences – volume: 36 start-page: 1474 year: 2017 end-page: 1492 article-title: Brain metabolism in health, aging, and neurodegeneration publication-title: The EMBO Journal – volume: 60 start-page: 1825 year: 2011 end-page: 1831 article-title: MicroRNAs in beta‐cell biology, insulin resistance, diabetes and its complications publication-title: Diabetes – start-page: 3723 year: 2013 end-page: 3730 article-title: Posttranscriptional gene regulation by long noncoding RNA publication-title: Journal of Molecular Biology – volume: 23 start-page: 30 year: 2013 end-page: 36 article-title: MicroRNAs and neurodegeneration: Role and impact publication-title: Trends in Cell Biology – volume: 40 start-page: 205 year: 2010 end-page: 215 article-title: MicroRNA functions in stress responses publication-title: Molecular Cell – volume: 14 start-page: 723 year: 2008 end-page: 730 article-title: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed‐forward regulation of beta‐secretase publication-title: Nature Medicine – volume: 32 start-page: 232 year: 2008 end-page: 246 article-title: Kcnq1ot1 antisense noncoding RNA mediates lineage‐specific transcriptional silencing through chromatin‐level regulation publication-title: Molecular Cell – volume: 10 start-page: 2905 year: 1999 end-page: 2918 article-title: Rad18 is required for DNA repair and checkpoint responses in fission yeast publication-title: Molecular Biology of the Cell – volume: 9 start-page: 702 year: 2010 end-page: 716 article-title: Alzheimer's disease: Clinical trials and drug development publication-title: Lancet Neurology – volume: 13 start-page: 217 year: 2011 end-page: 222 article-title: Brain‐derived neurotrophic factor and Alzheimer's disease: Physiopathology and beyond publication-title: NeuroMolecular Medicine – volume: 83 start-page: 186 year: 2015 end-page: 191 article-title: Molecular mechanisms linking amyloid β toxicity and tau hyperphosphorylation in Alzheimer′s disease publication-title: Free Radical Biology & Medicine – volume: 105 start-page: 6415 year: 2008 end-page: 6420 article-title: Loss of microRNA cluster miR‐29a/b‐1 in sporadic Alzheimer's disease correlates with increased BACE1/beta‐secretase expression publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 36 start-page: 2473 year: 2017 end-page: 2487 article-title: APP mouse models for Alzheimer's disease preclinical studies publication-title: The EMBO Journal – volume: 68 start-page: 613 year: 2007 end-page: 618 article-title: A high‐density whole‐genome association study reveals that APOE is the major susceptibility gene for sporadic late‐onset Alzheimer's disease publication-title: The Journal of Clinical Psychiatry – volume: 9 start-page: 106 year: 2013 end-page: 118 article-title: Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy publication-title: Nature Reviews. Neurology – volume: 6 start-page: 420 year: 2010 end-page: 424 article-title: Alzheimer's disease, a multifactorial disorder seeking multitherapies publication-title: Alzheimer's and Dementia – volume: 30 start-page: 453 year: 2012 end-page: 459 article-title: Inhibition of natural antisense transcripts in vivo results in gene‐specific transcriptional upregulation publication-title: Nature Biotechnology – volume: 6 start-page: 424 year: 2013 end-page: 433 article-title: An intronic ncRNA‐dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post‐mortem Alzheimer's disease brain samples publication-title: Disease Models & Mechanisms – volume: 45 start-page: 837 year: 2015 end-page: 849 article-title: Distinct expression of long non‐coding RNAs in an Alzheimer's disease model publication-title: Journal of Alzheimer's Disease – volume: 75 start-page: 1039 year: 1993 end-page: 1042 article-title: Cellular processing of beta‐amyloid precursor protein and the genesis of amyloid beta‐peptide publication-title: Cell – volume: 21 start-page: 695 year: 2015 end-page: 696 article-title: Gene expression regulation: Lessons from noncoding RNAs publication-title: RNA – volume: 235 start-page: 447 year: 2012 end-page: 454 article-title: MicroRNA networks surrounding APP and amyloid‐β metabolism‐‐implications for Alzheimer's disease publication-title: Experimental Neurology – start-page: 2062384 year: 2017 article-title: Long noncoding RNAs and RNA‐binding proteins in oxidative stress, cellular senescence, and age‐related diseases publication-title: Oxidative Medicine and Cellular Longevity – volume: 8 start-page: 746 year: 2017 end-page: 757 article-title: PIWI family emerging as a decisive factor of cell fate: An overview publication-title: European Journal of Cell Biology – volume: 116 start-page: 240 year: 2011 end-page: 247 article-title: