Noncoding RNAs in Alzheimer's disease

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. RNA Jg. 9; H. 2; S. e1463 - n/a
Hauptverfasser: Idda, M. Laura, Munk, Rachel, Abdelmohsen, Kotb, Gorospe, Myriam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.03.2018
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1757-7004, 1757-7012, 1757-7012
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule‐associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease Schematic of the three main domains of AD pathogenesis. Top, APP is cleaved by α, β, and γ secretases; the generation and aggregation of amyloidogenic Aβ peptides outside of the cell leads to the formation of amyloid plaques. Bottom, the hyperphosphorylation of Tau protein results in formation of intracellular neurofibrillary tangles. Right, amyloid plaques and neurofibrillary tangles create a toxic environment characterized by neuroinflammation and neurodegeneration. Key, top right
AbstractList Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease.Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule‐associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463This article is categorized under:RNA in Disease and Development > RNA in Disease
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and post-transcriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated post-transcriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule‐associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease Schematic of the three main domains of AD pathogenesis. Top, APP is cleaved by α, β, and γ secretases; the generation and aggregation of amyloidogenic Aβ peptides outside of the cell leads to the formation of amyloid plaques. Bottom, the hyperphosphorylation of Tau protein results in formation of intracellular neurofibrillary tangles. Right, amyloid plaques and neurofibrillary tangles create a toxic environment characterized by neuroinflammation and neurodegeneration. Key, top right
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule‐associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease.
Author Abdelmohsen, Kotb
Idda, M. Laura
Gorospe, Myriam
Munk, Rachel
Author_xml – sequence: 1
  givenname: M. Laura
  surname: Idda
  fullname: Idda, M. Laura
  email: marialaura.idda@nih.gov
  organization: National Institutes of Health
– sequence: 2
  givenname: Rachel
  surname: Munk
  fullname: Munk, Rachel
  organization: National Institutes of Health
– sequence: 3
  givenname: Kotb
  surname: Abdelmohsen
  fullname: Abdelmohsen, Kotb
  organization: National Institutes of Health
– sequence: 4
  givenname: Myriam
  surname: Gorospe
  fullname: Gorospe, Myriam
  organization: National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29327503$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LwzAYhYMobs5d-AekIKJedMtH07Q3whh-wZggipchbdMto0tm0zrmrzd1c-hAc5OQPO_h5JwjsK-NlgCcINhDEOL-stSih4KQ7IE2YpT5DCK8vz3DoAW61s6gWwHEDKFD0MIxwYxC0gbnY6NTkyk98Z7GA-sp7Q2Kj6lUc1leWC9TVgorj8FBLgoru5u9A15ub56H9_7o8e5hOBj5KYUx8UUeChFGMk4TzBKCoiCDJE4SSCWhJMtJQgXMRJJTd5lTlsSMiIhFVDKCKGWkA67Xuos6mcsslboqRcEXpZqLcsWNUPz3i1ZTPjHvnEYBwxF0ApcbgdK81dJWfK5sKotCaGlqy1EcxSGClGGHnu2gM1O7LAvLscvV2QldTB1w-tPR1sp3gg64WgNpaawtZb5FEORNQbwpiDcFOba_w6aqEpUyzWdU8d_EUhVy9bc0f3XtfU18AgVnoCQ
CitedBy_id crossref_primary_10_1186_s40035_024_00397_x
crossref_primary_10_3390_ijms24054736
crossref_primary_10_1186_s12974_023_02856_0
crossref_primary_10_1007_s12035_021_02323_y
crossref_primary_10_1007_s12035_023_03626_y
crossref_primary_10_1016_j_talanta_2024_125656
crossref_primary_10_1155_2021_6830560
crossref_primary_10_1016_j_biocel_2020_105747
crossref_primary_10_3390_ijms25189936
crossref_primary_10_3390_ijms232113171
crossref_primary_10_1007_s12035_018_1344_x
crossref_primary_10_1016_j_bbagrm_2019_05_002
crossref_primary_10_12677_BIPHY_2022_101001
crossref_primary_10_3390_ijms23147682
crossref_primary_10_1186_s12867_019_0140_0
crossref_primary_10_1002_jcb_28867
crossref_primary_10_1007_s12640_022_00609_0
crossref_primary_10_1002_jcb_27658
crossref_primary_10_3390_ijms21030767
crossref_primary_10_3892_etm_2021_10745
crossref_primary_10_1016_j_aca_2019_02_054
crossref_primary_10_1111_jnc_14724
crossref_primary_10_1177_09603271231191436
crossref_primary_10_3390_brainsci14080818
crossref_primary_10_1038_s42003_025_07502_4
crossref_primary_10_1002_mco2_173
crossref_primary_10_3390_antiox13050606
crossref_primary_10_3389_fnins_2024_1421675
crossref_primary_10_3389_fgene_2019_00153
crossref_primary_10_1007_s12031_019_01345_5
crossref_primary_10_3233_NIB_190159
crossref_primary_10_1016_j_biopha_2020_110228
crossref_primary_10_1080_01616412_2025_2534077
crossref_primary_10_1007_s12035_023_03900_z
crossref_primary_10_1177_15333175221091424
crossref_primary_10_1186_s13287_024_03863_5
crossref_primary_10_3390_ijms22105370
crossref_primary_10_1097_QAI_0000000000002187
crossref_primary_10_1016_j_bbrc_2018_08_007
crossref_primary_10_3389_fnagi_2021_709568
crossref_primary_10_3390_ijms222313012
crossref_primary_10_1002_iid3_558
crossref_primary_10_3233_JAD_215194
crossref_primary_10_1134_S0006297918090031
crossref_primary_10_1016_j_bcp_2019_113638
crossref_primary_10_1016_j_snb_2023_133373
crossref_primary_10_1007_s12035_025_04878_6
crossref_primary_10_3390_genes12111829
crossref_primary_10_1080_14737175_2018_1481389
crossref_primary_10_1016_j_aquaculture_2021_736357
crossref_primary_10_1016_j_biopha_2024_116836
crossref_primary_10_1007_s00401_018_1880_5
crossref_primary_10_1007_s12031_021_01900_z
crossref_primary_10_1016_j_ijbiomac_2022_11_166
crossref_primary_10_1038_s41598_021_04209_4
crossref_primary_10_1007_s11596_020_2283_0
crossref_primary_10_3389_fneur_2020_538301
crossref_primary_10_1007_s12035_023_03908_5
crossref_primary_10_3389_fnins_2022_878287
crossref_primary_10_3389_fnagi_2021_691512
crossref_primary_10_1016_j_ymthe_2023_02_008
crossref_primary_10_1016_j_phrs_2019_104316
crossref_primary_10_3389_fnagi_2022_955461
crossref_primary_10_1007_s12031_024_02262_y
crossref_primary_10_1016_j_scitotenv_2024_170670
crossref_primary_10_1038_s43587_025_00816_2
crossref_primary_10_1002_anse_202200083
crossref_primary_10_1007_s11011_024_01431_7
crossref_primary_10_1038_s41380_022_01476_z
crossref_primary_10_3389_fneur_2022_929290
crossref_primary_10_1038_s41598_022_10554_9
crossref_primary_10_3389_fnmol_2024_1423340
crossref_primary_10_1016_j_apsb_2023_10_015
crossref_primary_10_1016_j_arr_2025_102699
crossref_primary_10_3892_ijmm_2022_5208
crossref_primary_10_1021_acschemneuro_5c00173
crossref_primary_10_1016_j_pneurobio_2020_101746
crossref_primary_10_3390_biom15060806
crossref_primary_10_1038_s41598_022_21676_5
crossref_primary_10_1016_j_lfs_2022_120652
crossref_primary_10_1038_s41392_022_01251_0
crossref_primary_10_1007_s13205_020_2163_0
crossref_primary_10_3390_ijms26010328
crossref_primary_10_1016_j_cca_2023_117731
crossref_primary_10_1080_07391102_2023_2230279
crossref_primary_10_3390_proteomes9010013
crossref_primary_10_1016_j_bbrc_2022_11_107
crossref_primary_10_3390_biom13010018
crossref_primary_10_3390_ijms21103517
crossref_primary_10_1038_s41598_022_22822_9
crossref_primary_10_2217_imt_2019_0204
crossref_primary_10_3389_fneur_2020_549006
crossref_primary_10_1016_j_arr_2021_101425
crossref_primary_10_1007_s44446_025_00026_2
crossref_primary_10_1016_j_drudis_2024_104052
crossref_primary_10_1093_nar_gkaa707
crossref_primary_10_1111_jcmm_16586
crossref_primary_10_3389_fnagi_2021_654978
crossref_primary_10_1016_j_prp_2018_11_012
