Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large‐scale multi‐sample study

Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain‐based disorders. However, some machine learning models have been criticized for requiring a large number of cases in each experimental group, and for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping Jg. 40; H. 3; S. 944 - 954
Hauptverfasser: Pinaya, Walter H. L., Mechelli, Andrea, Sato, João R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 15.02.2019
Schlagworte:
ISSN:1065-9471, 1097-0193, 1097-0193
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain‐based disorders. However, some machine learning models have been criticized for requiring a large number of cases in each experimental group, and for resembling a “black box” that provides little or no insight into the nature of the data. In this article, we propose an alternative conceptual and practical approach for investigating brain‐based disorders which aim to overcome these limitations. We used an artificial neural network known as “deep autoencoder” to create a normative model using structural magnetic resonance imaging data from 1,113 healthy people. We then used this model to estimate total and regional neuroanatomical deviation in individual patients with schizophrenia and autism spectrum disorder using two independent data sets (n = 263). We report that the model was able to generate different values of total neuroanatomical deviation for each disease under investigation relative to their control group (p < .005). Furthermore, the model revealed distinct patterns of neuroanatomical deviations for the two diseases, consistent with the existing neuroimaging literature. We conclude that the deep autoencoder provides a flexible and promising framework for assessing total and regional neuroanatomical deviations in neuropsychiatric populations.
AbstractList Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain‐based disorders. However, some machine learning models have been criticized for requiring a large number of cases in each experimental group, and for resembling a “black box” that provides little or no insight into the nature of the data. In this article, we propose an alternative conceptual and practical approach for investigating brain‐based disorders which aim to overcome these limitations. We used an artificial neural network known as “deep autoencoder” to create a normative model using structural magnetic resonance imaging data from 1,113 healthy people. We then used this model to estimate total and regional neuroanatomical deviation in individual patients with schizophrenia and autism spectrum disorder using two independent data sets (n = 263). We report that the model was able to generate different values of total neuroanatomical deviation for each disease under investigation relative to their control group (p < .005). Furthermore, the model revealed distinct patterns of neuroanatomical deviations for the two diseases, consistent with the existing neuroimaging literature. We conclude that the deep autoencoder provides a flexible and promising framework for assessing total and regional neuroanatomical deviations in neuropsychiatric populations.
Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain-based disorders. However, some machine learning models have been criticized for requiring a large number of cases in each experimental group, and for resembling a "black box" that provides little or no insight into the nature of the data. In this article, we propose an alternative conceptual and practical approach for investigating brain-based disorders which aim to overcome these limitations. We used an artificial neural network known as "deep autoencoder" to create a normative model using structural magnetic resonance imaging data from 1,113 healthy people. We then used this model to estimate total and regional neuroanatomical deviation in individual patients with schizophrenia and autism spectrum disorder using two independent data sets (n = 263). We report that the model was able to generate different values of total neuroanatomical deviation for each disease under investigation relative to their control group (p < .005). Furthermore, the model revealed distinct patterns of neuroanatomical deviations for the two diseases, consistent with the existing neuroimaging literature. We conclude that the deep autoencoder provides a flexible and promising framework for assessing total and regional neuroanatomical deviations in neuropsychiatric populations.Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain-based disorders. However, some machine learning models have been criticized for requiring a large number of cases in each experimental group, and for resembling a "black box" that provides little or no insight into the nature of the data. In this article, we propose an alternative conceptual and practical approach for investigating brain-based disorders which aim to overcome these limitations. We used an artificial neural network known as "deep autoencoder" to create a normative model using structural magnetic resonance imaging data from 1,113 healthy people. We then used this model to estimate total and regional neuroanatomical deviation in individual patients with schizophrenia and autism spectrum disorder using two independent data sets (n = 263). We report that the model was able to generate different values of total neuroanatomical deviation for each disease under investigation relative to their control group (p < .005). Furthermore, the model revealed distinct patterns of neuroanatomical deviations for the two diseases, consistent with the existing neuroimaging literature. We conclude that the deep autoencoder provides a flexible and promising framework for assessing total and regional neuroanatomical deviations in neuropsychiatric populations.
Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain‐based disorders. However, some machine learning models have been criticized for requiring a large number of cases in each experimental group, and for resembling a “black box” that provides little or no insight into the nature of the data. In this article, we propose an alternative conceptual and practical approach for investigating brain‐based disorders which aim to overcome these limitations. We used an artificial neural network known as “deep autoencoder” to create a normative model using structural magnetic resonance imaging data from 1,113 healthy people. We then used this model to estimate total and regional neuroanatomical deviation in individual patients with schizophrenia and autism spectrum disorder using two independent data sets ( n = 263). We report that the model was able to generate different values of total neuroanatomical deviation for each disease under investigation relative to their control group ( p < .005). Furthermore, the model revealed distinct patterns of neuroanatomical deviations for the two diseases, consistent with the existing neuroimaging literature. We conclude that the deep autoencoder provides a flexible and promising framework for assessing total and regional neuroanatomical deviations in neuropsychiatric populations.