In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs publication-title: Journal of Neurochemistry – volume: 1 start-page: 43 year: 2016 end-page: 50 article-title: Long non‐coding RNAs: Mechanism of action and functional utility publication-title: Non‐coding RNA Research – volume: 3 start-page: 327 year: 2013 article-title: Studying micro RNA function and dysfunction in Alzheimer's disease publication-title: Frontiers in Genetics – volume: 8 start-page: 39 year: 2007 article-title: A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains publication-title: BMC Genomics – volume: 71 start-page: 251 year: 2009 end-page: 256 article-title: Transferrin‐ and transferrin‐receptor‐antibody‐modified nanoparticles enable drug delivery across the blood‐brain barrier (BBB) publication-title: European Journal of Pharmaceutics and Biopharmaceutics – volume: 252 start-page: 559 year: 2005 end-page: 563 article-title: Volume cerebral blood flow reduction in pre‐clinical stage of Alzheimer disease: Evidence from an ultrasonographic study publication-title: Journal of Neurology – volume: 156 start-page: 1 year: 2017 end-page: 68 article-title: Linking deregulation of non‐coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review publication-title: Progress in Neurobiology – volume: 284 start-page: 1096 year: 2017 end-page: 1109 article-title: The circular RNA ciRS‐7 promotes APP and BACE1 degradation in an NF‐κB‐dependent manner publication-title: The FEBS Journal – volume: 6 start-page: 8474 year: 2015 end-page: 8490 article-title: MicroRNAs in apoptosis, autophagy and necroptosis publication-title: Oncotarget – volume: 18 start-page: 3016 year: 2004 end-page: 3027 article-title: The Drosha‐DGCR8 complex in primary microRNA processing publication-title: Genes & Development – volume: 24 start-page: 1733 year: 2007 end-page: 1744 article-title: Drug targeting to the brain publication-title: Pharmaceutical Research – volume: 24 start-page: 6721 year: 2015 end-page: 6735 article-title: miR‐132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo publication-title: Human Molecular Genetics – volume: 24 start-page: 97 year: 2015 end-page: 103 article-title: Small molecule chemical probes of microRNA function publication-title: Current Opinion in Chemical Biology – volume: 143 start-page: 1838 year: 2016 end-page: 1847 article-title: Circular RNAs: Analysis, expression and potential functions publication-title: Development – volume: 209 start-page: 94 year: 2012 end-page: 105 article-title: The miR‐124 regulates the expression of BACE1/β‐secretase correlated with cell death in Alzheimer's disease publication-title: Toxicology Letters – volume: 15 start-page: 423 year: 2014 end-page: 437 article-title: The rise of regulatory RNA publication-title: Nature Reviews. Genetics – volume: 11 start-page: 14 year: 2010 article-title: Long noncoding RNAs in neuronal‐glial fate specification and oligodendrocyte lineage maturation publication-title: BMC Neuroscience – volume: 16 start-page: 848 year: 2013 end-page: 850 article-title: CD33 Alzheimer's disease locus: Altered monocyte function and amyloid biology publication-title: Nature Neuroscience – volume: 31 start-page: 14820 year: 2011 end-page: 14830 article-title: MicroRNA‐137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer's disease publication-title: The Journal of Neuroscience – volume: 113 start-page: E1881 year: 2016 end-page: E1889 article-title: Re‐evaluation of the roles of DROSHA, export in 5, and DICER in microRNA biogenesis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 21 start-page: 75 year: 2010 end-page: 79 article-title: MiR‐107 is reduced in Alzheimer's disease brain neocortex: Validation study publication-title: Journal of Alzheimer's Disease – volume: 8 start-page: 427 year: 2014 article-title: The γ‐secretase complex: From structure to function publication-title: Frontiers in Cellular Neuroscience – volume: 24 start-page: 15 year: 2011 end-page: 24 article-title: Homeostatic disinhibition in the aging brain and Alzheimer's disease publication-title: Journal of Alzheimer's Disease – volume: 7 start-page: 2863 year: 2017 end-page: 2877 article-title: Silencing of circular RNA‐ZNF609 ameliorates vascular endothelial dysfunction publication-title: Theranostics – volume: 33 start-page: 1667 year: 2014 end-page: 1680 article-title: MicroRNA‐125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease publication-title: The EMBO Journal – volume: 225 start-page: 85 year: 2010 end-page: 93 article-title: The role of low‐density receptor‐related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1 publication-title: Experimental Neurology – volume: 149 start-page: 693 year: 