crossref_primary_10_1080_14737159_2019_1626719
crossref_primary_10_3233_JAD_231281
crossref_primary_10_1007_s13337_018_0492_y
crossref_primary_10_1002_iub_2472
crossref_primary_10_1016_j_bcp_2021_114469
crossref_primary_10_3390_ijms20133148
crossref_primary_10_1007_s12035_025_04895_5
crossref_primary_10_1016_j_omtn_2020_01_010
crossref_primary_10_3233_JAD_230872
crossref_primary_10_3390_ijms21249582
crossref_primary_10_1002_ca_23792
crossref_primary_10_3389_fnmol_2021_685143
crossref_primary_10_1007_s10238_021_00789_7
crossref_primary_10_1007_s10709_022_00166_6
crossref_primary_10_1155_2020_2638130
crossref_primary_10_1016_j_mad_2018_03_005
crossref_primary_10_2147_JIR_S422114
crossref_primary_10_3892_br_2021_1481
crossref_primary_10_1016_j_lfs_2020_117637
crossref_primary_10_3390_molecules27217207
crossref_primary_10_4103_1673_5374_353481
crossref_primary_10_3390_ijms22073478
crossref_primary_10_1002_jcb_27966
crossref_primary_10_1007_s11033_025_10284_x
crossref_primary_10_1007_s12264_024_01336_6
crossref_primary_10_3390_ijms23095237
crossref_primary_10_1038_s41467_025_60378_0
crossref_primary_10_3390_ijms241512498
crossref_primary_10_3748_wjg_v27_i1_55
crossref_primary_10_1007_s00221_021_06236_z
Cites_doi 10.1016/j.celrep.2014.04.050
10.1042/BST20160376
10.4088/JCP.v68n0419
10.18632/oncotarget.3523
10.1515/bmc-2016-0014
10.1016/j.ncrna.2016.11.002
10.1186/alzrt107
10.1186/1471-2350-13-35
10.1261/rna.048272.114
10.1038/nature11993
10.1039/C6MB00699J
10.1080/15476286.2014.996091
10.1212/01.wnl.0000437306.37850.22
10.1016/j.tem.2016.12.001
10.1016/j.neurobiolaging.2015.07.015
10.1038/nrm.2015.32
10.3389/fncel.2014.00427
10.1111/j.1471-4159.2010.07097.x
10.1007/s12035-014-8742-5
10.1016/j.lfs.2017.05.023
10.1091/mbc.10.9.2905
10.1038/ng.2802
10.1038/srep19946
10.1016/S0962-8924(98)01363-4
10.1016/j.febslet.2015.02.001
10.1038/nn.3435
10.1016/j.freeradbiomed.2015.02.028
10.1016/bs.ircmb.2017.03.008
10.1007/s00415-005-0689-z
10.1016/j.ygeno.2006.06.007
10.1073/pnas.1602532113
10.1016/j.celrep.2015.04.011
10.1016/j.ejcb.2017.09.004
10.3390/ijms140816010
10.1038/nrg.2015.10
10.1073/pnas.0710263105
10.1038/nbt.2890
10.1194/jlr.R075630
10.1093/hmg/ddv377
10.1016/j.tibs.2004.12.007
10.3389/fncel.2014.00037
10.3233/JAD-142919
10.1038/nm1784
10.15252/emmm.201100899
10.1038/nrn2194
10.1186/gb-2010-11-5-r56
10.1261/rna.5167604
10.1016/j.neulet.2015.05.007
10.1101/gad.1262504
10.1038/nrg3722
10.1261/rna.050815.115
10.1016/j.molcel.2017.02.017
10.7150/thno.19353
10.3892/mmr.2014.2351
10.1016/j.jbiotec.2016.09.011
10.3389/fnmol.2017.00022
10.1096/fj.201700431R
10.2337/db11-0171
10.1016/j.neurobiolaging.2010.04.034
10.1016/j.expneurol.2011.11.013
10.3233/JAD-150398
10.1186/s12859-016-1093-7
10.1111/jnc.12437
10.1096/fj.09-133462
10.1016/j.tcb.2012.08.013
10.18632/oncotarget.9175
10.1111/j.1460-9568.2007.05864.x
10.1161/STR.0b013e3182299496
10.1134/S0006297913030024
10.1172/JCI21746
10.1111/jnc.13212
10.4161/rna.8.4.15584
10.1016/S1474-4422(10)70119-8
10.1523/JNEUROSCI.3883-11.2011
10.1111/jnc.13507
10.1080/15476286.2017.1279788
10.1186/1471-2202-11-14
10.1074/jbc.M113.518241
10.3389/fnmol.2014.00067
10.3233/JAD-2010-091603
10.1523/JNEUROSCI.5065-07.2008
10.3233/JAD-2010-101674
10.1016/j.canlet.2015.06.003
10.1016/j.jmb.2012.11.024
10.1038/nrneurol.2012.263
10.15252/embj.201797397
10.1093/hmg/ddq311
10.3892/mmr.2015.3728
10.1101/cshperspect.a006288
10.15252/embj.201695810
10.1074/jbc.M112.381392
10.1186/1750-1326-6-70
10.1016/j.jalz.2010.04.006
10.1007/s12035-016-9793-6
10.3389/fphys.2015.00040
10.1523/JNEUROSCI.2053-15.2015
10.1016/j.neurobiolaging.2017.03.021
10.1016/j.psyneuen.2015.10.019
10.1038/cr.2017.31
10.1007/s12017-011-8154-x
10.1074/jbc.M110.112664
10.1523/JNEUROSCI.1997-12.2013
10.1016/j.febslet.2004.03.117
10.1016/j.gpb.2016.12.005
10.1016/j.ejpb.2008.08.021
10.1242/dmm.009761
10.1016/j.cbpa.2014.10.024
10.1007/s11095-007-9324-2
10.1016/j.molcel.2010.09.027
10.1016/0092-8674(93)90312-E
10.1016/j.arr.2014.03.004
10.1146/annurev-biochem-051410-092902
10.1523/JNEUROSCI.1165-14.2014
10.1016/j.bbrc.2016.08.037
10.3389/fgene.2013.00307
10.3233/JAD-2009-1051
10.1016/j.toxlet.2011.11.032
10.1016/j.molcel.2017.02.021
10.1016/j.ccell.2016.03.010
10.1111/febs.14045
10.4161/cc.7.20.6833
10.1186/s13024-017-0191-y
10.15252/embj.201387576
10.1016/j.pneurobio.2015.10.003
10.3390/genes7120116
10.1016/0921-8777(91)90063-U
10.3389/fncel.2015.00124
10.1016/j.pneurobio.2017.03.004
10.1016/j.molcel.2008.08.022
10.1016/j.brainresbull.2012.05.018
10.1016/j.neuron.2013.04.014
10.1161/ATVBAHA.116.307023
10.1016/j.yjmcc.2015.01.011
10.1186/1471-2164-8-39
10.1155/2017/2062384
10.1038/nbt.2158
10.3389/fnins.2015.00351
10.3389/fgene.2012.00327
10.1146/annurev-pathol-012513-104715
10.1177/1759091417719201
10.1242/dev.128074
10.1016/j.ajpath.2012.06.033
10.1016/j.expneurol.2010.05.017
10.1038/nrm2632
10.3109/10408360903335821
10.1016/j.cell.2012.02.057
ContentType Journal Article
Copyright Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7X8
5PM
DOI 10.1002/wrna.1463
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Nucleic Acids Abstracts


CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1757-7012
EndPage n/a
ExternalDocumentID PMC5847280
29327503
10_1002_wrna_1463
WRNA1463
Genre reviewArticle
Journal Article
Research Support, N.I.H., Intramural
Review
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA AG000518
– fundername: Intramural NIH HHS
  grantid: Z99 AG999999
GroupedDBID ---
05W
0R~
1OC
1VH
31~
33P
4.4
53G
5DZ
8-0
8-1
AAESR
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
SV3
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
ZZTAW
~S-
AAYXX
CITATION
ALUQN
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7X8
5PM
ID FETCH-LOGICAL-c5093-af6aa68e9cb27b3184d039bb05e353df3b5a0dabf59bbf57b973a8785e7315573
IEDL.DBID DRFUL
ISICitedReferencesCount 174
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425434400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1757-7004
1757-7012
IngestDate Tue Nov 04 01:59:53 EST 2025
Thu Oct 02 07:46:13 EDT 2025
Fri Jul 25 10:47:19 EDT 2025
Mon Jul 21 06:05:33 EDT 2025
Sat Nov 29 07:48:49 EST 2025
Tue Nov 18 22:43:35 EST 2025
Tue Nov 11 03:14:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords lncRNA
noncoding RNA
circRNA
neurofibrillary tangles
neurodegeneration
miRNA
posttranscriptional gene regulation
amyloid plaques
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5093-af6aa68e9cb27b3184d039bb05e353df3b5a0dabf59bbf57b973a8785e7315573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5847280
PMID 29327503
PQID 2002557629
PQPubID 2034619
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5847280
proquest_miscellaneous_1989610572
proquest_journals_2002557629
pubmed_primary_29327503
crossref_primary_10_1002_wrna_1463
crossref_citationtrail_10_1002_wrna_1463
wiley_primary_10_1002_wrna_1463_WRNA1463
PublicationCentury 2000
PublicationDate March/April 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March/April 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Oxford
PublicationTitle Wiley interdisciplinary reviews. RNA
PublicationTitleAlternate Wiley Interdiscip Rev RNA
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2011; 116
2010; 11
2013; 3
2004; 567
2013; 4
2010; 19
2013; 127
2011; 60
2010; 225
2016; 143
2008; 105
2008; 32
2012; 13
2017; 156
2013; 6
2016; 36
2013; 9
2010; 21
2009; 10
2015; 135
2015; 83
2015; 134
2008; 28
2007; 8
2014; 15
2017; 284
2014; 17
2007; 68
2010; 6
2014; 10
2010; 9
2009; 17
2015; 51