Author Pinaya, Walter H. L.
Mechelli, Andrea
Sato, João R.
AuthorAffiliation 3 Department of Psychosis Studies Institute of Psychiatry, Psychology & Neuroscience, King's College London London UK
2 Center for Engineering, Modeling and Applied Social Sciences Universidade Federal do ABC São Bernardo do Campo SP Brazil
1 Center of Mathematics, Computing, and Cognition Universidade Federal do ABC São Bernardo do Campo SP Brazil
AuthorAffiliation_xml – name: 1 Center of Mathematics, Computing, and Cognition Universidade Federal do ABC São Bernardo do Campo SP Brazil
– name: 2 Center for Engineering, Modeling and Applied Social Sciences Universidade Federal do ABC São Bernardo do Campo SP Brazil
– name: 3 Department of Psychosis Studies Institute of Psychiatry, Psychology & Neuroscience, King's College London London UK
Author_xml – sequence: 1
  givenname: Walter H. L.
  orcidid: 0000-0003-3739-1087
  surname: Pinaya
  fullname: Pinaya, Walter H. L.
  email: walhugolp@gmail.com
  organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London
– sequence: 2
  givenname: Andrea
  surname: Mechelli
  fullname: Mechelli, Andrea
  organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London
– sequence: 3
  givenname: João R.
  surname: Sato
  fullname: Sato, João R.
  organization: Universidade Federal do ABC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30311316$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhi1URNuFAy-ALHGBw7a2k9g1B6S2AopUxIWeLduZ7LpK7GA7oNx65sQz8iQ4bKmgEpzsmfnm1_yaOUR7PnhA6CklR5QQdrw1wxGra1Y9QAeUSLEmVFZ7y583a1kLuo8OU7omhNKG0EdovyIVpRXlB-jbVXJ-g1uAEespB_A2tBATzgG7Fnx23Yy18SEOuscmaudxynGyeYolMeqcIfqES9rDFMOYZrt1OkdncetSiIvYK3yKex038OPme7K6BzxMfXZLpIexhClP7fwYPex0n-DJ7btCV2_ffDq_WF9-fPf-_PRybRsiqzWnhlkG3DByYoF0RhvRGWasqVknCBcWhDS6ayRnHNoKtDVEWNG0REjettUKvd7pjpMZoLXFZLGixugGHWcVtFN_V7zbqk34ongtGSWiCLy4FYjh8wQpq8ElC32vPYQpKUaplJRz3hT0-T30OkzRF3uF4s0JkbTsYoWe_TnR3Si_11SAlzvAxpBShO4OoUQtJ6DKCahfJ1DY43usdVlnFxYzrv9fx1fXw_xvaXVx9mHX8RO_kMiW
CitedBy_id crossref_primary_10_1007_s11042_024_18341_6
crossref_primary_10_1016_j_jbi_2025_104878
crossref_primary_10_1016_j_bspc_2024_106337
crossref_primary_10_1155_2022_9970363
crossref_primary_10_1016_j_clinph_2020_11_037
crossref_primary_10_1038_s41380_023_02334_2
crossref_primary_10_1162_imag_a_00084
crossref_primary_10_3390_brainsci12050615
crossref_primary_10_1016_j_jad_2024_01_177
crossref_primary_10_1038_s41398_025_03290_x
crossref_primary_10_3390_diagnostics11081402
crossref_primary_10_1177_25424823241290694
crossref_primary_10_2196_16669
crossref_primary_10_1016_j_compbiomed_2021_104949
crossref_primary_10_1038_s41398_020_0780_3
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_3390_diagnostics14232698
crossref_primary_10_18863_pgy_779987
crossref_primary_10_1016_j_jneumeth_2021_109271
crossref_primary_10_3389_fpsyt_2020_542394
crossref_primary_10_32604_cmc_2022_022028
crossref_primary_10_1007_s00330_021_08239_4
crossref_primary_10_1007_s11920_022_01399_0
crossref_primary_10_1007_s41870_024_01895_x
crossref_primary_10_1038_s41398_020_0798_6
crossref_primary_10_1371_journal_pcbi_1011613
crossref_primary_10_1016_j_biopsych_2018_11_011
