Real-Time Gamma Radioactive Source Localization by Data Fusion of 3D-LiDAR Terrain Scan and Radiation Data from Semi-Autonomous UAV Flights
Rapid and accurate reconnaissance in the event of radiological and nuclear (RN) incidents or attacks is vital to launch an appropriate response. This need is made stronger by the increasing threat of RN attacks on soft targets and critical infrastructure in densely populated areas. In such an event,...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 23; p. 9198 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
26.11.2022
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Rapid and accurate reconnaissance in the event of radiological and nuclear (RN) incidents or attacks is vital to launch an appropriate response. This need is made stronger by the increasing threat of RN attacks on soft targets and critical infrastructure in densely populated areas. In such an event, even small radioactive sources can cause major disruption to the general population. In this work, we present a real-time radiological source localization method based on an optimization problem considering a background and radiation model. Supported by extensive real-world experiments, we show that an airborne system using this method is capable for reliably locating category 3–4 radioactive sources according to IAEA safety standards in real time from altitudes up to 150 m. A sensor bundle including a LiDAR sensor, a Gamma probe as well as a communication module was mounted on a UAV that served as a carrier platform. The method was evaluated on a comprehensive set of test flights, including 28 flight scenarios over 316 min using three different radiation sources. All additional gamma sources were correctly detected, multiple sources were detected if they were sufficiently separated from each other, with the distance between the true source position and the estimated source averaging 17.1 m. We also discuss the limitations of the system in terms of detection limit and source separation. |
|---|---|
| AbstractList | Rapid and accurate reconnaissance in the event of radiological and nuclear (RN) incidents or attacks is vital to launch an appropriate response. This need is made stronger by the increasing threat of RN attacks on soft targets and critical infrastructure in densely populated areas. In such an event, even small radioactive sources can cause major disruption to the general population. In this work, we present a real-time radiological source localization method based on an optimization problem considering a background and radiation model. Supported by extensive real-world experiments, we show that an airborne system using this method is capable for reliably locating category 3–4 radioactive sources according to IAEA safety standards in real time from altitudes up to 150 m. A sensor bundle including a LiDAR sensor, a Gamma probe as well as a communication module was mounted on a UAV that served as a carrier platform. The method was evaluated on a comprehensive set of test flights, including 28 flight scenarios over 316 min using three different radiation sources. All additional gamma sources were correctly detected, multiple sources were detected if they were sufficiently separated from each other, with the distance between the true source position and the estimated source averaging 17.1 m. We also discuss the limitations of the system in terms of detection limit and source separation. Rapid and accurate reconnaissance in the event of radiological and nuclear (RN) incidents or attacks is vital to launch an appropriate response. This need is made stronger by the increasing threat of RN attacks on soft targets and critical infrastructure in densely populated areas. In such an event, even small radioactive sources can cause major disruption to the general population. In