2017; 66
2015; 365
2012; 181
2010; 285
2016; 17
2011; 6
2012; 33
2011; 8
2010; 40
2012; 30
2016; 6
2016; 7
2016; 1
2017; 58
2015; 598
2013; 78
2009; 71
2017; 55
2013; 81
2016; 29
2012; 235
2017; S0006‐3223
2014; 34
2014; 33
1998; 8
2015; 35
2017; 5
2017; 7
2009; 46
2017; 8
2015; 36
2005; 252
2015; 589
2013; 23
2017; 45
2013; 288
2008; 7
2011; 13
2017; 9
2012; 209
2015; 45
2015; 48
2017; 31
2013; 14
2013; 16
2017; 36
1993; 75
2016; 113
2005; 30
1999; 10
2011; 24
2016; 238
2016; 478
2014; 9
2014; 8
2014; 7
2014; 6
2007; 24
2007; 26
2014; 289
2009; 23
2015; 12
2012; 81
2015; 6
2015; 19
1991; 254
2017; 28
2013; 45
2017; 27
2015; 11
2008; 14
2011; 31
2016; 54
2015; 9
2012; 149
2017; 334
2004; 10
2015; 24
2012; 2
2004; 113
2017; 15
2013; 33
2004; 18
2017; 14
2006; 88
2017; 10
2017; 13
2017; 12
2015; 21
2011; 42
2016; 63
2017; 182
2017
2013; 495
2016; 137
2013
2012; 4
2012; 88
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Kim C. (e_1_2_9_59_1) 2017
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
Zhao N. (e_1_2_9_150_1) 2017; 0006
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
Sims R. (e_1_2_9_121_1) 2017; 5
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
Han D. (e_1_2_9_46_1) 2017; 12
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
Abu Hamdeh S. (e_1_2_9_4_1) 2017; 15
e_1_2_9_81_1
e_1_2_9_113_1
Zhang B. (e_1_2_9_147_1) 2015; 19
e_1_2_9_117_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_142_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
Liu Q. (e_1_2_9_75_1) 2016; 6
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 19
  start-page: 3959
  year: 2010
  end-page: 3969
  article-title: Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration
  publication-title: Human Molecular Genetics
– volume: 27
  start-page: 626
  year: 2017
  end-page: 641
  article-title: Extensive translation of circular RNAs driven by N6‐methyladenosine
  publication-title: Cell Research
– volume: 8
  start-page: 665
  year: 2011
  end-page: 673
  article-title: A complex crosstalk between polymorphic microRNA target sites and AD prognosis
  publication-title: RNA Biology
– volume: 10
  start-page: 1129
  year: 2017
  article-title: APP as a protective factor in acute neuronal insults
  publication-title: Frontiers in Molecular Neuroscience
– volume: 182
  start-page: 104
  year: 2017
  end-page: 111
  article-title: miR‐34a knockout attenuates cognitive deficits in APP/PS1 mice through inhibition of the amyloidogenic processing of APP
  publication-title: Life Sciences
– volume: 66
  start-page: 22
  year: 2017
  end-page: 37
  article-title: Circ‐ZNF609 is a circular RNA that can be translated and functions in myogenesis
  publication-title: Molecular Cell
– volume: 134
  start-page: 1139
  year: 2015
  end-page: 1151
  article-title: Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA‐195 down‐regulation
  publication-title: Journal of Neurochemistry
– volume: 26
  start-page: 2444
  year: 2007
  end-page: 2457
  article-title: A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during beta‐amyloid‐induced apoptosis
  publication-title: The European Journal of Neuroscience
– volume: 334
  start-page: 177
  year: 2017
  end-page: 205
  article-title: Senescence‐associated microRNAs
  publication-title: International Review of Cell and Molecular Biology
– volume: 137
  start-page: 436
  year: 2016
  end-page: 445
  article-title: miR‐186 is decreased in aged brain and suppresses BACE1 expression
  publication-title: Journal of Neurochemistry
– volume: 478
  start-page: 852
  year: 2016
  end-page: 857
  article-title: miR‐106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer's disease
  publication-title: Biochemical and Biophysical Research Communications
– volume: 17
  start-page: 34
  year: 2014
  end-page: 42
  article-title: Non‐coding RNA regulation of synaptic plasticity and memory: Implications for aging
  publication-title: Ageing Research Reviews
– volume: 17
  start-page: 205
  year: 2016
  end-page: 211
  article-title: The biogenesis and emerging roles of circular RNAs
  publication-title: Nature Reviews. Molecular Cell Biology
– volume: 45
  start-page: 805
  year: 2017
  end-page: 812
  article-title: Long noncoding RNAs: Lincs between human health and disease
  publication-title: Biochemical Society Transactions
– volume: 2
  start-page: a006288
  year: 2012
  end-page: a006288
  article-title: Physiological functions of APP family proteins
  publication-title: Cold Spring Harbor Perspectives in Medicine
– volume: 6
  start-page: 40
  year: 2015
  article-title: The emerging role of microRNAs in Alzheimer's disease
  publication-title: Frontiers in Physiology
– volume: 4
  year: 2013
  article-title: Circular RNA (circRNA) in Alzheimer's disease (AD)
  publication-title: Frontiers in Genetics
– volume: 8
  start-page: 663
  year: 2007
  end-page: 672
  article-title: Tau‐mediated neurodegeneration in Alzheimer's disease and related disorders
  publication-title: Nature Reviews. Neuroscience
– volume: 127
  start-page: 739
  year: 2013
  end-page: 749
  article-title: Alternative polyadenylation and miR‐34 family members regulate tau expression
  publication-title: Journal of Neurochemistry
– volume: 33
  start-page: 522
  year: 2012
  end-page: 534
  article-title: MicroRNA‐16 targets amyloid precursor protein to potentially modulate Alzheimer's‐associated pathogenesis in SAMP8 mice
  publication-title: Neurobiology of Aging
– volume: 30
  start-page: 106
  year: 2005
  end-page: 114
  article-title: siRNA and miRNA: An insight into RISCs
  publication-title: Trends in Biochemical Sciences
– volume: 36
  start-page: 1474
  year: 2017
  end-page: 1492
  article-title: Brain metabolism in health, aging, and neurodegeneration
  publication-title: The EMBO Journal
– volume: 60
  start-page: 1825
  year: 2011
  end-page: 1831
  article-title: MicroRNAs in beta‐cell biology, insulin resistance, diabetes and its complications
  publication-title: Diabetes
– start-page: 3723
  year: 2013
  end-page: 3730
  article-title: Posttranscriptional gene regulation by long noncoding RNA
  publication-title: Journal of Molecular Biology
– volume: 23
  start-page: 30
  year: 2013
  end-page: 36
  article-title: MicroRNAs and neurodegeneration: Role and impact
  publication-title: Trends in Cell Biology
– volume: 40
  start-page: 205
  year: 2010
  end-page: 215
  article-title: MicroRNA functions in stress responses
  publication-title: Molecular Cell
– volume: 14
  start-page: 723
  year: 2008
  end-page: 730
  article-title: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed‐forward regulation of beta‐secretase
  publication-title: Nature Medicine
– volume: 32
  start-page: 232
  year: 2008
  end-page: 246
  article-title: Kcnq1ot1 antisense noncoding RNA mediates lineage‐specific transcriptional silencing through chromatin‐level regulation
  publication-title: Molecular Cell
– volume: 10
  start-page: 2905
  year: 1999
  end-page: 2918
  article-title: Rad18 is required for DNA repair and checkpoint responses in fission yeast
  publication-title: Molecular Biology of the Cell
– volume: 9
  start-page: 702
  year: 2010
  end-page: 716
  article-title: Alzheimer's disease: Clinical trials and drug development
  publication-title: Lancet Neurology
– volume: 13
  start-page: 217
  year: 2011
  end-page: 222
  article-title: Brain‐derived neurotrophic factor and Alzheimer's disease: Physiopathology and beyond