crossref_primary_10_3389_fpsyt_2024_1395243
crossref_primary_10_1016_j_pscychresns_2025_111991
crossref_primary_10_1007_s13721_025_00557_7
crossref_primary_10_1038_s41598_023_33920_7
crossref_primary_10_1155_2021_5550914
crossref_primary_10_3389_fnins_2020_00779
crossref_primary_10_3389_fnins_2020_561186
crossref_primary_10_1007_s11042_022_13809_9
crossref_primary_10_1038_s41598_021_95098_0
crossref_primary_10_3389_fninf_2022_949926
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1016_j_jad_2024_05_136
crossref_primary_10_1016_j_artmed_2025_103074
crossref_primary_10_1002_alz_70143
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_3389_fpubh_2023_1110088
crossref_primary_10_1016_j_ymeth_2020_09_007
crossref_primary_10_1002_hbm_26098
crossref_primary_10_1371_journal_pone_0308329
crossref_primary_10_1016_j_ifacol_2019_12_411
crossref_primary_10_3389_fnins_2021_652987
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_1038_s41746_022_00631_8
crossref_primary_10_1007_s12539_024_00625_y
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1016_j_schres_2021_05_018
crossref_primary_10_1109_JBHI_2023_3304388
crossref_primary_10_3389_fpsyt_2023_1068397
crossref_primary_10_1007_s40489_021_00299_y
crossref_primary_10_1002_hbm_25756
crossref_primary_10_1016_j_artmed_2024_103063
crossref_primary_10_1038_s43588_021_00126_8
crossref_primary_10_1016_j_neuroimage_2023_120412
crossref_primary_10_1016_j_schres_2021_06_011
crossref_primary_10_1038_s41386_020_0767_z
crossref_primary_10_1109_ACCESS_2020_3016734
Cites_doi 10.1016/j.neuroimage.2015.05.018
10.1007/s10548-010-0168-4
10.1515/ijb-2015-0030
10.1002/hbm.23397
10.1016/j.neuroimage.2012.01.021
10.1038/nature14539
10.1111/acps.12718
10.1017/S1461145711000794
10.1016/j.pscychresns.2005.05.005
10.1136/jnnp.2010.239111
10.1214/ss/1032280214
10.1109/34.824819
10.1038/srep38897
10.1037/0033-2909.114.3.494
10.1016/S0920-9964(01)00163-3
10.1016/j.neuroimage.2013.05.041
10.2174/1573405054038726
10.1176/appi.ajp.2008.07101562
10.1016/j.neubiorev.2011.12.015
10.1109/ICASSP.2014.6853900
10.1016/j.biopsych.2015.12.023
10.1016/S0896-6273(02)00569-X
10.1016/j.eurpsy.2007.05.006
10.1016/j.neubiorev.2012.01.004
10.3389/fnins.2015.00379
10.1016/j.neuroimage.2011.06.042
10.3389/fpsyt.2016.00050
10.1016/j.jpsychores.2006.06.012
10.3389/fnins.2012.00178
10.1016/j.neubiorev.2017.01.002
10.1016/j.neuroimage.2012.03.079
10.1016/j.neuroimage.2014.12.006
10.1016/j.neuroimage.2009.12.047
10.1371/journal.pone.0175683
10.1007/BF00994018
10.1016/j.neuroimage.2006.01.021
10.1007/978-3-642-35289-8_3
10.1016/j.biopsych.2013.05.014
10.1016/j.neuroimage.2011.07.044
10.1002/hbm.21299
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2011.11.002
10.1007/s10548-015-0455-1
10.1016/j.biopsych.2011.07.014
10.1016/j.biopsych.2010.03.036
10.1007/s12021-014-9238-1
10.1002/mrdd.10079
10.1176/appi.ajp.162.12.2233
10.1001/jamapsychiatry.2013.265
10.1145/1390156.1390294
ContentType Journal Article
Copyright 2018 The Authors. published by Wiley Periodicals, Inc.
2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 The Authors. published by Wiley Periodicals, Inc.