2012 end-page: 707 article-title: A role for neuronal piRNAs in the epigenetic control of memory‐related synaptic plasticity publication-title: Cell – volume: 6 start-page: 851 year: 2014 end-page: 864 article-title: Development of microRNA therapeutics is coming of age publication-title: EMBO Molecular Medicine – volume: 567 start-page: 27 year: 2004 end-page: 34 article-title: Employment opportunities for non‐coding RNAs publication-title: FEBS Letters – volume: 8 start-page: 453 issue: 32 year: 2014 end-page: 461 article-title: Detecting and characterizing circular RNAs publication-title: Nature Biotechnology – volume: 7 start-page: 3143 year: 2008 end-page: 3148 article-title: Control of cell proliferation pathways by microRNAs publication-title: Cell Cycle – volume: 15 start-page: 177 year: 2017 end-page: 186 article-title: Transcriptional and post‐transcriptional gene regulation by long non‐coding RNA publication-title: Genomics, Proteomics & Bioinformatics – volume: 34 start-page: 14919 year: 2014 end-page: 14933 article-title: Synaptic and cognitive improvements by inhibition of 2‐AG metabolism are through upregulation of microRNA‐188‐3p in a mouse model of Alzheimer's disease publication-title: The Journal of Neuroscience – volume: 23 start-page: 3674 year: 2009 end-page: 3681 article-title: Tetraspanin12 regulates ADAM10‐dependent cleavage of amyloid precursor protein publication-title: The FASEB Journal – volume: 6 start-page: 70 year: 2011 article-title: Alzheimer‐specific variants in the 3'UTR of amyloid precursor protein affect microRNA function publication-title: Molecular Neurodegeneration – volume: 17 start-page: 268 issue: Suppl 7, S7 year: 2016 article-title: Alzheimer's disease neuroimaging initiative. A novel approach for multi‐SNP GWAS and its application in Alzheimer's disease publication-title: BMC Bioinformatics – volume: 78 start-page: 221 year: 2013 end-page: 230 article-title: Molecular functions of small regulatory noncoding RNA publication-title: Biochemistry (Mosc) – volume: 7 start-page: 1401 year: 2014 end-page: 1409 article-title: HuD regulates coding and noncoding RNA to induce APP→Aβ processing publication-title: Cell Reports – volume: 46 start-page: 282 year: 2009 end-page: 301 article-title: The structure and function of Alzheimer's gamma secretase enzyme complex publication-title: Critical Reviews in Clinical Laboratory Sciences – volume: 12 start-page: 51 year: 2017 article-title: Dissecting the role of non‐coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer's disease publication-title: Molecular Neurodegeneration – volume: 10 start-page: 185 year: 2004 end-page: 191 article-title: Exportin 5 is a RanGTP‐dependent dsRNA‐binding protein that mediates nuclear export of pre‐miRNAs publication-title: RNA – volume: 113 start-page: 1384 year: 2004 end-page: 1387 article-title: Amyloid at the cutting edge: Activation of alpha‐secretase prevents amyloidogenesis in an Alzheimer disease mouse model publication-title: The Journal of Clinical Investigation – volume: 12 start-page: 3081 year: 2015 end-page: 3088 article-title: MicroRNA‐29c targets β‐site amyloid precursor protein‐cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo publication-title: Molecular Medicine Reports – volume: 238 start-page: 42 year: 2016 end-page: 51 article-title: Circular RNAs are miRNA sponges and can be used as a new class of biomarker publication-title: Journal of Biotechnology – volume: 13 start-page: 565 year: 2017 end-page: 576 article-title: Small RNA sequencing revealed dysregulated piRNAs in Alzheimer's disease and their probable role in pathogenesis publication-title: Molecular BioSystems – volume: 33 start-page: 3989 year: 2013 end-page: 4001 article-title: MicroRNA‐195 protects against dementia induced by chronic brain hypoperfusion via its anti‐amyloidogenic effect in rats publication-title: The Journal of Neuroscience – volume: 21 start-page: 172 year: 2015 end-page: 179 article-title: Efficient backsplicing produces translatable circular mRNAs publication-title: RNA – volume: 51 start-page: 909 year: 2015 end-page: 918 article-title: The role of SORL1 in Alzheimer's disease publication-title: Molecular Neurobiology – volume: 8 start-page: 37 year: 2014 article-title: A lentiviral sponge for miR‐101 regulates RanBP9 expression and amyloid precursor protein metabolism in hippocampal neurons publication-title: Frontiers in Cellular Neuroscience – volume: 365 start-page: 141 year: 2015 end-page: 148 article-title: Circular RNA: A new star of noncoding RNAs publication-title: Cancer Letters – volume: 10 start-page: 126 year: 2009 end-page: 139 article-title: Biogenesis of small RNAs in animals