  publication-title: NeuroMolecular Medicine
– volume: 83
  start-page: 186
  year: 2015
  end-page: 191
  article-title: Molecular mechanisms linking amyloid β toxicity and tau hyperphosphorylation in Alzheimer′s disease
  publication-title: Free Radical Biology & Medicine
– volume: 105
  start-page: 6415
  year: 2008
  end-page: 6420
  article-title: Loss of microRNA cluster miR‐29a/b‐1 in sporadic Alzheimer's disease correlates with increased BACE1/beta‐secretase expression
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 36
  start-page: 2473
  year: 2017
  end-page: 2487
  article-title: APP mouse models for Alzheimer's disease preclinical studies
  publication-title: The EMBO Journal
– volume: 68
  start-page: 613
  year: 2007
  end-page: 618
  article-title: A high‐density whole‐genome association study reveals that APOE is the major susceptibility gene for sporadic late‐onset Alzheimer's disease
  publication-title: The Journal of Clinical Psychiatry
– volume: 9
  start-page: 106
  year: 2013
  end-page: 118
  article-title: Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy
  publication-title: Nature Reviews. Neurology
– volume: 6
  start-page: 420
  year: 2010
  end-page: 424
  article-title: Alzheimer's disease, a multifactorial disorder seeking multitherapies
  publication-title: Alzheimer's and Dementia
– volume: 30
  start-page: 453
  year: 2012
  end-page: 459
  article-title: Inhibition of natural antisense transcripts in vivo results in gene‐specific transcriptional upregulation
  publication-title: Nature Biotechnology
– volume: 6
  start-page: 424
  year: 2013
  end-page: 433
  article-title: An intronic ncRNA‐dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post‐mortem Alzheimer's disease brain samples
  publication-title: Disease Models & Mechanisms
– volume: 45
  start-page: 837
  year: 2015
  end-page: 849
  article-title: Distinct expression of long non‐coding RNAs in an Alzheimer's disease model
  publication-title: Journal of Alzheimer's Disease
– volume: 75
  start-page: 1039
  year: 1993
  end-page: 1042
  article-title: Cellular processing of beta‐amyloid precursor protein and the genesis of amyloid beta‐peptide
  publication-title: Cell
– volume: 21
  start-page: 695
  year: 2015
  end-page: 696
  article-title: Gene expression regulation: Lessons from noncoding RNAs
  publication-title: RNA
– volume: 235
  start-page: 447
  year: 2012
  end-page: 454
  article-title: MicroRNA networks surrounding APP and amyloid‐β metabolism‐‐implications for Alzheimer's disease
  publication-title: Experimental Neurology
– start-page: 2062384
  year: 2017
  article-title: Long noncoding RNAs and RNA‐binding proteins in oxidative stress, cellular senescence, and age‐related diseases
  publication-title: Oxidative Medicine and Cellular Longevity
– volume: 8
  start-page: 746
  year: 2017
  end-page: 757
  article-title: PIWI family emerging as a decisive factor of cell fate: An overview
  publication-title: European Journal of Cell Biology
– volume: 116
  start-page: 240
  year: 2011
  end-page: 247
  article-title: In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs
  publication-title: Journal of Neurochemistry
– volume: 1
  start-page: 43
  year: 2016
  end-page: 50
  article-title: Long non‐coding RNAs: Mechanism of action and functional utility
  publication-title: Non‐coding RNA Research
– volume: 3
  start-page: 327
  year: 2013
  article-title: Studying micro RNA function and dysfunction in Alzheimer's disease
  publication-title: Frontiers in Genetics
– volume: 8
  start-page: 39
  year: 2007
  article-title: A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains
  publication-title: BMC Genomics
– volume: 71
  start-page: 251
  year: 2009
  end-page: 256
  article-title: Transferrin‐ and transferrin‐receptor‐antibody‐modified nanoparticles enable drug delivery across the blood‐brain barrier (BBB)
  publication-title: European Journal of Pharmaceutics and Biopharmaceutics
– volume: 252
  start-page: 559
  year: 2005
  end-page: 563
  article-title: Volume cerebral blood flow reduction in pre‐clinical stage of Alzheimer disease: Evidence from an ultrasonographic study
  publication-title: Journal of Neurology
– volume: 156
  start-page: 1
  year: 2017
  end-page: 68
  article-title: Linking deregulation of non‐coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review
  publication-title: Progress in Neurobiology
– volume: 284
  start-page: 1096
  year: 2017
  end-page: 1109
  article-title: The circular RNA ciRS‐7 promotes APP and BACE1 degradation in an NF‐κB‐dependent manner
  publication-title: The FEBS Journal
– volume: 6
  start-page: 8474
  year: 2015
  end-page: 8490
  article-title: MicroRNAs in apoptosis, autophagy and necroptosis
  publication-title: Oncotarget
– volume: 18
  start-page: 3016
  year: 2004
  end-page: 3027
  article-title: The Drosha‐DGCR8 complex in primary microRNA processing
  publication-title: Genes & Development
– volume: 24
  start-page: 1733
  year: 2007
  end-page: 1744
  article-title: Drug targeting to the brain
  publication-title: Pharmaceutical Research
– volume: 24
  start-page: 6721
  year: 2015
  end-page: 6735
  article-title: miR‐132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo
  publication-title: Human Molecular Genetics
– volume: 24
  start-page: 97
  year: 2015
  end-page: 103
  article-title: Small molecule chemical probes of microRNA function
  publication-title: Current Opinion in Chemical Biology
– volume: 143
  start-page: 1838
  year: 2016
  end-page: 1847
  article-title: Circular RNAs: Analysis, expression and potential functions
  publication-title: Development
– volume: 209
  start-page: 94
  year: 2012
  end-page: 105
  article-title: The miR‐124 regulates the expression of BACE1/β‐secretase correlated with cell death in Alzheimer's disease
  publication-title: Toxicology Letters
– volume: 15
  start-page: 423
  year: 2014
  end-page: 437
  article-title: The rise of regulatory RNA
  publication-title: Nature Reviews. Genetics
– volume: 11
  start-page: 14
  year: 2010
  article-title: Long noncoding RNAs in neuronal‐glial fate specification and oligodendrocyte lineage maturation
  publication-title: BMC Neuroscience
– volume: 16
  start-page: 848
  year: 2013
  end-page: 850
  article-title: CD33 Alzheimer's disease locus: Altered monocyte function and amyloid biology
  publication-title: Nature Neuroscience
– volume: 31
  start-page: 14820
  year: 2011
  end-page: 14830
  article-title: MicroRNA‐137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer's disease
  publication-title: The Journal of Neuroscience
– volume: 113
  start-page: E1881
  year: 2016
  end-page: E1889
  article-title: Re‐evaluation of the roles of DROSHA, export in 5, and DICER in microRNA biogenesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 21
  start-page: 75
  year: 2010
  end-page: 79
  article-title: MiR‐107 is reduced in Alzheimer's disease brain neocortex: Validation study
  publication-title: Journal of Alzheimer's Disease
– volume: 8
  start-page: 427
  year: 2014
  article-title: The γ‐secretase complex: From structure to function
  publication-title: Frontiers in Cellular Neuroscience
– volume: 24
  start-page: 15
  year: 2011
  end-page: 24
  article-title: Homeostatic disinhibition in the aging brain and Alzheimer's disease
  publication-title: Journal of Alzheimer's Disease
– volume: 7
  start-page: 2863
  year: 2017
  end-page: 2877