– notice: 2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24423
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Technology Research Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Pinaya et al
EISSN 1097-0193
EndPage 954
ExternalDocumentID PMC6492107
30311316
10_1002_hbm_24423
HBM24423
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust, Grant/Award: 208519/Z/17/Z; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2013/05168‐7; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2013/10498‐6; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: Wellcome Trust
– fundername: Wellcome Trust, Grant/Award: 208519/Z/17/Z; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2013/05168-7; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2013/10498-6; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
– fundername: NIMH NIH HHS
  grantid: R01 MH084803
– fundername: NIMH NIH HHS
  grantid: U01 MH097435
– fundername: ;
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFPKN
AFRAH
AFZJQ
AGXDD
AHMBA
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
LW6
ID FETCH-LOGICAL-c5093-61b2c2e6b208ce0fbab7fb2bcb42f7067ce79baf59626ed3eacb07c75d0796dd3
IEDL.DBID 24P
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459789600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:52:06 EDT 2025
Thu Oct 02 10:21:58 EDT 2025
Sat Nov 29 14:37:43 EST 2025
Thu Apr 03 06:58:49 EDT 2025
Tue Nov 18 22:10:06 EST 2025
Sat Nov 29 02:24:39 EST 2025
Thu Sep 25 07:37:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords computational psychiatry
deep learning
structural MRI
deep autoencoder
schizophrenia
autism spectrum disorder
Language English
License Attribution
2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5093-61b2c2e6b208ce0fbab7fb2bcb42f7067ce79baf59626ed3eacb07c75d0796dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Wellcome Trust, Grant/Award: 208519/Z/17/Z; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2013/05168‐7; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2013/10498‐6; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ORCID 0000-0003-3739-1087
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24423
PMID 30311316
PQID 2165809130
PQPubID 996345
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492107
proquest_miscellaneous_2119916665
proquest_journals_2165809130
pubmed_primary_30311316
crossref_primary_10_1002_hbm_24423
crossref_citationtrail_10_1002_hbm_24423
wiley_primary_10_1002_hbm_24423_HBM24423
PublicationCentury 2000
PublicationDate February 15, 2019
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: February 15, 2019
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 61
2010; 11
2006; 31
2012; 7700
2005; 139
2013; 70
2011; 12
2001; 49
2012; 15
2011; 58
2015; 107
2012; 59
1995; 20
2017; 74
2006; 61
2010; 68
2017; 38
2011; 70
2003; 9
2008; 23
2011; 24
2016; 80
2012; 25
2010; 9
2012; 62
2015; 13
2015; 1
2015; 521
2011; 82
2000; 22
2002; 33
2016; 124
2008
2003
2012; 36
2015; 9
2008; 165
2017; 135
2012; 33
2016; 12
1996; 11
2016; 6
2016; 7
2005; 162
2017; 10
2017; 12
2013; 80
2017
2016
2005; 1
2014
1993; 114
2016; 29
2012; 6
2010; 50
2014; 75
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
Vincent P. (e_1_2_7_58_1) 2010; 11
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_6_1
Pedregosa F. (e_1_2_7_39_1) 2011; 12
e_1_2_7_8_1
e_1_2_7_18_1
Rozycki M. (e_1_2_7_44_1) 2017; 10
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
Xie J. (e_1_2_7_61_1) 2012; 25
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Bhalla M. (e_1_2_7_4_1) 2015; 1
References_xml – volume: 33
  start-page: 1470
  year: 2012
  end-page: 1489
  article-title: Brain structure anomalies in autism spectrum disorder—A meta‐analysis of VBM studies using anatomic likelihood estimation
  publication-title: Human Brain Mapping
– volume: 162
  start-page: 2233
  year: 2005
  end-page: 2245
  article-title: Regional deficits in brain volume in schizophrenia: A meta‐analysis of voxel‐based morphometry studies
  publication-title: The American Journal of Psychiatry
– volume: 139
  start-page: 127
  year: 2005
  end-page: 139
  article-title: Volumetric analysis of sulci/gyri‐defined in vivo frontal lobe regions in schizophrenia: Precentral gyrus, cingulate gyrus, and prefrontal region
  publication-title: Psychiatry Research: Neuroimaging
– volume: 7700
  start-page: 9
  year: 2012
  end-page: 48
– volume: 114
  start-page: 494
  year: 1993
  end-page: 509
  article-title: Dominance statistics: Ordinal analyses to answer ordinal questions
  publication-title: Psychological Bulletin
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 105
  year: 2005
  end-page: 113
  article-title: Voxel‐based morphometry of the human brain: Methods and applications
  publication-title: Current Medical Imaging Reviews
– volume: 50
  start-page: 589
  year: 2010
  end-page: 599
  article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness
  publication-title: NeuroImage
– volume: 12
  start-page: 31
  year: 2016
  end-page: 44
  article-title: Addressing confounding in predictive models with an application to neuroimaging
  publication-title: International Journal of Biostatistics
– volume: 13
  start-page: 31
  year: 2015
  end-page: 46
  article-title: Clinical prediction from structural brain MRI scans: A large‐scale empirical study
  publication-title: Neuroinformatics
– year: 2014
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
– volume: 11
  start-page: 189
  year: 1996
  end-page: 212
  article-title: Bootstrap confidence intervals
  publication-title: Statistical Science
– volume: 6
  start-page: 178
  year: 2012
  article-title: Measuring abnormal brains: Building normative rules in neuroimaging using one‐class support vector machines