publication-title: Nature Reviews. Molecular Cell Biology – volume: 45 start-page: 1452 year: 2013 end-page: 1458 article-title: Meta‐analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease publication-title: Nature Genetics – volume: 66 start-page: 9 year: 2017 end-page: 21 article-title: Translation of circRNAs publication-title: Molecular Cell – volume: 31 start-page: 5409 issue: 12 year: 2017 end-page: 5418 article-title: Amyloid‐β and islet amyloid pathologies link Alzheimer disease and type 2 diabetes in a transgenic model publication-title: FASEB Journal – volume: 6 start-page: 19946 year: 2016 article-title: Recombinant pre‐miR‐29b for Alzheimer's disease therapeutics publication-title: Scientific Reports – volume: 7 start-page: 38999 year: 2016 end-page: 39016 article-title: Alzheimer disease research in the 21st century: Past and current failures, new perspectives and funding priorities publication-title: Oncotarget – volume: 8 start-page: 447 year: 1998 end-page: 453 article-title: The cell biology of beta‐amyloid precursor protein and presenilin in Alzheimer's disease publication-title: Trends in Cell Biology – volume: 36 start-page: 1305 year: 2016 end-page: 1315 article-title: Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 9 start-page: 287 year: 2014 end-page: 314 article-title: MicroRNAs in cancer publication-title: Annual Review of Pathology – volume: 35 start-page: 14717 year: 2015 end-page: 14726 article-title: microRNA‐33 regulates ApoE lipidation and amyloid‐β metabolism in the brain publication-title: The Journal of Neuroscience – volume: 29 start-page: 452 year: 2016 end-page: 463 article-title: Long noncoding RNAs in cancer pathways publication-title: Cancer Cell – volume: 13 start-page: 35 year: 2012 article-title: Computational identification and experimental validation of microRNAs binding to the Alzheimer‐related gene ADAM10 publication-title: BMC Medical Genetics – volume: 9 start-page: 1759091417719201 year: 2017 article-title: Peripheral inflammation, Apolipoprotein E4, and amyloid‐β interact to induce cognitive and cerebrovascular dysfunction publication-title: ASN Neuro – volume: 78 start-page: 631 year: 2013 end-page: 643 article-title: Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta publication-title: Neuron – volume: 11 start-page: 967 year: 2015 end-page: 976 article-title: Antisense RNA controls LRP1 sense transcript expression through interaction with a chromatin‐associated protein, HMGB2 publication-title: Cell Reports – volume: S0006‐3223 start-page: 31358 issue: 17 year: 2017 end-page: 31356 article-title: Apolipoprotein E, receptors, and modulation of Alzheimer's disease publication-title: Biological Psychiatry – volume: 285 start-page: 18344 year: 2010 end-page: 18351 article-title: MicroRNA‐101 regulates amyloid precursor protein expression in hippocampal neurons publication-title: The Journal of Biological Chemistry – volume: 5 start-page: 89 year: 2017 article-title: Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial‐mediated innate immunity in Alzheimer's disease publication-title: Nature Genetics – volume: 48 start-page: 647 year: 2015 end-page: 665 article-title: Transcriptomics profiling of Alzheimer's disease reveal neurovascular defects, altered amyloid‐β homeostasis, and deregulated expression of long noncoding RNAs publication-title: Journal of Alzheimer's Disease – volume: 12 start-page: 381 year: 2017 article-title: Circular RNA circMTO1 acts as the sponge of microRNA‐9 to suppress hepatocellular carcinoma progression publication-title: Hepatology – volume: 36 start-page: 2925 year: 2015 end-page: 2931 article-title: Identification of Alzheimer's disease–associated long noncoding RNAs publication-title: Neurobiology of Aging – volume: 88 start-page: 596 year: 2012 end-page: 601 article-title: MicroRNA‐195 downregulates Alzheimer's disease amyloid‐β production by targeting BACE1 publication-title: Brain Research Bulletin – volume: 4 start-page: 9 year: 2012 article-title: Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal‐dominant Alzheimer's disease publication-title: Alzheimer's Research & Therapy – volume: 19 start-page: 4020 year: 2015 end-page: 4027 article-title: MiR‐16 regulates cell death in Alzheimer's disease by targeting amyloid precursor protein publication-title: European Review for Medical and Pharmacological Sciences – volume: 6 start-page: 234 year: 2016 article-title: Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR‐136 “sponge” in human cartilage degradation publication-title: Scientific Reports – volume: 254 start-page: 247 year: 1991 end-page: 253 article-title: A similar defect in UV‐induced mutagenesis conferred by the rad6 