  article-title: Silencing of circular RNA‐ZNF609 ameliorates vascular endothelial dysfunction
  publication-title: Theranostics
– volume: 33
  start-page: 1667
  year: 2014
  end-page: 1680
  article-title: MicroRNA‐125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease
  publication-title: The EMBO Journal
– volume: 225
  start-page: 85
  year: 2010
  end-page: 93
  article-title: The role of low‐density receptor‐related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1
  publication-title: Experimental Neurology
– volume: 149
  start-page: 693
  year: 2012
  end-page: 707
  article-title: A role for neuronal piRNAs in the epigenetic control of memory‐related synaptic plasticity
  publication-title: Cell
– volume: 6
  start-page: 851
  year: 2014
  end-page: 864
  article-title: Development of microRNA therapeutics is coming of age
  publication-title: EMBO Molecular Medicine
– volume: 567
  start-page: 27
  year: 2004
  end-page: 34
  article-title: Employment opportunities for non‐coding RNAs
  publication-title: FEBS Letters
– volume: 8
  start-page: 453
  issue: 32
  year: 2014
  end-page: 461
  article-title: Detecting and characterizing circular RNAs
  publication-title: Nature Biotechnology
– volume: 7
  start-page: 3143
  year: 2008
  end-page: 3148
  article-title: Control of cell proliferation pathways by microRNAs
  publication-title: Cell Cycle
– volume: 15
  start-page: 177
  year: 2017
  end-page: 186
  article-title: Transcriptional and post‐transcriptional gene regulation by long non‐coding RNA
  publication-title: Genomics, Proteomics & Bioinformatics
– volume: 34
  start-page: 14919
  year: 2014
  end-page: 14933
  article-title: Synaptic and cognitive improvements by inhibition of 2‐AG metabolism are through upregulation of microRNA‐188‐3p in a mouse model of Alzheimer's disease
  publication-title: The Journal of Neuroscience
– volume: 23
  start-page: 3674
  year: 2009
  end-page: 3681
  article-title: Tetraspanin12 regulates ADAM10‐dependent cleavage of amyloid precursor protein
  publication-title: The FASEB Journal
– volume: 6
  start-page: 70
  year: 2011
  article-title: Alzheimer‐specific variants in the 3'UTR of amyloid precursor protein affect microRNA function
  publication-title: Molecular Neurodegeneration
– volume: 17
  start-page: 268
  issue: Suppl 7, S7
  year: 2016
  article-title: Alzheimer's disease neuroimaging initiative. A novel approach for multi‐SNP GWAS and its application in Alzheimer's disease
  publication-title: BMC Bioinformatics
– volume: 78
  start-page: 221
  year: 2013
  end-page: 230
  article-title: Molecular functions of small regulatory noncoding RNA
  publication-title: Biochemistry (Mosc)
– volume: 7
  start-page: 1401
  year: 2014
  end-page: 1409
  article-title: HuD regulates coding and noncoding RNA to induce APP→Aβ processing
  publication-title: Cell Reports
– volume: 46
  start-page: 282
  year: 2009
  end-page: 301
  article-title: The structure and function of Alzheimer's gamma secretase enzyme complex
  publication-title: Critical Reviews in Clinical Laboratory Sciences
– volume: 12
  start-page: 51
  year: 2017
  article-title: Dissecting the role of non‐coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer's disease
  publication-title: Molecular Neurodegeneration
– volume: 10
  start-page: 185
  year: 2004
  end-page: 191
  article-title: Exportin 5 is a RanGTP‐dependent dsRNA‐binding protein that mediates nuclear export of pre‐miRNAs
  publication-title: RNA
– volume: 113
  start-page: 1384
  year: 2004
  end-page: 1387
  article-title: Amyloid at the cutting edge: Activation of alpha‐secretase prevents amyloidogenesis in an Alzheimer disease mouse model
  publication-title: The Journal of Clinical Investigation
– volume: 12
  start-page: 3081
  year: 2015
  end-page: 3088
  article-title: MicroRNA‐29c targets β‐site amyloid precursor protein‐cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo
  publication-title: Molecular Medicine Reports
– volume: 238
  start-page: 42
  year: 2016
  end-page: 51
  article-title: Circular RNAs are miRNA sponges and can be used as a new class of biomarker
  publication-title: Journal of Biotechnology
– volume: 13
  start-page: 565
  year: 2017
  end-page: 576
  article-title: Small RNA sequencing revealed dysregulated piRNAs in Alzheimer's disease and their probable role in pathogenesis
  publication-title: Molecular BioSystems
– volume: 33
  start-page: 3989
  year: 2013
  end-page: 4001
  article-title: MicroRNA‐195 protects against dementia induced by chronic brain hypoperfusion via its anti‐amyloidogenic effect in rats
  publication-title: The Journal of Neuroscience
– volume: 21
  start-page: 172
  year: 2015
  end-page: 179
  article-title: Efficient backsplicing produces translatable circular mRNAs
  publication-title: RNA
– volume: 51
  start-page: 909
  year: 2015
  end-page: 918
  article-title: The role of SORL1 in Alzheimer's disease
  publication-title: Molecular Neurobiology
– volume: 8
  start-page: 37
  year: 2014
  article-title: A lentiviral sponge for miR‐101 regulates RanBP9 expression and amyloid precursor protein metabolism in hippocampal neurons
  publication-title: Frontiers in Cellular Neuroscience
– volume: 365
  start-page: 141
  year: 2015
  end-page: 148
  article-title: Circular RNA: A new star of noncoding RNAs
  publication-title: Cancer Letters
– volume: 10
  start-page: 126
  year: 2009
  end-page: 139
  article-title: Biogenesis of small RNAs in animals
  publication-title: Nature Reviews. Molecular Cell Biology
– volume: 45
  start-page: 1452
  year: 2013
  end-page: 1458
  article-title: Meta‐analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease
  publication-title: Nature Genetics
– volume: 66
  start-page: 9
  year: 2017
  end-page: 21
  article-title: Translation of circRNAs
  publication-title: Molecular Cell
– volume: 31
  start-page: 5409
  issue: 12
  year: 2017
  end-page: 5418
  article-title: Amyloid‐β and islet amyloid pathologies link Alzheimer disease and type 2 diabetes in a transgenic model
  publication-title: FASEB Journal
– volume: 6
  start-page: 19946
  year: 2016
  article-title: Recombinant pre‐miR‐29b for Alzheimer's disease therapeutics
  publication-title: Scientific Reports
– volume: 7
  start-page: 38999
  year: 2016
  end-page: 39016
  article-title: Alzheimer disease research in the 21st century: Past and current failures, new perspectives and funding priorities
  publication-title: Oncotarget
– volume: 8
  start-page: 447
  year: 1998
  end-page: 453
  article-title: The cell biology of beta‐amyloid precursor protein and presenilin in Alzheimer's disease
  publication-title: Trends in Cell Biology
– volume: 36
  start-page: 1305
  year: 2016
  end-page: 1315
  article-title: Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism
  publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology
– volume: 9
  start-page: 287
  year: 2014
  end-page: 314
  article-title: MicroRNAs in cancer
  publication-title: Annual Review of Pathology
– volume: 35
  start-page: 14717
  year: 2015
  end-page: 14726
  article-title: microRNA‐33 regulates ApoE lipidation and amyloid‐β metabolism in the brain
  publication-title: The Journal of Neuroscience
– volume: 29
  start-page: 452
  year: 2016
  end-page: 463
  article-title: Long noncoding RNAs in cancer pathways
  publication-title: Cancer Cell
– volume: 13
  start-page: 35
  year: 2012