  publication-title: Frontiers in Neuroscience
– volume: 59
  start-page: 431
  year: 2012
  end-page: 438
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: NeuroImage
– volume: 38
  start-page: 472
  year: 2017
  end-page: 492
  article-title: Motion‐related artifacts in structural brain images revealed with independent estimates of in‐scanner head motion
  publication-title: Human Brain Mapping
– volume: 165
  start-page: 1015
  year: 2008
  end-page: 1023
  article-title: The anatomy of first‐episode and chronic schizophrenia: An anatomical likelihood estimation meta‐analysis
  publication-title: The American Journal of Psychiatry
– volume: 36
  start-page: 1342
  year: 2012
  end-page: 1356
  article-title: Systematic meta‐review and quality assessment of the structural brain alterations in schizophrenia
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation
  publication-title: Neuron
– year: 2008
– volume: 49
  start-page: 1
  year: 2001
  end-page: 52
  article-title: A review of MRI findings in schizophrenia
  publication-title: Schizophrenia Research
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Machine Learning
– volume: 70
  start-page: 59
  year: 2013
  end-page: 70
  article-title: Brain surface anatomy in adults with autism: The relationship between surface area, cortical thickness, and autistic symptoms
  publication-title: JAMA Psychiatry
– volume: 82
  start-page: 1304
  year: 2011
  end-page: 1313
  article-title: Grey matter abnormality in autism spectrum disorder: An activation likelihood estimation meta‐analysis study
  publication-title: Journal of Neurology, Neurosurgery, and Psychiatry
– volume: 7
  start-page: 50
  year: 2016
  article-title: Detecting neuroimaging biomarkers for psychiatric disorders: Sample size matters
  publication-title: Frontiers in Psychiatry
– volume: 12
  start-page: e0175683
  year: 2017
  article-title: Evaluation of machine learning algorithms and structural features for optimal MRI‐based diagnostic prediction in psychosis
  publication-title: PLoS One
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: An overview
  publication-title: NeuroImage
– volume: 75
  start-page: 746
  year: 2014
  end-page: 748
  article-title: When optimism hurts: Inflated predictions in psychiatric neuroimaging
  publication-title: Biological Psychiatry
– volume: 29
  start-page: 296
  year: 2016
  end-page: 307
  article-title: The effect of age correction on multivariate classification in Alzheimer???S disease, with a focus on the characteristics of incorrectly and correctly classified subjects
  publication-title: Brain Topography
– volume: 1
  start-page: 25
  year: 2015
  end-page: 30
  article-title: Assessing accuracy of automated segmentation methods for brain lateral ventricles in MRI data
  publication-title: Queen's Science Undergraduate Research Journal
– volume: 80
  start-page: 552
  year: 2016
  end-page: 561
  article-title: Understanding heterogeneity in clinical cohorts using normative models: Beyond case‐control studies
  publication-title: Biological Psychiatry
– volume: 36
  start-page: 1140
  year: 2012
  end-page: 1152
  article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 58
  start-page: 793
  year: 2011
  end-page: 804
  article-title: Patient classification as an outlier detection problem: An application of the one‐class support vector machine
  publication-title: NeuroImage
– year: 2003
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 70
  start-page: 833
  year: 2011
  end-page: 841
  article-title: Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism
  publication-title: Biological Psychiatry
– volume: 68
  start-page: 41
  year: 2010
  end-page: 50
  article-title: Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder
  publication-title: Biological Psychiatry
– volume: 24
  start-page: 243
  year: 2011
  end-page: 252
  article-title: Changes of brain structure and function in ADHD children
  publication-title: Brain Topography
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  article-title: FreeSurfer
  publication-title: NeuroImage
– year: 2016
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 15
  start-page: 281
  year: 2012
  end-page: 288
  article-title: Hypothalamus and pituitary volume in schizophrenia: A structural MRI study
  publication-title: The International Journal of Neuropsychopharmacology
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– start-page: 1759
  year: 2014
  end-page: 1763
– volume: 6
  start-page: 38867
  year: 2016
  article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia
  publication-title: Scientific Reports
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 124
  start-page: 127
  year: 2016
  end-page: 146
  article-title: Deep neural network with weight sparsity control and pre‐training extracts hierarchical features and enhances classification performance: Evidence from whole‐brain resting‐state functional connectivity patterns of schizophrenia
  publication-title: NeuroImage
– volume: 23
  start-page: 289
  year: 2008
  end-page: 299
  article-title: Towards a neuroanatomy of autism: A systematic review and meta‐analysis of structural magnetic resonance imaging studies
  publication-title: European Psychiatry
– volume: 135
  start-page: 439
  year: 2017
  end-page: 447
  article-title: Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA schizophrenia consortium
  publication-title: Acta Psychiatrica Scandinavica
– volume: 61
  start-page: 606
  year: 2012
  end-page: 612
  article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
  publication-title: NeuroImage
– volume: 9
  start-page: 184
  year: 2003
  end-page: 195
  article-title: A review of the biological bases of ADHD: What have we learned from imaging studies?