and rad18 mutations of Saccharomyces Cerevisiae publication-title: Mutation Research – volume: 9 start-page: 914 year: 2015 article-title: Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases publication-title: Frontiers in Cellular Neuroscience – volume: 289 start-page: 5184 year: 2014 end-page: 5198 article-title: MicroRNA‐339‐5p down‐regulates protein expression of β‐site amyloid precursor protein‐cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects publication-title: The Journal of Biological Chemistry – volume: 7 start-page: 241 year: 2016 end-page: 252 article-title: Alzheimer's disease: Presence and role of microRNAs publication-title: Biomolecular Concepts – volume: 42 start-page: 2672 year: 2011 end-page: 2713 article-title: Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association publication-title: Stroke – volume: 58 start-page: 2239 issue: 12 year: 2017 end-page: 2254 article-title: Cellular cholesterol homeostasis in Alzheimer's disease publication-title: Journal of Lipid Research – volume: 10 start-page: 1275 year: 2014 end-page: 1281 article-title: Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1‐AS expression publication-title: Molecular Medicine Reports – volume: 598 start-page: 66 year: 2015 end-page: 72 article-title: Direct intracerebral delivery of a miR‐33 antisense oligonucleotide into mouse brain increases brain ABCA1 expression publication-title: Neuroscience Letters – volume: 28 start-page: 273 year: 2017 end-page: 284 article-title: ApoE, ApoE receptors, and the synapse in Alzheimer's disease publication-title: Trends in Endocrinology and Metabolism – volume: 55 start-page: 115 year: 2017 end-page: 122 article-title: Immune hyperreactivity of Aβ plaque‐associated microglia in Alzheimer's disease publication-title: Neurobiology of Aging – volume: 9 start-page: 2013 year: 2015 article-title: Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity publication-title: Frontiers in Neuroscience – volume: 11 start-page: 1301 year: 2015 end-page: 1312 article-title: Epigenome‐wide analysis of piRNAs in gene‐specific DNA methylation publication-title: RNA Biology – volume: 135 start-page: 1 year: 2015 end-page: 20 article-title: The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain publication-title: Progress in Neurobiology – volume: 17 start-page: 337 year: 2009 end-page: 341 article-title: Texas Alzheimer's research consortium. Brain‐derived neurotrophic factor levels in Alzheimer's disease publication-title: Journal of Alzheimer's Disease – volume: 11 start-page: R56 year: 2010 article-title: Evidence for natural antisense transcript‐mediated inhibition of microRNA function publication-title: Genome Biology – volume: 495 start-page: 384 year: 2013 end-page: 388 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature – volume: 589 start-page: 726 year: 2015 end-page: 729 article-title: MicroRNA‐138 promotes tau phosphorylation by targeting retinoic acid receptor alpha publication-title: FEBS Letters – volume: 288 start-page: 13748 year: 2013 end-page: 13761 article-title: MicroRNA‐144 is regulated by activator protein‐1 (AP‐1) and decreases expression of Alzheimer disease‐related a disintegrin and metalloprotease 10 (ADAM10) publication-title: The Journal of Biological Chemistry – volume: 81 start-page: 145 year: 2012 end-page: 166 article-title: Genome regulation by long noncoding RNAs publication-title: Annual Review of Biochemistry – volume: 181 start-page: 1426 year: 2012 end-page: 1435 article-title: The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin‐proteasome system publication-title: The American Journal of Pathology – volume: 15 start-page: 349 year: 2017 article-title: Rapid amyloid‐β oligomer and protofibril accumulation in traumatic brain injury publication-title: Brain Pathology – volume: 7 start-page: 116 year: 2016 article-title: Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer's disease (AD) is linked to deficits in a natural circular miRNA‐7 sponge (circRNA; ciRS‐7) publication-title: Genes (Basel) – volume: 81 start-page: 2103 year: 2013 end-page: 2106 article-title: Reduced expression of hsa‐miR‐27a‐3p in CSF of patients with Alzheimer disease publication-title: Neurology – volume: 17 start-page: 47 year: 2016 end-page: 62 article-title: Unique features of long non‐coding RNA biogenesis and function publication-title: Nature Reviews. Genetics – volume: 88 start-page: 468 year: 2006 end-page: 479 article-title: Genomic profiling of cortical neurons following exposure to beta‐amyloid publication-title: Genomics – volume: 28 start-page: 1213 year: 2008 end-page: 1223 article-title: The expression of microRNA miR‐107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta‐site