  article-title: Computational identification and experimental validation of microRNAs binding to the Alzheimer‐related gene ADAM10
  publication-title: BMC Medical Genetics
– volume: 9
  start-page: 1759091417719201
  year: 2017
  article-title: Peripheral inflammation, Apolipoprotein E4, and amyloid‐β interact to induce cognitive and cerebrovascular dysfunction
  publication-title: ASN Neuro
– volume: 78
  start-page: 631
  year: 2013
  end-page: 643
  article-title: Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta
  publication-title: Neuron
– volume: 11
  start-page: 967
  year: 2015
  end-page: 976
  article-title: Antisense RNA controls LRP1 sense transcript expression through interaction with a chromatin‐associated protein, HMGB2
  publication-title: Cell Reports
– volume: S0006‐3223
  start-page: 31358
  issue: 17
  year: 2017
  end-page: 31356
  article-title: Apolipoprotein E, receptors, and modulation of Alzheimer's disease
  publication-title: Biological Psychiatry
– volume: 285
  start-page: 18344
  year: 2010
  end-page: 18351
  article-title: MicroRNA‐101 regulates amyloid precursor protein expression in hippocampal neurons
  publication-title: The Journal of Biological Chemistry
– volume: 5
  start-page: 89
  year: 2017
  article-title: Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial‐mediated innate immunity in Alzheimer's disease
  publication-title: Nature Genetics
– volume: 48
  start-page: 647
  year: 2015
  end-page: 665
  article-title: Transcriptomics profiling of Alzheimer's disease reveal neurovascular defects, altered amyloid‐β homeostasis, and deregulated expression of long noncoding RNAs
  publication-title: Journal of Alzheimer's Disease
– volume: 12
  start-page: 381
  year: 2017
  article-title: Circular RNA circMTO1 acts as the sponge of microRNA‐9 to suppress hepatocellular carcinoma progression
  publication-title: Hepatology
– volume: 36
  start-page: 2925
  year: 2015
  end-page: 2931
  article-title: Identification of Alzheimer's disease–associated long noncoding RNAs
  publication-title: Neurobiology of Aging
– volume: 88
  start-page: 596
  year: 2012
  end-page: 601
  article-title: MicroRNA‐195 downregulates Alzheimer's disease amyloid‐β production by targeting BACE1
  publication-title: Brain Research Bulletin
– volume: 4
  start-page: 9
  year: 2012
  article-title: Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal‐dominant Alzheimer's disease
  publication-title: Alzheimer's Research & Therapy
– volume: 19
  start-page: 4020
  year: 2015
  end-page: 4027
  article-title: MiR‐16 regulates cell death in Alzheimer's disease by targeting amyloid precursor protein
  publication-title: European Review for Medical and Pharmacological Sciences
– volume: 6
  start-page: 234
  year: 2016
  article-title: Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR‐136 “sponge” in human cartilage degradation
  publication-title: Scientific Reports
– volume: 254
  start-page: 247
  year: 1991
  end-page: 253
  article-title: A similar defect in UV‐induced mutagenesis conferred by the rad6 and rad18 mutations of Saccharomyces Cerevisiae
  publication-title: Mutation Research
– volume: 9
  start-page: 914
  year: 2015
  article-title: Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases
  publication-title: Frontiers in Cellular Neuroscience
– volume: 289
  start-page: 5184
  year: 2014
  end-page: 5198
  article-title: MicroRNA‐339‐5p down‐regulates protein expression of β‐site amyloid precursor protein‐cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects
  publication-title: The Journal of Biological Chemistry
– volume: 7
  start-page: 241
  year: 2016
  end-page: 252
  article-title: Alzheimer's disease: Presence and role of microRNAs
  publication-title: Biomolecular Concepts
– volume: 42
  start-page: 2672
  year: 2011
  end-page: 2713
  article-title: Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association
  publication-title: Stroke
– volume: 58
  start-page: 2239
  issue: 12
  year: 2017
  end-page: 2254
  article-title: Cellular cholesterol homeostasis in Alzheimer's disease
  publication-title: Journal of Lipid Research
– volume: 10
  start-page: 1275
  year: 2014
  end-page: 1281
  article-title: Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1‐AS expression
  publication-title: Molecular Medicine Reports
– volume: 598
  start-page: 66
  year: 2015
  end-page: 72
  article-title: Direct intracerebral delivery of a miR‐33 antisense oligonucleotide into mouse brain increases brain ABCA1 expression
  publication-title: Neuroscience Letters
– volume: 28
  start-page: 273
  year: 2017
  end-page: 284
  article-title: ApoE, ApoE receptors, and the synapse in Alzheimer's disease
  publication-title: Trends in Endocrinology and Metabolism
– volume: 55
  start-page: 115
  year: 2017
  end-page: 122
  article-title: Immune hyperreactivity of Aβ plaque‐associated microglia in Alzheimer's disease
  publication-title: Neurobiology of Aging
– volume: 9
  start-page: 2013
  year: 2015
  article-title: Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity
  publication-title: Frontiers in Neuroscience
– volume: 11
  start-page: 1301
  year: 2015
  end-page: 1312
  article-title: Epigenome‐wide analysis of piRNAs in gene‐specific DNA methylation
  publication-title: RNA Biology
– volume: 135
  start-page: 1
  year: 2015
  end-page: 20
  article-title: The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain
  publication-title: Progress in Neurobiology
– volume: 17
  start-page: 337
  year: 2009
  end-page: 341
  article-title: Texas Alzheimer's research consortium. Brain‐derived neurotrophic factor levels in Alzheimer's disease
  publication-title: Journal of Alzheimer's Disease
– volume: 11
  start-page: R56
  year: 2010
  article-title: Evidence for natural antisense transcript‐mediated inhibition of microRNA function
  publication-title: Genome Biology
– volume: 495
  start-page: 384
  year: 2013
  end-page: 388
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
– volume: 589
  start-page: 726
  year: 2015
  end-page: 729
  article-title: MicroRNA‐138 promotes tau phosphorylation by targeting retinoic acid receptor alpha
  publication-title: FEBS Letters
– volume: 288
  start-page: 13748
  year: 2013
  end-page: 13761
  article-title: MicroRNA‐144 is regulated by activator protein‐1 (AP‐1) and decreases expression of Alzheimer disease‐related a disintegrin and metalloprotease 10 (ADAM10)
  publication-title: The Journal of Biological Chemistry
– volume: 81
  start-page: 145
  year: 2012
  end-page: 166
  article-title: Genome regulation by long noncoding RNAs
  publication-title: Annual Review of Biochemistry
– volume: 181
  start-page: 1426
  year: 2012
  end-page: 1435
  article-title: The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin‐proteasome system
  publication-title: The American Journal of Pathology
– volume: 15
  start-page: 349
  year: 2017
  article-title: Rapid amyloid‐β oligomer and protofibril accumulation in traumatic brain injury
  publication-title: Brain Pathology
– volume: 7
  start-page: 116
  year: 2016
  article-title: Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer's disease (AD) is linked to deficits in a natural circular miRNA‐7 sponge (circRNA; ciRS‐7)
  publication-title: Genes (Basel)
– volume: 81
  start-page: 2103
  year: 2013
  end-page: 2106
  article-title: Reduced expression of hsa‐miR‐27a‐3p in CSF of patients with Alzheimer disease
  publication-title: Neurology
– volume: 17