  publication-title: Mental Retardation and Developmental Disabilities Research Reviews
– volume: 74
  start-page: 58
  year: 2017
  end-page: 75
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 9
  start-page: 379
  year: 2015
  article-title: A comparison of FreeSurfer‐generated data with and without manual intervention
  publication-title: Frontiers in Neuroscience
– volume: 107
  start-page: 107
  year: 2015
  end-page: 115
  article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates
  publication-title: NeuroImage
– volume: 25
  start-page: 341
  year: 2012
  end-page: 349
  article-title: Image denoising and inpainting with deep neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
– volume: 61
  start-page: 457
  year: 2012
  end-page: 463
  article-title: Diagnostic neuroimaging across diseases
  publication-title: NeuroImage
– volume: 61
  start-page: 289
  year: 2006
  end-page: 293
  article-title: Neuroimaging in psychiatry: An update
  publication-title: Journal of Psychosomatic Research
– volume: 10
  start-page: 1035
  year: 2017
  end-page: 1044
  article-title: Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals
  publication-title: Schizophrenia Bulletin
– volume: 11
  start-page: 3371
  year: 2010
  ident: e_1_2_7_58_1
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2015.05.018
– ident: e_1_2_7_41_1
  doi: 10.1007/s10548-010-0168-4
– ident: e_1_2_7_31_1
  doi: 10.1515/ijb-2015-0030
– ident: e_1_2_7_48_1
  doi: 10.1002/hbm.23397
– ident: e_1_2_7_25_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: e_1_2_7_29_1
  doi: 10.1038/nature14539
– ident: e_1_2_7_59_1
  doi: 10.1111/acps.12718
– ident: e_1_2_7_27_1
  doi: 10.1017/S1461145711000794
– ident: e_1_2_7_62_1
  doi: 10.1016/j.pscychresns.2005.05.005
– ident: e_1_2_7_5_1
  doi: 10.1136/jnnp.2010.239111
– ident: e_1_2_7_10_1
  doi: 10.1214/ss/1032280214
– ident: e_1_2_7_22_1
  doi: 10.1109/34.824819
– ident: e_1_2_7_2_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_40_1
  doi: 10.1038/srep38897
– ident: e_1_2_7_7_1
  doi: 10.1037/0033-2909.114.3.494
– volume: 1
  start-page: 25
  year: 2015
  ident: e_1_2_7_4_1
  article-title: Assessing accuracy of automated segmentation methods for brain lateral ventricles in MRI data
  publication-title: Queen's Science Undergraduate Research Journal
– ident: e_1_2_7_50_1
  doi: 10.1016/S0920-9964(01)00163-3
– ident: e_1_2_7_55_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_7_19_1
– ident: e_1_2_7_34_1
  doi: 10.2174/1573405054038726
– ident: e_1_2_7_13_1
  doi: 10.1176/appi.ajp.2008.07101562
– ident: e_1_2_7_51_1
  doi: 10.1016/j.neubiorev.2011.12.015
– ident: e_1_2_7_15_1
  doi: 10.1109/ICASSP.2014.6853900
– volume: 10
  start-page: 1035
  year: 2017
  ident: e_1_2_7_44_1
  article-title: Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals
  publication-title: Schizophrenia Bulletin
– ident: e_1_2_7_32_1
  doi: 10.1016/j.biopsych.2015.12.023
– ident: e_1_2_7_17_1
  doi: 10.1016/S0896-6273(02)00569-X
– ident: e_1_2_7_52_1