amyloid precursor protein‐cleaving enzyme 1 publication-title: The Journal of Neuroscience – volume: 14 start-page: 361 year: 2017 end-page: 369 article-title: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1 publication-title: RNA Biology – volume: 54 start-page: 2012 year: 2016 end-page: 2021 article-title: The role of long noncoding RNAs in neurodegenerative diseases publication-title: Molecular Neurobiology – volume: 63 start-page: 362 year: 2016 end-page: 369 article-title: MicroRNA‐155 deletion reduces anxiety‐ and depressive‐like behaviors in mice publication-title: Psychoneuroendocrinology – volume: 83 start-page: 142 year: 2015 end-page: 155 article-title: Noncoding RNA in age‐related cardiovascular diseases publication-title: Journal of Molecular and Cellular Cardiology – volume: 7 start-page: 67 year: 2014 article-title: MicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms publication-title: Frontiers in Molecular Neuroscience – volume: 14 start-page: 16010 year: 2013 end-page: 16039 article-title: Non‐coding RNAs: Multi‐tasking molecules in the cell publication-title: International Journal of Molecular Sciences – ident: e_1_2_9_58_1 doi: 10.1016/j.celrep.2014.04.050 – ident: e_1_2_9_66_1 doi: 10.1042/BST20160376 – volume: 0006 start-page: 31358 issue: 17 year: 2017 ident: e_1_2_9_150_1 article-title: Apolipoprotein E, receptors, and modulation of Alzheimer's disease publication-title: Biological Psychiatry – ident: e_1_2_9_24_1 doi: 10.4088/JCP.v68n0419 – ident: e_1_2_9_124_1 doi: 10.18632/oncotarget.3523 – ident: e_1_2_9_11_1 doi: 10.1515/bmc-2016-0014 – ident: e_1_2_9_12_1 doi: 10.1016/j.ncrna.2016.11.002 – ident: e_1_2_9_138_1 doi: 10.1186/alzrt107 – ident: e_1_2_9_6_1 doi: 10.1186/1471-2350-13-35 – ident: e_1_2_9_137_1 doi: 10.1261/rna.048272.114 – ident: e_1_2_9_48_1 doi: 10.1038/nature11993 – ident: e_1_2_9_113_1 doi: 10.1039/C6MB00699J – ident: e_1_2_9_38_1 doi: 10.1080/15476286.2014.996091 – ident: e_1_2_9_115_1 doi: 10.1212/01.wnl.0000437306.37850.22 – ident: e_1_2_9_68_1 doi: 10.1016/j.tem.2016.12.001 – ident: e_1_2_9_152_1 doi: 10.1016/j.neurobiolaging.2015.07.015 – ident: e_1_2_9_20_1 doi: 10.1038/nrm.2015.32 – ident: e_1_2_9_149_1 doi: 10.3389/fncel.2014.00427 – ident: e_1_2_9_122_1 doi: 10.1111/j.1471-4159.2010.07097.x – ident: e_1_2_9_144_1 doi: 10.1007/s12035-014-8742-5 – ident: e_1_2_9_57_1 doi: 10.1016/j.lfs.2017.05.023 – ident: e_1_2_9_131_1 doi: 10.1091/mbc.10.9.2905 – ident: e_1_2_9_67_1 doi: 10.1038/ng.2802 – ident: e_1_2_9_106_1 doi: 10.1038/srep19946 – ident: e_1_2_9_119_1 doi: 10.1016/S0962-8924(98)01363-4 – ident: e_1_2_9_136_1 doi: 10.1016/j.febslet.2015.02.001 – ident: e_1_2_9_15_1 doi: 10.1038/nn.3435 – ident: e_1_2_9_79_1 doi: 10.1016/j.freeradbiomed.2015.02.028 – ident: e_1_2_9_97_1 doi: 10.1016/bs.ircmb.2017.03.008 – volume: 15 start-page: 349 year: 2017 ident: e_1_2_9_4_1 article-title: Rapid amyloid‐β oligomer and protofibril accumulation in traumatic brain injury publication-title: Brain Pathology – ident: e_1_2_9_84_1 doi: 10.1007/s00415-005-0689-z – ident: e_1_2_9_102_1 doi: 10.1016/j.ygeno.2006.06.007 – ident: e_1_2_9_63_1 doi: 10.1073/pnas.1602532113 – ident: e_1_2_9_141_1 doi: 10.1016/j.celrep.2015.04.011 – ident: e_1_2_9_108_1 doi: 10.1016/j.ejcb.2017.09.004 – ident: e_1_2_9_41_1 doi: 10.3390/ijms140816010 – ident: e_1_2_9_110_1 doi: 10.1038/nrg.2015.10 – ident: e_1_2_9_49_1 doi: 10.1073/pnas.0710263105 – ident: e_1_2_9_56_1 doi: 10.1038/nbt.2890 – ident: e_1_2_9_19_1 doi: 10.1194/jlr.R075630 – ident: e_1_2_9_123_1 doi: 10.1093/hmg/ddv377 – ident: e_1_2_9_127_1 doi: 10.1016/j.tibs.2004.12.007 – ident: e_1_2_9_9_1 doi: 10.3389/fncel.2014.00037 – ident: e_1_2_9_69_1 doi: 10.3233/JAD-142919 – ident: e_1_2_9_32_1 doi: 10.1038/nm1784 – ident: e_1_2_9_129_1 doi: 10.15252/emmm.201100899 – ident: e_1_2_9_7_1 doi: 10.1038/nrn2194 – ident: e_1_2_9_33_1 doi: 10.1186/gb-2010-11-5-r56 – ident: e_1_2_9_14_1 doi: 10.1261/rna.5167604 – ident: e_1_2_9_55_1 doi: 10.1016/j.neulet.2015.05.007 – ident: e_1_2_9_47_1 doi: 10.1101/gad.1262504 – ident: e_1_2_9_95_1 doi: 10.1038/nrg3722 – ident: e_1_2_9_91_1 doi: 10.1261/rna.050815.115 – ident: e_1_2_9_70_1 doi: 10.1016/j.molcel.2017.02.017 – ident: e_1_2_9_73_1 doi: 10.7150/thno.19353 – ident: e_1_2_9_76_1 doi: 10.3892/mmr.2014.2351 – ident: e_1_2_9_65_1 doi: 10.1016/j.jbiotec.2016.09.011 – ident: e_1_2_9_51_1 doi: 10.3389/fnmol.2017.00022 – ident: e_1_2_9_139_1 doi: 10.1096/fj.201700431R – ident: e_1_2_9_36_1 doi: 10.2337/db11-0171 – ident: e_1_2_9_77_1 doi: 10.1016/j.neurobiolaging.2010.04.034 – ident: e_1_2_9_118_1 doi: 10.1016/j.expneurol.2011.11.013 – ident: e_1_2_9_85_1 doi: 10.3233/JAD-150398 – ident: e_1_2_9_13_1 doi: 10.1186/s12859-016-1093-7 – ident: e_1_2_9_28_1 doi: 10.1111/jnc.12437 – ident: e_1_2_9_140_1 doi: 10.1096/fj.09-133462 – ident: e_1_2_9_3_1 doi: 10.1016/j.tcb.2012.08.013 – ident: e_1_2_9_107_1 doi: 10.18632/oncotarget.9175 – ident: e_1_2_9_104_1 doi: 10.1111/j.1460-9568.2007.05864.x – ident: e_1_2_9_42_1 doi: 10.1161/STR.0b013e3182299496 – ident: e_1_2_9_52_1 doi: 10.1134/S0006297913030024 – ident: e_1_2_9_72_1 doi: 10.1172/JCI21746 – ident: e_1_2_9_125_1 doi: 10.1111/jnc.13212 – ident: e_1_2_9_87_1 doi: 10.4161/rna.8.4.15584 – ident: e_1_2_9_88_1 doi: 10.1016/S1474-4422(10)70119-8 – ident: e_1_2_9_39_1 doi: 10.1523/JNEUROSCI.3883-11.2011 – ident: e_1_2_9_60_1 doi: 10.1111/jnc.13507 – ident: e_1_2_9_2_1 doi: 10.1080/15476286.2017.1279788 – ident: e_1_2_9_90_1 doi: 10.1186/1471-2202-11-14 – ident: e_1_2_9_80_1 doi: 10.1074/jbc.M113.518241 – ident: e_1_2_9_26_1 doi: 10.3389/fnmol.2014.00067 – ident: e_1_2_9_98_1 doi: 10.3233/JAD-2010-091603 – ident: e_1_2_9_135_1 doi: 10.1523/JNEUROSCI.5065-07.2008 – ident: e_1_2_9_40_1 doi: 10.3233/JAD-2010-101674 – ident: e_1_2_9_109_1 doi: 10.1016/j.canlet.2015.06.003 – ident: e_1_2_9_146_1 doi: 10.1016/j.jmb.2012.11.024 – ident: e_1_2_9_74_1 doi: 10.1038/nrneurol.2012.263 – ident: e_1_2_9_116_1 doi: 10.15252/embj.201797397 – ident: e_1_2_9_50_1 doi: 10.1093/hmg/ddq311 – ident: e_1_2_9_142_1 doi: 10.3892/mmr.2015.3728 – ident: e_1_2_9_96_1 doi: 10.1101/cshperspect.a006288 – volume: 12 start-page: 381 year: 2017 ident: e_1_2_9_46_1 article-title: Circular RNA circMTO1 acts as the sponge of microRNA‐9 to suppress hepatocellular carcinoma progression publication-title: Hepatology – volume: 6 start-page: 234 year: 2016 ident: e_1_2_9_75_1 article-title: Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR‐136 “sponge” in human cartilage degradation publication-title: Scientific Reports – ident: e_1_2_9_17_1 doi: 10.15252/embj.201695810 – ident: e_1_2_9_21_1 doi: 10.1074/jbc.M112.381392 – ident: e_1_2_9_25_1 doi: 10.1186/1750-1326-6-70 – ident: e_1_2_9_54_1 doi: 10.1016/j.jalz.2010.04.006 – ident: e_1_2_9_134_1 doi: 10.1007/s12035-016-9793-6 – ident: e_1_2_9_35_1 doi: 10.3389/fphys.2015.00040 – ident: e_1_2_9_61_1 doi: 10.1523/JNEUROSCI.2053-15.2015 – ident: e_1_2_9_145_1 doi: 10.1016/j.neurobiolaging.2017.03.021 – ident: e_1_2_9_37_1 doi: 10.1016/j.psyneuen.2015.10.019 – ident: e_1_2_9_143_1 doi: 10.1038/cr.2017.31 – ident: e_1_2_9_29_1 doi: 10.1007/s12017-011-8154-x – ident: e_1_2_9_132_1 doi: 10.1074/jbc.M110.112664 – ident: e_1_2_9_5_1 doi: 10.1523/JNEUROSCI.1997-12.2013 – ident: e_1_2_9_94_1 doi: 10.1016/j.febslet.2004.03.117 – ident: e_1_2_9_30_1 doi: 10.1016/j.gpb.2016.12.005 – ident: e_1_2_9_128_1 doi: 10.1016/j.ejpb.2008.08.021 – ident: e_1_2_9_23_1 doi: 10.1242/dmm.009761 – volume: 5 start-page: 89 year: 2017 ident: e_1_2_9_121_1 article-title: Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial‐mediated innate immunity in Alzheimer's disease publication-title: Nature Genetics – ident: e_1_2_9_130_1 doi: 10.1016/j.cbpa.2014.10.024 – ident: e_1_2_9_103_1 doi: 10.1007/s11095-007-9324-2 – ident: e_1_2_9_71_1 doi: 10.1016/j.molcel.2010.09.027 – ident: e_1_2_9_45_1 doi: 10.1016/0092-8674(93)90312-E – ident: e_1_2_9_31_1 doi: 10.1016/j.arr.2014.03.004 – ident: e_1_2_9_112_1 doi: 10.1146/annurev-biochem-051410-092902 – ident: e_1_2_9_148_1 doi: 10.1523/JNEUROSCI.1165-14.2014 – ident: e_1_2_9_78_1 doi: 10.1016/j.bbrc.2016.08.037 – ident: e_1_2_9_81_1 doi: 10.3389/fgene.2013.00307 – ident: e_1_2_9_99_1 doi: 10.3233/JAD-2009-1051 – ident: e_1_2_9_34_1 doi: 10.1016/j.toxlet.2011.11.032 – ident: e_1_2_9_100_1 doi: 10.1016/j.molcel.2017.02.021 – ident: e_1_2_9_117_1 doi: 10.1016/j.ccell.2016.03.010 – ident: e_1_2_9_120_1 doi: 10.1111/febs.14045 – ident: e_1_2_9_16_1 doi: 10.4161/cc.7.20.6833 – ident: e_1_2_9_105_1 doi: 10.1186/s13024-017-0191-y – ident: e_1_2_9_8_1 doi: 10.15252/embj.201387576 – ident: e_1_2_9_114_1 doi: 10.1016/j.pneurobio.2015.10.003 – ident: e_1_2_9_151_1 doi: 10.3390/genes7120116 – ident: e_1_2_9_18_1 doi: 10.1016/0921-8777(91)90063-U – ident: e_1_2_9_22_1 doi: 10.3389/fncel.2015.00124 – ident: e_1_2_9_92_1 doi: 10.1016/j.pneurobio.2017.03.004 – ident: e_1_2_9_101_1 doi: 10.1016/j.molcel.2008.08.022 – ident: e_1_2_9_153_1 doi: 10.1016/j.brainresbull.2012.05.018 – ident: e_1_2_9_44_1 doi: 10.1016/j.neuron.2013.04.014 – ident: e_1_2_9_86_1 doi: 10.1161/ATVBAHA.116.307023 – ident: e_1_2_9_43_1 doi: 10.1016/j.yjmcc.2015.01.011 – ident: e_1_2_9_53_1 doi: 10.1186/1471-2164-8-39 – start-page: 2062384 year: 2017 ident: e_1_2_9_59_1 article-title: Long noncoding RNAs and RNA‐binding proteins in oxidative stress, cellular senescence, and age‐related diseases