  start-page: 47
  year: 2016
  end-page: 62
  article-title: Unique features of long non‐coding RNA biogenesis and function
  publication-title: Nature Reviews. Genetics
– volume: 88
  start-page: 468
  year: 2006
  end-page: 479
  article-title: Genomic profiling of cortical neurons following exposure to beta‐amyloid
  publication-title: Genomics
– volume: 28
  start-page: 1213
  year: 2008
  end-page: 1223
  article-title: The expression of microRNA miR‐107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta‐site amyloid precursor protein‐cleaving enzyme 1
  publication-title: The Journal of Neuroscience
– volume: 14
  start-page: 361
  year: 2017
  end-page: 369
  article-title: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1
  publication-title: RNA Biology
– volume: 54
  start-page: 2012
  year: 2016
  end-page: 2021
  article-title: The role of long noncoding RNAs in neurodegenerative diseases
  publication-title: Molecular Neurobiology
– volume: 63
  start-page: 362
  year: 2016
  end-page: 369
  article-title: MicroRNA‐155 deletion reduces anxiety‐ and depressive‐like behaviors in mice
  publication-title: Psychoneuroendocrinology
– volume: 83
  start-page: 142
  year: 2015
  end-page: 155
  article-title: Noncoding RNA in age‐related cardiovascular diseases
  publication-title: Journal of Molecular and Cellular Cardiology
– volume: 7
  start-page: 67
  year: 2014
  article-title: MicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms
  publication-title: Frontiers in Molecular Neuroscience
– volume: 14
  start-page: 16010
  year: 2013
  end-page: 16039
  article-title: Non‐coding RNAs: Multi‐tasking molecules in the cell
  publication-title: International Journal of Molecular Sciences
– ident: e_1_2_9_58_1
  doi: 10.1016/j.celrep.2014.04.050
– ident: e_1_2_9_66_1
  doi: 10.1042/BST20160376
– volume: 0006
  start-page: 31358
  issue: 17
  year: 2017
  ident: e_1_2_9_150_1
  article-title: Apolipoprotein E, receptors, and modulation of Alzheimer's disease
  publication-title: Biological Psychiatry
– ident: e_1_2_9_24_1
  doi: 10.4088/JCP.v68n0419
– ident: e_1_2_9_124_1
  doi: 10.18632/oncotarget.3523
– ident: e_1_2_9_11_1
  doi: 10.1515/bmc-2016-0014
– ident: e_1_2_9_12_1
  doi: 10.1016/j.ncrna.2016.11.002
– ident: e_1_2_9_138_1
  doi: 10.1186/alzrt107
– ident: e_1_2_9_6_1
  doi: 10.1186/1471-2350-13-35
– ident: e_1_2_9_137_1
  doi: 10.1261/rna.048272.114
– ident: e_1_2_9_48_1
  doi: 10.1038/nature11993
– ident: e_1_2_9_113_1
  doi: 10.1039/C6MB00699J
– ident: e_1_2_9_38_1
  doi: 10.1080/15476286.2014.996091
– ident: e_1_2_9_115_1
  doi: 10.1212/01.wnl.0000437306.37850.22
– ident: e_1_2_9_68_1
  doi: 10.1016/j.tem.2016.12.001
– ident: e_1_2_9_152_1
  doi: 10.1016/j.neurobiolaging.2015.07.015
– ident: e_1_2_9_20_1
  doi: 10.1038/nrm.2015.32
– ident: e_1_2_9_149_1
  doi: 10.3389/fncel.2014.00427
– ident: e_1_2_9_122_1
  doi: 10.1111/j.1471-4159.2010.07097.x
– ident: e_1_2_9_144_1
  doi: 10.1007/s12035-014-8742-5
– ident: e_1_2_9_57_1
  doi: 10.1016/j.lfs.2017.05.023
– ident: e_1_2_9_131_1
  doi: 10.1091/mbc.10.9.2905
– ident: e_1_2_9_67_1
  doi: 10.1038/ng.2802
– ident: e_1_2_9_106_1
  doi: 10.1038/srep19946
– ident: e_1_2_9_119_1
  doi: 10.1016/S0962-8924(98)01363-4
– ident: e_1_2_9_136_1
  doi: 10.1016/j.febslet.2015.02.001
– ident: e_1_2_9_15_1
  doi: 10.1038/nn.3435
– ident: e_1_2_9_79_1
  doi: 10.1016/j.freeradbiomed.2015.02.028
– ident: e_1_2_9_97_1
  doi: 10.1016/bs.ircmb.2017.03.008
– volume: 15
  start-page: 349
  year: 2017
  ident: e_1_2_9_4_1
  article-title: Rapid amyloid‐β oligomer and protofibril accumulation in traumatic brain injury
  publication-title: Brain Pathology
– ident: e_1_2_9_84_1
  doi: 10.1007/s00415-005-0689-z
– ident: e_1_2_9_102_1
  doi: 10.1016/j.ygeno.2006.06.007
– ident: e_1_2_9_63_1
  doi: 10.1073/pnas.1602532113
– ident: e_1_2_9_141_1
  doi: 10.1016/j.celrep.2015.04.011
– ident: e_1_2_9_108_1
  doi: 10.1016/j.ejcb.2017.09.004
– ident: e_1_2_9_41_1
  doi: 10.3390/ijms140816010
– ident: e_1_2_9_110_1
  doi: 10.1038/nrg.2015.10
– ident: e_1_2_9_49_1
  doi: 10.1073/pnas.0710263105
– ident: e_1_2_9_56_1
  doi: 10.1038/nbt.2890
– ident: e_1_2_9_19_1
  doi: 10.1194/jlr.R075630
– ident: e_1_2_9_123_1
  doi: 10.1093/hmg/ddv377
– ident: e_1_2_9_127_1
  doi: 10.1016/j.tibs.2004.12.007
– ident: e_1_2_9_9_1
  doi: 10.3389/fncel.2014.00037
– ident: e_1_2_9_69_1
  doi: 10.3233/JAD-142919
– ident: e_1_2_9_32_1
  doi: 10.1038/nm1784
– ident: e_1_2_9_129_1
  doi: 10.15252/emmm.201100899
– ident: e_1_2_9_7_1
  doi: 10.1038/nrn2194
– ident: e_1_2_9_33_1
  doi: 10.1186/gb-2010-11-5-r56
– ident: e_1_2_9_14_1
  doi: 10.1261/rna.5167604
– ident: e_1_2_9_55_1
  doi: 10.1016/j.neulet.2015.05.007
– ident: e_1_2_9_47_1
  doi: 10.1101/gad.1262504
– ident: e_1_2_9_95_1
  doi: 10.1038/nrg3722
– ident: e_1_2_9_91_1
  doi: 10.1261/rna.050815.115
– ident: e_1_2_9_70_1
  doi: 10.1016/j.molcel.2017.02.017
– ident: e_1_2_9_73_1
  doi: 10.7150/thno.19353
– ident: e_1_2_9_76_1
  doi: 10.3892/mmr.2014.2351
– ident: e_1_2_9_65_1
  doi: 10.1016/j.jbiotec.2016.09.011
– ident: e_1_2_9_51_1
  doi: 10.3389/fnmol.2017.00022
– ident: e_1_2_9_139_1
  doi: 10.1096/fj.201700431R
– ident: e_1_2_9_36_1
  doi: 10.2337/db11-0171
– ident: e_1_2_9_77_1
  doi: 10.1016/j.neurobiolaging.2010.04.034
– ident: e_1_2_9_118_1
  doi: 10.1016/j.expneurol.2011.11.013
– ident: e_1_2_9_85_1
  doi: 10.3233/JAD-150398
– ident: e_1_2_9_13_1
  doi: 10.1186/s12859-016-1093-7
– ident: e_1_2_9_28_1
  doi: 10.1111/jnc.12437
– ident: e_1_2_9_140_1
  doi: 10.1096/fj.09-133462
– ident: e_1_2_9_3_1
  doi: 10.1016/j.tcb.2012.08.013
– ident: e_1_2_9_107_1
  doi: 10.18632/oncotarget.9175
– ident: e_1_2_9_104_1
  doi: 10.1111/j.1460-9568.2007.05864.x
– ident: e_1_2_9_42_1
  doi: 10.1161/STR.0b013e3182299496
– ident: e_1_2_9_52_1
  doi: 10.1134/S0006297913030024
– ident: e_1_2_9_72_1
  doi: 10.1172/JCI21746
– ident: e_1_2_9_125_1
  doi: 10.1111/jnc.13212
– ident: e_1_2_9_87_1
  doi: 10.4161/rna.8.4.15584
– ident: e_1_2_9_88_1
  doi: 10.1016/S1474-4422(10)70119-8
– ident: e_1_2_9_39_1
  doi: 10.1523/JNEUROSCI.3883-11.2011
– ident: e_1_2_9_60_1
  doi: 10.1111/jnc.13507
– ident: e_1_2_9_2_1
  doi: 10.1080/15476286.2017.1279788
– ident: e_1_2_9_90_1
  doi: 10.1186/1471-2202-11-14
– ident: e_1_2_9_80_1
  doi: 10.1074/jbc.M113.518241
– ident: e_1_2_9_26_1
  doi: 10.3389/fnmol.2014.00067
– ident: e_1_2_9_98_1
  doi: 10.3233/JAD-2010-091603
– ident: e_1_2_9_135_1
  doi: 10.1523/JNEUROSCI.5065-07.2008
– ident: e_1_2_9_40_1
  doi: 10.3233/JAD-2010-101674
– ident: e_1_2_9_109_1
  doi: 10.1016/j.canlet.2015.06.003
– ident: e_1_2_9_146_1
  doi: 10.1016/j.jmb.2012.11.024
– ident: e_1_2_9_74_1
  doi: 10.1038/nrneurol.2012.263
– ident: e_1_2_9_116_1
  doi: 10.15252/embj.201797397
– ident: e_1_2_9_50_1
  doi: 10.1093/hmg/ddq311
– ident: e_1_2_9_142_1
  doi: 10.3892/mmr.2015.3728
– ident: e_1_2_9_96_1
  doi: 10.1101/cshperspect.a006288
– volume: 12
  start-page: 381
  year: 2017
  ident: e_1_2_9_46_1
  article-title: Circular RNA circMTO1 acts as the sponge of microRNA‐9 to suppress hepatocellular carcinoma progression
  publication-title: Hepatology
– volume: 6
  start-page: 234
  year: 2016
  ident: e_1_2_9_75_1
  article-title: Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR‐136 “sponge” in human cartilage degradation
  publication-title: Scientific Reports
– ident: e_1_2_9_17_1
  doi: 10.15252/embj.201695810
– ident: e_1_2_9_21_1
  doi: 10.1074/jbc.M112.381392
– ident: e_1_2_9_25_1
  doi: 10.1186/1750-1326-6-70