  doi: 10.1016/j.eurpsy.2007.05.006
– ident: e_1_2_7_38_1
  doi: 10.1016/j.neubiorev.2012.01.004
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_7_39_1
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_33_1
  doi: 10.3389/fnins.2015.00379
– ident: e_1_2_7_35_1
  doi: 10.1016/j.neuroimage.2011.06.042
– ident: e_1_2_7_49_1
  doi: 10.3389/fpsyt.2016.00050
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jpsychores.2006.06.012
– ident: e_1_2_7_47_1
  doi: 10.3389/fnins.2012.00178
– volume: 25
  start-page: 341
  year: 2012
  ident: e_1_2_7_61_1
  article-title: Image denoising and inpainting with deep neural networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_7_56_1
  doi: 10.1016/j.neubiorev.2017.01.002
– ident: e_1_2_7_37_1
  doi: 10.1016/j.neuroimage.2012.03.079
– ident: e_1_2_7_42_1
  doi: 10.1016/j.neuroimage.2014.12.006
– ident: e_1_2_7_23_1
  doi: 10.1016/j.neuroimage.2009.12.047
– ident: e_1_2_7_46_1
  doi: 10.1371/journal.pone.0175683
– ident: e_1_2_7_8_1
  doi: 10.1007/BF00994018
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_7_30_1
  doi: 10.1007/978-3-642-35289-8_3
– ident: e_1_2_7_60_1
  doi: 10.1016/j.biopsych.2013.05.014
– ident: e_1_2_7_54_1
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: e_1_2_7_36_1
  doi: 10.1002/hbm.21299
– ident: e_1_2_7_18_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_7_28_1
  doi: 10.1016/j.neuroimage.2011.11.002
– ident: e_1_2_7_14_1
  doi: 10.1007/s10548-015-0455-1
– ident: e_1_2_7_53_1
  doi: 10.1016/j.biopsych.2011.07.014
– ident: e_1_2_7_6_1
– ident: e_1_2_7_43_1
  doi: 10.1016/j.biopsych.2010.03.036
– ident: e_1_2_7_45_1
  doi: 10.1007/s12021-014-9238-1
– ident: e_1_2_7_26_1
– ident: e_1_2_7_11_1
  doi: 10.1002/mrdd.10079
– ident: e_1_2_7_20_1
  doi: 10.1176/appi.ajp.162.12.2233
– ident: e_1_2_7_12_1
  doi: 10.1001/jamapsychiatry.2013.265
– ident: e_1_2_7_57_1
  doi: 10.1145/1390156.1390294
SSID ssj0011501
Score 2.5818655
Snippet Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain‐based...
Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain-based...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 944
SubjectTerms Adult
Anatomy
Artificial intelligence
Artificial neural networks
Autism
autism spectrum disorder
Autism Spectrum Disorder - diagnostic imaging
Black boxes
Brain
Brain - diagnostic imaging
Brain architecture
computational psychiatry
deep autoencoder
Deep Learning
Deviation
Disease control
Disorders
Female
Humans
Image Interpretation, Computer-Assisted - methods
Investigations
Learning algorithms
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Mental disorders
Neural networks
Neuroimaging
Neuroimaging - methods
Neurology
Regional analysis
Schizophrenia
Schizophrenia - diagnostic imaging
structural MRI
Title Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large‐scale multi‐sample study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24423
https://www.ncbi.nlm.nih.gov/pubmed/30311316
https://www.proquest.com/docview/2165809130
