Toward more robust and reproducible diffusion kurtosis imaging

Purpose The general utility of diffusion kurtosis imaging (DKI) is challenged by its poor robustness to imaging artifacts and thermal noise that often lead to implausible kurtosis values. Theory and Methods A robust scalar kurtosis index can be estimated from powder‐averaged diffusion‐weighted data....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 86; číslo 3; s. 1600 - 1613
Hlavní autoři: Henriques, Rafael N., Jespersen, Sune N., Jones, Derek K., Veraart, Jelle
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.09.2021
John Wiley and Sons Inc
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Purpose The general utility of diffusion kurtosis imaging (DKI) is challenged by its poor robustness to imaging artifacts and thermal noise that often lead to implausible kurtosis values. Theory and Methods A robust scalar kurtosis index can be estimated from powder‐averaged diffusion‐weighted data. We introduce a novel DKI estimator that uses this scalar kurtosis index as a proxy for the mean kurtosis to regularize the fit. Results The regularized DKI estimator improves the robustness and reproducibility of the kurtosis metrics and results in parameter maps with enhanced quality and contrast. Conclusion Our novel DKI estimator promotes the wider use of DKI in clinical research and potentially diagnostics by improving the reproducibility and precision of DKI fitting and, as such, enabling enhanced visual, quantitative, and statistical analyses of DKI parameters.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0740-3194
1522-2594
1522-2594
DOI:10.1002/mrm.28730