publication-title: Oxidative Medicine and Cellular Longevity doi: 10.1155/2017/2062384 – ident: e_1_2_9_93_1 doi: 10.1038/nbt.2158 – ident: e_1_2_9_83_1 doi: 10.3389/fnins.2015.00351 – volume: 19 start-page: 4020 year: 2015 ident: e_1_2_9_147_1 article-title: MiR‐16 regulates cell death in Alzheimer's disease by targeting amyloid precursor protein publication-title: European Review for Medical and Pharmacological Sciences – ident: e_1_2_9_82_1 doi: 10.3389/fgene.2012.00327 – ident: e_1_2_9_27_1 doi: 10.1146/annurev-pathol-012513-104715 – ident: e_1_2_9_89_1 doi: 10.1177/1759091417719201 – ident: e_1_2_9_10_1 doi: 10.1242/dev.128074 – ident: e_1_2_9_126_1 doi: 10.1016/j.ajpath.2012.06.033 – ident: e_1_2_9_133_1 doi: 10.1016/j.expneurol.2010.05.017 – ident: e_1_2_9_62_1 doi: 10.1038/nrm2632 – ident: e_1_2_9_64_1 doi: 10.3109/10408360903335821 – ident: e_1_2_9_111_1 doi: 10.1016/j.cell.2012.02.057 |
| SSID | ssj0000402711 |
| Score | 2.5580251 |
| SecondaryResourceType | review_article |
| Snippet | Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to... Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1463 |
| SubjectTerms | Alzheimer Disease - genetics Alzheimer's disease amyloid plaques Amyloid precursor protein Animals circRNA Dementia disorders Drug development Gene expression Geriatrics Humans lncRNA miRNA neurodegeneration Neurodegenerative diseases Neurofibrillary tangles noncoding RNA Pathogenesis Post-transcription posttranscriptional gene regulation RNA, Untranslated Senile plaques Tau protein |
| Title | Noncoding RNAs in Alzheimer's disease |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwrna.1463 https://www.ncbi.nlm.nih.gov/pubmed/29327503 https://www.proquest.com/docview/2002557629 https://www.proquest.com/docview/1989610572 https://pubmed.ncbi.nlm.nih.gov/PMC5847280 |
| Volume | 9 |
| WOSCitedRecordID | wos000425434400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1757-7012 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402711 issn: 1757-7004 databaseCode: DRFUL dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHbiwL2VTQGyXiBDHdSxOFVBxQBVCLL1FtuOISpCipgXB1zOTpIEKkJC4RfFkscfjebbHbwB2BVNBrLh040QpNwhi5ir0RK6ROuBcebZg4Lu7FK1W2G7LqzE4GZ6FKfghqgU3sox8vCYDVzo7-iQNfcWWJjtn4zBJh6qwS0-eXTdvL6slFuyfvsgz8KKPFC4RuQ-5hTz_qHp-1CN9g5nfoyW_otjcDTVn_1WBOZgp0afTKLrLPIzZdAEWGynOvJ_enH0njwfNF9oXYa_VTU2XXJtz3WpkTid1Go_vD7bzZHsHmVPu7CzBbfP85vTCLZMquAaxAWoiqStVD6002hcaLTqIPSa19rhlnMUJ06ihWOmE482ECy1RnaEIuRUMsYdgyzCRdlO7Co5iiAaxXHrMBrEwmhnj1X3pc32ceMbW4HDYsJEpGccp8cVjVHAl-xE1AU0-WA12KtHngmbjJ6GNoXai0tIySqOJsyIc0mUNtqtitBHa-FCp7Q6yiOLC6pTQ2K_BSqHM6isId4jiHl8uRtRcCRD_9mhJ2nnIebhph9kPPaxmrubffzy6Rz3RxdrfRddhGrFZWIS7bcBEvzewmzBlXvqdrLcF46IdbpUd_gO0_QN- |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BUoleeBa6PEPVApcIN47XscRlBV1RdRtVCFpuke04YiXIVhsegl_PTJINXVGkSr1EUTx52OPxfLYn3wB8lFyHqRbKTzOt_TBMua_RE_lWmVAIzVzFwPezL-M4urhQP6bgcPwvTMUP0Sy4kWWU4zUZOC1IHzyzht5jU5Oh82mYwWPEWjBzfNo77zdrLNhBA1mm4EUnKX1ich-TC7HgoLl_0iW9wJkvwyX_hLGlH-rN_18NFmCuxp9et-owizDl8iVY7uY4975-8Ha9MiK0XGpfhk_xMLdDcm7eadwtvEHuda8eL93g2o32Cq_e23kH570vZ0cnfp1WwbeIDlAXWUfrTuSUNYE0aNNhyrgyhgnHBU8zblBHqTaZwIuZkEahQiMZCSc5og_JV6CVD3P3HjzNEQ9iuWLcham0hlvLOoEKhPmcMevasD9u2cTWnOOU-uIqqdiSg4SagKYfvA0fGtHfFdHG34Q2xupJalsrKJEmzotwUFdt2GmK0Upo60PnbnhbJBQZ1qGUxkEbVittNm9BwEMk9_hwOaHnRoAYuCdL8sFlycRNe8xBxLCapZ5f__DkF-qJTtb-XXQbZk_OvveT_tf42zq8RaQWVcFvG9C6Gd26TXhj724GxWir7vdP-1sGfQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHF-2Veq3h7KdamWRrwZahDcRQRb28lSVM2cN1YvaC_3pO2qw4VBN9Kk16SL6fnS3L6HYAdRoQXCcrtKBbC9ryI2AI9ka249CgVjs4V-O6aLAj8hwd-NQLHg39hcn2IcsHNWEb2vTYGrntRfPipGvqKXW0MnYzCmEeR51dg7PS6cdss11hwgLosS8GLTpLZRsl9IC7kuIfl9cMu6RvP_B4u-ZXGZn6oMf2_FszAVME_rXo-YGZhRCdzMF9PcO7debP2rCwiNFtqn4fdoJuornFu1nVQT612YtUf31u63dH9_dQq9nYW4LZxdnNybhdpFWyF7ACxiGtC1HzNlXSZRJv2IodwKR2qCSVRTCRiFAkZUzwZUyY5Auozn2pGkH0wsgiVpJvoZbAEQT6I5dwh2ouYkkQpp-Zyl8qj2FG6CgeDng1VoTluUl88hrlashuaLjDTD1KF7bJqLxfa-KnS2gCesLC11CTSxHkRftR5FbbKYrQSs_UhEt19TkMTGVYzKY3dKizlaJZPQcJjRO7x5mwI57KCUeAeLknarUyJ2-wxu76Dzcxw_v3Fw3vEyRys_L3qJkxcnTbC5kVwuQqTSNT8PPZtDSpP_We9DuPq5amd9jeKYf8BmjAGAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncoding+RNAs+in+Alzheimer%E2%80%99s+Disease&rft.jtitle=Wiley+interdisciplinary+reviews.+RNA&rft.au=Idda%2C+M.+Laura&rft.au=Munk%2C+Rachel&rft.au=Abdelmohsen%2C+Kotb&rft.au=Gorospe%2C+Myriam&rft.date=2018-03-01&rft.issn=1757-7004&rft.eissn=1757-7012&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1002%2Fwrna.1463&rft_id=info%3Apmid%2F29327503&rft.externalDocID=PMC5847280 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-7004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-7004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-7004&client=summon |