– ident: e_1_2_9_54_1
  doi: 10.1016/j.jalz.2010.04.006
– ident: e_1_2_9_134_1
  doi: 10.1007/s12035-016-9793-6
– ident: e_1_2_9_35_1
  doi: 10.3389/fphys.2015.00040
– ident: e_1_2_9_61_1
  doi: 10.1523/JNEUROSCI.2053-15.2015
– ident: e_1_2_9_145_1
  doi: 10.1016/j.neurobiolaging.2017.03.021
– ident: e_1_2_9_37_1
  doi: 10.1016/j.psyneuen.2015.10.019
– ident: e_1_2_9_143_1
  doi: 10.1038/cr.2017.31
– ident: e_1_2_9_29_1
  doi: 10.1007/s12017-011-8154-x
– ident: e_1_2_9_132_1
  doi: 10.1074/jbc.M110.112664
– ident: e_1_2_9_5_1
  doi: 10.1523/JNEUROSCI.1997-12.2013
– ident: e_1_2_9_94_1
  doi: 10.1016/j.febslet.2004.03.117
– ident: e_1_2_9_30_1
  doi: 10.1016/j.gpb.2016.12.005
– ident: e_1_2_9_128_1
  doi: 10.1016/j.ejpb.2008.08.021
– ident: e_1_2_9_23_1
  doi: 10.1242/dmm.009761
– volume: 5
  start-page: 89
  year: 2017
  ident: e_1_2_9_121_1
  article-title: Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial‐mediated innate immunity in Alzheimer's disease
  publication-title: Nature Genetics
– ident: e_1_2_9_130_1
  doi: 10.1016/j.cbpa.2014.10.024
– ident: e_1_2_9_103_1
  doi: 10.1007/s11095-007-9324-2
– ident: e_1_2_9_71_1
  doi: 10.1016/j.molcel.2010.09.027
– ident: e_1_2_9_45_1
  doi: 10.1016/0092-8674(93)90312-E
– ident: e_1_2_9_31_1
  doi: 10.1016/j.arr.2014.03.004
– ident: e_1_2_9_112_1
  doi: 10.1146/annurev-biochem-051410-092902
– ident: e_1_2_9_148_1
  doi: 10.1523/JNEUROSCI.1165-14.2014
– ident: e_1_2_9_78_1
  doi: 10.1016/j.bbrc.2016.08.037
– ident: e_1_2_9_81_1
  doi: 10.3389/fgene.2013.00307
– ident: e_1_2_9_99_1
  doi: 10.3233/JAD-2009-1051
– ident: e_1_2_9_34_1
  doi: 10.1016/j.toxlet.2011.11.032
– ident: e_1_2_9_100_1
  doi: 10.1016/j.molcel.2017.02.021
– ident: e_1_2_9_117_1
  doi: 10.1016/j.ccell.2016.03.010
– ident: e_1_2_9_120_1
  doi: 10.1111/febs.14045
– ident: e_1_2_9_16_1
  doi: 10.4161/cc.7.20.6833
– ident: e_1_2_9_105_1
  doi: 10.1186/s13024-017-0191-y
– ident: e_1_2_9_8_1
  doi: 10.15252/embj.201387576
– ident: e_1_2_9_114_1
  doi: 10.1016/j.pneurobio.2015.10.003
– ident: e_1_2_9_151_1
  doi: 10.3390/genes7120116
– ident: e_1_2_9_18_1
  doi: 10.1016/0921-8777(91)90063-U
– ident: e_1_2_9_22_1
  doi: 10.3389/fncel.2015.00124
– ident: e_1_2_9_92_1
  doi: 10.1016/j.pneurobio.2017.03.004
– ident: e_1_2_9_101_1
  doi: 10.1016/j.molcel.2008.08.022
– ident: e_1_2_9_153_1
  doi: 10.1016/j.brainresbull.2012.05.018
– ident: e_1_2_9_44_1
  doi: 10.1016/j.neuron.2013.04.014
– ident: e_1_2_9_86_1
  doi: 10.1161/ATVBAHA.116.307023
– ident: e_1_2_9_43_1
  doi: 10.1016/j.yjmcc.2015.01.011
– ident: e_1_2_9_53_1
  doi: 10.1186/1471-2164-8-39
– start-page: 2062384
  year: 2017
  ident: e_1_2_9_59_1
  article-title: Long noncoding RNAs and RNA‐binding proteins in oxidative stress, cellular senescence, and age‐related diseases
  publication-title: Oxidative Medicine and Cellular Longevity
  doi: 10.1155/2017/2062384
– ident: e_1_2_9_93_1
  doi: 10.1038/nbt.2158
– ident: e_1_2_9_83_1
  doi: 10.3389/fnins.2015.00351
– volume: 19
  start-page: 4020
  year: 2015
  ident: e_1_2_9_147_1
  article-title: MiR‐16 regulates cell death in Alzheimer's disease by targeting amyloid precursor protein
  publication-title: European Review for Medical and Pharmacological Sciences
– ident: e_1_2_9_82_1
  doi: 10.3389/fgene.2012.00327
– ident: e_1_2_9_27_1
  doi: 10.1146/annurev-pathol-012513-104715
– ident: e_1_2_9_89_1
  doi: 10.1177/1759091417719201
– ident: e_1_2_9_10_1
  doi: 10.1242/dev.128074
– ident: e_1_2_9_126_1
  doi: 10.1016/j.ajpath.2012.06.033
– ident: e_1_2_9_133_1
  doi: 10.1016/j.expneurol.2010.05.017
– ident: e_1_2_9_62_1
  doi: 10.1038/nrm2632
– ident: e_1_2_9_64_1
  doi: 10.3109/10408360903335821
– ident: e_1_2_9_111_1
  doi: 10.1016/j.cell.2012.02.057
SSID ssj0000402711
Score 2.5580251
SecondaryResourceType review_article
Snippet Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to...
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1463
SubjectTerms Alzheimer Disease - genetics
Alzheimer's disease
amyloid plaques
Amyloid precursor protein
Animals
circRNA
Dementia disorders
Drug development
Gene expression
Geriatrics
Humans
lncRNA
miRNA
neurodegeneration
Neurodegenerative diseases
Neurofibrillary tangles
noncoding RNA
Pathogenesis
Post-transcription
posttranscriptional gene regulation
RNA, Untranslated
Senile plaques
Tau protein
Title Noncoding RNAs in Alzheimer's disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwrna.1463
https://www.ncbi.nlm.nih.gov/pubmed/29327503
https://www.proquest.com/docview/2002557629
https://www.proquest.com/docview/1989610572
https://pubmed.ncbi.nlm.nih.gov/PMC5847280
Volume 9
WOSCitedRecordID wos000425434400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1757-7012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402711
  issn: 1757-7004
  databaseCode: DRFUL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHbiwL2VTQGyXiBDHdSxOFVBxQBVCLL1FtuOISpCipgXB1zOTpIEKkJC4RfFkscfjebbHbwB2BVNBrLh040QpNwhi5ir0RK6ROuBcebZg4Lu7FK1W2G7LqzE4GZ6FKfghqgU3sox8vCYDVzo7-iQNfcWWJjtn4zBJh6qwS0-eXTdvL6slFuyfvsgz8KKPFC4RuQ-5hTz_qHp-1CN9g5nfoyW_otjcDTVn_1WBOZgp0afTKLrLPIzZdAEWGynOvJ_enH0njwfNF9oXYa_VTU2XXJtz3WpkTid1Go_vD7bzZHsHmVPu7CzBbfP85vTCLZMquAaxAWoiqStVD6002hcaLTqIPSa19rhlnMUJ06ihWOmE482ECy1RnaEIuRUMsYdgyzCRdlO7Co5iiAaxXHrMBrEwmhnj1X3pc32ceMbW4HDYsJEpGccp8cVjVHAl-xE1AU0-WA12KtHngmbjJ6GNoXai0tIySqOJsyIc0mUNtqtitBHa-FCp7Q6yiOLC6pTQ2K_BSqHM6isId4jiHl8uRtRcCRD_9mhJ2nnIebhph9kPPaxmrubffzy6Rz3RxdrfRddhGrFZWIS7bcBEvzewmzBlXvqdrLcF46IdbpUd_gO0_QN-
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BUoleeBa6PEPVApcIN47XscRlBV1RdRtVCFpuke04YiXIVhsegl_PTJINXVGkSr1EUTx52OPxfLYn3wB8lFyHqRbKTzOt_TBMua_RE_lWmVAIzVzFwPezL-M4urhQP6bgcPwvTMUP0Sy4kWWU4zUZOC1IHzyzht5jU5Oh82mYwWPEWjBzfNo77zdrLNhBA1mm4EUnKX1ich-TC7HgoLl_0iW9wJkvwyX_hLGlH-rN_18NFmCuxp9et-owizDl8iVY7uY4975-8Ha9MiK0XGpfhk_xMLdDcm7eadwtvEHuda8eL93g2o32Cq_e23kH570vZ0cnfp1WwbeIDlAXWUfrTuSUNYE0aNNhyrgyhgnHBU8zblBHqTaZwIuZkEahQiMZCSc5og_JV6CVD3P3HjzNEQ9iuWLcham0hlvLOoEKhPmcMevasD9u2cTWnOOU-uIqqdiSg4SagKYfvA0fGtHfFdHG34Q2xupJalsrKJEmzotwUFdt2GmK0Upo60PnbnhbJBQZ1qGUxkEbVittNm9BwEMk9_hwOaHnRoAYuCdL8sFlycRNe8xBxLCapZ5f__DkF-qJTtb-XXQbZk_OvveT_tf42zq8RaQWVcFvG9C6Gd26TXhj724GxWir7vdP-1sGfQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHF-2Veq3h7KdamWRrwZahDcRQRb28lSVM2cN1YvaC_3pO2qw4VBN9Kk16SL6fnS3L6HYAdRoQXCcrtKBbC9ryI2AI9ka249CgVjs4V-O6aLAj8hwd-NQLHg39hcn2IcsHNWEb2vTYGrntRfPipGvqKXW0MnYzCmEeR51dg7PS6cdss11hwgLosS8GLTpLZRsl9IC7kuIfl9cMu6RvP_B4u-ZXGZn6oMf2_FszAVME_rXo-YGZhRCdzMF9PcO7debP2rCwiNFtqn4fdoJuornFu1nVQT612YtUf31u63dH9_dQq9nYW4LZxdnNybhdpFWyF7ACxiGtC1HzNlXSZRJv2IodwKR2qCSVRTCRiFAkZUzwZUyY5Auozn2pGkH0wsgiVpJvoZbAEQT6I5dwh2ouYkkQpp-Zyl8qj2FG6CgeDng1VoTluUl88hrlashuaLjDTD1KF7bJqLxfa-KnS2gCesLC11CTSxHkRftR5FbbKYrQSs_UhEt19TkMTGVYzKY3dKizlaJZPQcJjRO7x5mwI57KCUeAeLknarUyJ2-wxu76Dzcxw_v3Fw3vEyRys_L3qJkxcnTbC5kVwuQqTSNT8PPZtDSpP_We9DuPq5amd9jeKYf8BmjAGAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncoding+RNAs+in+Alzheimer%E2%80%99s+Disease&rft.jtitle=Wiley+interdisciplinary+reviews.+RNA&rft.au=Idda%2C+M.+Laura&rft.au=Munk%2C+Rachel&rft.au=Abdelmohsen%2C+Kotb&rft.au=Gorospe%2C+Myriam&rft.date=2018-03-01&rft.issn=1757-7004&rft.eissn=1757-7012&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1002%2Fwrna.1463&rft_id=info%3Apmid%2F29327503&rft.externalDocID=PMC5847280
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-7004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-7004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-7004&client=summon