https://www.proquest.com/docview/2119916665
https://pubmed.ncbi.nlm.nih.gov/PMC6492107
Volume 40
WOSCitedRecordID wos000459789600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VghAXCi0P04IWhBAXt-v1Y73lFBBVOTTqAURu1r6sRkqdCKdIvXHmxG_kl3Rm7RiigoTExbLjseM4MzvfeD9_A_BSqNzVea1jo3kZZyLBNZcUMZUCNvUEGnRoNiHH43IyUacb8Gb1LkynDzE8cKPICOM1Bbg27cEv0dAzc76PuUmkN-BmkqQl9W0Q2ekwhYBIJ1RbmGNjhUPwSlaIi4Ph0PVkdA1hXidK_g5gQwY62vqva78Hd3vgyUadp9yHDd9sw86owaL7_JK9YoEKGp6xb8Ptk37GfQe-B04Bc94vmL5Yzkn3krjPbDln0_CSb33JtGkI-s6YoYYTrNOkJT0PtgjynU3L8OMgnTmwq6eWuV75sz1kIzYjSvrPbz9adBrPAs-RtjSpF7MggvsAPh29__juOO77N8QWYUiKVakRVvjCCF5az2ujjayNMNZkopaYJq2XyuiaGgAV3qWYAwyXVuaOS1U4lz6EzWbe-MfApMdKvSjTQvM08yrDE-cKEyt3PjM-yyJ4vfojK9uLm1OPjVnVyTKLCm95FW55BC8G00Wn6PEno72VN1R9ULeVSBCukY4qj-D5sBvDkeZYdOPnF2RDXDKsCfMIHnXOM3wLogV01KSIQK651WBAUt_re5rpWZD8LjKFtbnEnxnc6u8XXh2_PQkrT_7ddBfuIAxUxEVP8j3YRCfxT-GW_bqctl-ehajCpZyUuPz8YXwFJ9ws6Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VgoALj5aHocCCEOrF1F6vvVnEJSCqVDQRhyJ6s_ZlNVLqRDhF6o0zJ34jv4SZtWOIChISNzsex68Zzze7n78BeM5V7qq80rHRySAWPMUllxYxlQI28wQadGg2ISeTwfGx-rABr1ffwrT6EP2AG0VGeF9TgNOA9N4v1dATc_oSkxPPLsFlgUCDGjd8Opj0cwgIdUK5hUk2VvgOXukKJXyv33U9G12AmBeZkr8j2JCC9m_-38nfghsd9GTD1lduw4avt2B7WGPZfXrOXrBABg2j7FtwddzNuW_Dt8AqYM77BdNnyzkpXxL7mS3nbBo-863OmTY1gd8ZM9RygrWqtKTowRZBwLNuGP4cxDN7fvXUMtdpfzav2JDNiJT-4-v3Bt3Gs8B0pDVN-sUsyODegY_7747ejuKug0NsEYhkWJcabrkvDE8G1ieV0UZWhhtrBK8kJkrrpTK6ohZAhXcZZgGTSCtzl0hVOJfdhc16Xvv7wKTHWr0YZIVOMuGVwD_OFabWxHlhvBAR7K6eZGk7eXPqsjErW2FmXuItL8Mtj-BZb7poNT3-ZLSzcoeyC-um5CkCNlJSTSJ42m_GgKRZFl37-RnZEJsMq8I8gnut9_RHQbyQpllaRCDX_Ko3ILHv9S319CSIfhdCYXUu8TKDX_39xMvRm3FYePDvpk_g2uhofFgeHkzeP4TrCAoVMdPTfAc20WH8I7hivyynzefHIcR-AoGdL0o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VgiouBVoehgILQoiLW3u99mYRl_CIiqBRDiD1Zu3LaqTUieoUqTfOnPiN_BJm1o4hKkhI3PwYv2c833g_fwPwjKvcVXmlY6OTQSx4ilMuLWIqBWzmCTTo0GxCjseD42M12YBXq39hWn2I_oMbRUZ4X1OA-4WrDn6php6Y031MTjy7AldFLlPyaS4m_RgCQp1QbmGSjRW-g1e6Qgk_6Dddz0aXIOZlpuTvCDakoNGN_zv5m7DdQU82bH3lFmz4egd2hzWW3acX7DkLZNDwlX0Hto66Mfdd-BZYBcx5v2D6fDkn5UtiP7PlnE3Db77VBdOmJvA7Y4ZaTrBWlZYUPdgiCHjWDcPFQTyz51dPLXOd9mfzkg3ZjEjpP75-b9BtPAtMR5rTpF_Mggzubfg8evfpzWHcdXCILQKRDOtSwy33heHJwPqkMtrIynBjjeCVxERpvVRGV9QCqPAuwyxgEmll7hKpCueyO7BZz2t_D5j0WKsXg6zQSSa8ErjjXGFqTZwXxgsRwYvVkyxtJ29OXTZmZSvMzEu85WW45RE87U0XrabHn4z2Vu5QdmHdlDxFwEZKqkkET_rVGJA0yqJrPz8nG2KTYVWYR3C39Z7-KIgX0jRLiwjkml_1BiT2vb6mnp4E0e9CKKzOJV5m8Ku_n3h5-PooTNz_d9PHsDV5Oyo_vh9_eADXERMqIqan-R5sor_4h3DNfllOm7NHIcJ-AjXXLmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+deep+autoencoders+to+identify+abnormal+brain+structural+patterns+in+neuropsychiatric+disorders%3A+A+large%E2%80%90scale+multi%E2%80%90sample+study&rft.jtitle=Human+brain+mapping&rft.au=Pinaya%2C+Walter+H.+L.&rft.au=Mechelli%2C+Andrea&rft.au=Sato%2C+Jo%C3%A3o+R.&rft.date=2019-02-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=3&rft.spage=944&rft.epage=954&rft_id=info:doi/10.1002%2Fhbm.24423&rft_id=info%3Apmid%2F30311316&rft.externalDocID=PMC6492107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon