Dual‐Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI
ABSTRACT BACKGROUND AND PURPOSE A pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high‐resolution 3‐dimensional T1‐weighted, T2‐we...
Saved in:
| Published in: | Journal of neuroimaging Vol. 28; no. 1; pp. 36 - 47 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.01.2018
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 1051-2284, 1552-6569, 1552-6569 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | ABSTRACT
BACKGROUND AND PURPOSE
A pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high‐resolution 3‐dimensional T1‐weighted, T2‐weighted, and fluid‐attenuated inversion‐recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume.
METHODS
To address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D‐FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan‐rescans.
RESULTS
Intraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false‐positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan‐rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 ± .72 mL over a range of 0–24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls).
CONCLUSIONS
This pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets. |
|---|---|
| Bibliography: | Acknowledgment and Disclosure This work was funded by the Ann Romney Center for Neurologic Diseases. We thank Tanuja Chitnis and Brian Healy for helpful discussions. We also thank Mark Anderson and Mariann Polgar‐Turcsanyi for technical assistance. The authors have no relevant conflicts‐of‐interest. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Acknowledgment and Disclosure: This work was funded by the Ann Romney Center for Neurologic Diseases. We thank Tanuja Chitnis and Brian Healy for helpful discussions. We also thank Mark Anderson and Mariann Polgar‐Turcsanyi for technical assistance. The authors have no relevant conflicts‐of‐interest. |
| ISSN: | 1051-2284 1552-6569 1552-6569 |
| DOI: | 10.1111/jon.12491 |