this work, we present a real-time radiological source localization method based on an optimization problem considering a background and radiation model. Supported by extensive real-world experiments, we show that an airborne system using this method is capable for reliably locating category 3-4 radioactive sources according to IAEA safety standards in real time from altitudes up to 150 m. A sensor bundle including a LiDAR sensor, a Gamma probe as well as a communication module was mounted on a UAV that served as a carrier platform. The method was evaluated on a comprehensive set of test flights, including 28 flight scenarios over 316 min using three different radiation sources. All additional gamma sources were correctly detected, multiple sources were detected if they were sufficiently separated from each other, with the distance between the true source position and the estimated source averaging 17.1 m. We also discuss the limitations of the system in terms of detection limit and source separation.Rapid and accurate reconnaissance in the event of radiological and nuclear (RN) incidents or attacks is vital to launch an appropriate response. This need is made stronger by the increasing threat of RN attacks on soft targets and critical infrastructure in densely populated areas. In such an event, even small radioactive sources can cause major disruption to the general population. In this work, we present a real-time radiological source localization method based on an optimization problem considering a background and radiation model. Supported by extensive real-world experiments, we show that an airborne system using this method is capable for reliably locating category 3-4 radioactive sources according to IAEA safety standards in real time from altitudes up to 150 m. A sensor bundle including a LiDAR sensor, a Gamma probe as well as a communication module was mounted on a UAV that served as a carrier platform. The method was evaluated on a comprehensive set of test flights, including 28 flight scenarios over 316 min using three different radiation sources. All additional gamma sources were correctly detected, multiple sources were detected if they were sufficiently separated from each other, with the distance between the true source position and the estimated source averaging 17.1 m. We also discuss the limitations of the system in terms of detection limit and source separation. |
| Audience | Academic |
| Author | Schraml, Stephan Hofstätter, Michael Amon, Philipp Rothbacher, Dieter Hubner, Michael Taupe, Philip |
| AuthorAffiliation | 3 CBRN Protection GmbH, 1200 Vienna, Austria 1 AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria 2 RIEGL Laser Measurement Systems GmbH, Riedenburgstr. 48, 3580 Horn, Austria |
| AuthorAffiliation_xml | – name: 1 AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria – name: 2 RIEGL Laser Measurement Systems GmbH, Riedenburgstr. 48, 3580 Horn, Austria – name: 3 CBRN Protection GmbH, 1200 Vienna, Austria |
| Author_xml | – sequence: 1 givenname: Stephan orcidid: 0000-0002-3915-204X surname: Schraml fullname: Schraml, Stephan – sequence: 2 givenname: Michael orcidid: 0000-0002-1640-5614 surname: Hubner fullname: Hubner, Michael – sequence: 3 givenname: Philip orcidid: 0000-0003-4708-9455 surname: Taupe fullname: Taupe, Philip – sequence: 4 givenname: Michael surname: Hofstätter fullname: Hofstätter, Michael – sequence: 5 givenname: Philipp orcidid: 0000-0003-0071-6642 surname: Amon fullname: Amon, Philipp – sequence: 6 givenname: Dieter surname: Rothbacher fullname: Rothbacher, Dieter |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36501907$$D View this record in MEDLINE/PubMed |
| BookMark | eNplks9u3CAQxq0qVfOnPfQFKqRemoMTzBhjXyqtst000kqVdje9ojGGDSsbUmxHSl-hLx12N4mSVByA4ft-DMMcJwfOO50knzN6BlDR854xBlVWle-SoyxneVoyRg9erA-T477fUMoAoPyQHELBaVZRcZT8W2hs05XtNLnErkOywMZ6VIO902Tpx6A0mXuFrf2Lg_WO1PdkigOS2dhvt94QmKZzO50syEqHgNaRpUJH0DU71t61s5jgO7LUnU0n4-Cd7_zYk-vJbzJr7fpm6D8m7w22vf70OJ8k17Mfq4uf6fzX5dXFZJ4qTsshNaIpag3IQXMluNKiKQ1HoY0B0yDLGAWBGc3QFFAUmtZGQG1YYZDyui7hJLnacxuPG3kbbIfhXnq0chfwYS0xDFa1WiJWIpKyvFA0p0ygyBEUrSnWUIHikfV9z7od6043SrshYPsK-vrE2Ru59neyEsCrfAv49ggI_s-o-0F2tle6bdHpWB_JBAfIGIht3l_fSDfxg1wsVVTlJS8ozYuoOtur1hgfYJ3x8V4VRxMrr2LjGBvjE5EXHPKMi2j48vIJz7k_NUkUnO8FKvi-D9pIZYfdv0aybWVG5bYN5XMbRsfpG8cT9H_tAwg921o |
| CitedBy_id | crossref_primary_10_3390_s24103064 crossref_primary_10_1007_s10967_025_10176_1 crossref_primary_10_3390_s23135983 crossref_primary_10_1088_2057_1976_ad25bd crossref_primary_10_32604_jai_2024_047642 crossref_primary_10_1016_j_scs_2025_106409 crossref_primary_10_3390_infrastructures9060090 |
| Cites_doi | 10.1109/ICIF.2010.5711879 10.1109/IROS.2014.6942811 10.1109/TII.2019.2891253 10.1002/rob.22010 10.1109/CVPR.2018.00479 10.1016/j.cag.2020.02.005 10.1109/ICRA.2018.8460760 10.1109/IDC.2007.374556 10.1177/1729881417750787 10.1016/j.cag.2017.11.010 10.3390/s18113784 10.1016/j.isprsjprs.2012.12.002 10.3390/s17102234 10.1016/j.jenvrad.2020.106216 10.1109/LRA.2020.2978456 10.3390/rs10081192 10.1016/j.apradiso.2019.04.037 10.1007/978-3-663-10226-7 10.1109/ELEKTRO.2018.8398368 10.6028/NIST.IR.5632 10.3390/rs4071995 10.1109/TNS.2021.3113588 10.1109/IROS.2018.8593625 10.3390/s21062196 10.1016/j.isprsjprs.2013.12.002 10.1080/00223131.2015.1071721 10.1080/01431161.2016.1252474 10.3390/s21041051 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22239198 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_aa97101146c04027a74a3c0b0ab393c5 PMC9735945 A746534157 36501907 10_3390_s22239198 |
| Genre | Journal Article |
| GeographicLocations | Austria New Jersey |
| GeographicLocations_xml | – name: New Jersey – name: Austria |
| GrantInformation_xml | – fundername: Die Österreichische Forschungsförderungsgesellschaft grantid: 873433 – fundername: Austrian defense research programme FORTE of the Federal Ministry of Agriculture, Regions and Tourism (BMLRT) grantid: 873433 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c508t-f7d6be3a53e5c75ce7d8f5a7eff3fda212037a101af6366e0bf73bf26fa05bb83 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896204100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:50:41 EDT 2025 Tue Nov 04 02:06:59 EST 2025 Thu Sep 04 20:13:52 EDT 2025 Tue Oct 07 07:29:05 EDT 2025 Tue Nov 04 18:17:25 EST 2025 Wed Feb 19 02:26:16 EST 2025 Sat Nov 29 07:12:38 EST 2025 Tue Nov 18 22:39:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | data fusion hazard detection optimization measurements of CBRN agents 3D-LiDAR terrain modelling real-time gamma source localization |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-f7d6be3a53e5c75ce7d8f5a7eff3fda212037a101af6366e0bf73bf26fa05bb83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0071-6642 0000-0002-1640-5614 0000-0003-4708-9455 0000-0002-3915-204X |
| OpenAccessLink | https://www.proquest.com/docview/2748560046?pq-origsite=%requestingapplication% |
| PMID | 36501907 |
| PQID | 2748560046 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aa97101146c04027a74a3c0b0ab393c5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9735945 proquest_miscellaneous_2753312378 proquest_journals_2748560046 gale_infotracacademiconefile_A746534157 pubmed_primary_36501907 crossref_citationtrail_10_3390_s22239198 crossref_primary_10_3390_s22239198 |
| PublicationCentury | 2000 |
| PublicationDate | 20221126 |
| PublicationDateYYYYMMDD | 2022-11-26 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221126 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_13 ref_35 Towler (ref_8) 2012; 4 ref_12 Lee (ref_29) 2020; 18 Wu (ref_14) 2019; 15 ref_33 Connor (ref_1) 2016; 37 ref_10 ref_32 ref_31 ref_30 ref_19 ref_18 ref_16 ref_38 Boulch (ref_40) 2018; 71 ref_15 ref_37 Pingel (ref_34) 2013; 77 Boulch (ref_39) 2020; 88 ref_24 ref_23 ref_22 ref_21 ref_20 ref_41 Stibinger (ref_3) 2020; 5 Gong (ref_5) 2019; 150 Nishizawa (ref_17) 2016; 53 Mongus (ref_36) 2014; 93 ref_28 ref_27 ref_26 ref_9 Bandstra (ref_25) 2021; 68 Lazna (ref_2) 2018; 15 Gabrlik (ref_7) 2021; 38 ref_4 Thiruvengadathan (ref_11) 2020; 217 ref_6 |
| References_xml | – ident: ref_15 doi: 10.1109/ICIF.2010.5711879 – ident: ref_19 doi: 10.1109/IROS.2014.6942811 – ident: ref_9 – ident: ref_30 – volume: 15 start-page: 2308 year: 2019 ident: ref_14 article-title: Network Detection of Radiation Sources Using Localization-Based Approaches publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2891253 – ident: ref_32 – ident: ref_24 – volume: 38 start-page: 657 year: 2021 ident: ref_7 article-title: An automated heterogeneous robotic system for radiation surveys: Design and field testing publication-title: J. Field Robot. doi: 10.1002/rob.22010 – ident: ref_38 doi: 10.1109/CVPR.2018.00479 – volume: 88 start-page: 24 year: 2020 ident: ref_39 article-title: ConvPoint: Continuous convolutions for point cloud processing publication-title: Comput. Graph. doi: 10.1016/j.cag.2020.02.005 – ident: ref_23 doi: 10.1109/ICRA.2018.8460760 – ident: ref_13 doi: 10.1109/IDC.2007.374556 – volume: 15 start-page: 172988141775078 year: 2018 ident: ref_2 article-title: Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate localization of gamma radiation hotspots publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881417750787 – volume: 71 start-page: 189 year: 2018 ident: ref_40 article-title: SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks publication-title: Comput. Graph. doi: 10.1016/j.cag.2017.11.010 – ident: ref_18 – ident: ref_35 – ident: ref_21 doi: 10.3390/s18113784 – volume: 77 start-page: 21 year: 2013 ident: ref_34 article-title: An improved simple morphological filter for the terrain classification of airborne LIDAR data publication-title: ISPRS J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2012.12.002 – ident: ref_6 doi: 10.3390/s17102234 – volume: 217 start-page: 106216 year: 2020 ident: ref_11 article-title: Advances in detection algorithms for radiation monitoring publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2020.106216 – volume: 5 start-page: 3634 year: 2020 ident: ref_3 article-title: Localization of Ionizing Radiation Sources by Cooperating Micro Aerial Vehicles With Pixel Detectors in Real-Time publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2978456 – ident: ref_37 doi: 10.3390/rs10081192 – volume: 150 start-page: 1 year: 2019 ident: ref_5 article-title: Locating lost radioactive sources using a UAV radiation monitoring system publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2019.04.037 – ident: ref_26 doi: 10.1007/978-3-663-10226-7 – ident: ref_20 doi: 10.1109/ELEKTRO.2018.8398368 – ident: ref_4 – ident: ref_31 – ident: ref_33 – ident: ref_27 – volume: 18 start-page: 201 year: 2020 ident: ref_29 article-title: Mass attenuation coefficients of environmental samples for gamma-ray energies from 46.5 keV to 1408 keV publication-title: Int. J. Radiat. Res. – ident: ref_12 – ident: ref_28 doi: 10.6028/NIST.IR.5632 – volume: 4 start-page: 1995 year: 2012 ident: ref_8 article-title: Radiation Mapping in Post-Disaster Environments Using an Autonomous Helicopter publication-title: Remote. Sens. doi: 10.3390/rs4071995 – ident: ref_41 – volume: 68 start-page: 2637 year: 2021 ident: ref_25 article-title: Improved Gamma-Ray Point Source Quantification in Three Dimensions by Modeling Attenuation in the Scene publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2021.3113588 – ident: ref_22 doi: 10.1109/IROS.2018.8593625 – ident: ref_16 doi: 10.3390/s21062196 – volume: 93 start-page: 145 year: 2014 ident: ref_36 article-title: Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces publication-title: ISPRS J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2013.12.002 – volume: 53 start-page: 468 year: 2016 ident: ref_17 article-title: Distribution of the 134 Cs/ 137 Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2015.1071721 – volume: 37 start-page: 5953 year: 2016 ident: ref_1 article-title: Airborne radiation mapping: Overview and application of current and future aerial systems publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1252474 – ident: ref_10 doi: 10.3390/s21041051 |
| SSID | ssj0023338 |
| Score | 2.4092274 |
| Snippet | Rapid and accurate reconnaissance in the event of radiological and nuclear (RN) incidents or attacks is vital to launch an appropriate response. This need is... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 9198 |
| SubjectTerms | 3D-LiDAR terrain modelling Algorithms Altitude data fusion Dosimetry Flying-machines Gamma rays hazard detection Localization Measurement measurements of CBRN agents Methods Nuclear accidents Nuclear accidents & safety Nuclear energy Nuclear power plants Optical radar optimization Optimization techniques Photogrammetry Radiation Radiation, Background real-time gamma source localization Remote sensing Sensors Topography Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMcEG8CCzIICS7RpnFix8dAKRyqFWp30d6iiR_aSNsUNSkSv4E_zUySRo1A4sI1Hlu2Z-z5xvF8ZuytNaWcldKGThGpthQy1FLJ0KaphUwYdLMdz-xSnZ9nV1f669FTX3QnrKcH7ifuDECjE6TcWYP2FitQCWATZQSl0MJ07KWR0odgagi1BEZePY-QwKD-rCEvqDG-nnifjqT_z634yBdN70keOZ7FfXZvQIw873v6gN1y9UN294hH8BH7tUK4F1I2B_8Mmw3wFdhqC91Wxtfd8TxfktMaki55-ZPPoQW-2NNhGd96LubhsprnK37hdvRqBF_jnHOobddWX6urQvkofO02VZjvW8qI2O4bfpl_44sbivObx-xy8eni45dweGUhNAjO2tArK0snIBUuNSo1TtnMp6Cc98JbQNcWCQWoAvCoSemi0itR-lh6iNKyzMQTdlJva_eMcSFspIV2SWR8EokEZj6LvTAZyoJ3OmDvD7NfmIGCnF7CuCkwFCFFFaOiAvZmFP3e8278TegDqXAUIKrs7gMaUDEYUPEvAwrYOzKAghY0dsbAkJeAQyJqrCJXREGHOEcF7PRgI8Ww0psCo_qMUGMiA_Z6LMY1Sj9eoHaoBJRBUI0QQWGPn_YmNfZZIERGUIaNq4mxTQY1Lamr644HXCuR6iR9_j9m4QW7E1Nix2wWxvKUnbS7vXvJbpsfbdXsXnWL6zfQiylU priority: 102 providerName: Directory of Open Access Journals |
| Title | Real-Time Gamma Radioactive Source Localization by Data Fusion of 3D-LiDAR Terrain Scan and Radiation Data from Semi-Autonomous UAV Flights |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36501907 https://www.proquest.com/docview/2748560046 https://www.proquest.com/docview/2753312378 https://pubmed.ncbi.nlm.nih.gov/PMC9735945 https://doaj.org/article/aa97101146c04027a74a3c0b0ab393c5 |
| Volume | 22 |
| WOSCitedRecordID | wos000896204100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BywEOvB-BEi0ICS5Wnay9a59QShJASqMoaVE4WeN9QKTGLnGCxIU_wJ9mZuOkiUBcuPhgj6215tt52fMNY6-MzmUrlyawiki1pZBBKpUMTBwbSIRGN-t5ZgdqOEym03RUF9yq-rfKjU30htqUmmrkx5g9JeSdI_n28ltAU6Po62o9QuM6O6Sx2YRzNb1KuATmX2s2IYGp_XFFvjDFLHvPB3mq_j8N8o5H2v9bcsf99O_878Lvstt14Mk7a6TcY9dscZ_d2qEjfMB-jTFqDKgphL-H-Rz4GMysBG8R-cRX-fmAfF_du8nzH7wLS-D9FdXceOm46AaDWbcz5md2QcMn-ARVx6Ew_lnru_wt1NbCJ3Y-CzqrJTVWlKuKn3c-8f4FlQuqh-y83zt79yGohzUEGmO8ZeCUkbkVEAsbaxVrq0ziYlDWOeEMoIcMhQI0AOAQENKGuVMid23pIIzzPBGP2EFRFvYJ40KYMBWpjULtolBE0HJJ2wmdoCw4mzbYm436Ml0zmdNAjYsMMxrSdLbVdIO93Iperuk7_iZ0QhjYChDjtj9RLr5k9QbOAFIMxqiHW6PdaytQESCU8xBykQodN9hrQlBGdgEXo6Fub8BXIoatrKOIyQ7DJdVgRxugZLXBqLIrlDTYi-1l3Or0_QYKi0pAGYzNMdJQuOLHa0xu1yww0sbYDh-u9tC691L7V4rZV08nnioRp1H89N_LesZutqnzo9UK2vKIHSwXK_uc3dDfl7Nq0fT7zh-TJjs86Q1H46Yvb-Dx9GcPz40-no4-_wa6yj6b |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQceD8CBRYEKpdVHa_ttQ8IBUJo1RChJEW5mfF6Fyw1dokTUH8D_4XfyIztpIlA3Hrgaq9X4_U3r13PN4w9T3UStJMgFUYRqXYgAxEFKhCp76cQSo1utuKZ7avBIJxMoo9b7NeyFoZ-q1zaxMpQp4WmPfI9zJ5C8s5e8Prkm6CuUXS6umyhUcPi0Jz-wJStfHXQxe_7wnV778Zv90XTVUBoDEbmwqo0SIwEXxpfK18blYbWB2WslTYFNOWOVIBIBYuSB8ZJrJKJdQMLjp8kocR5L7CLaMcVJXtqcpbgScz3avYiKSNnryTfG2FWv-HzqtYAfzqANQ-4-XfmmrvrXf_fFuoGu9YE1rxTa8JNtmXyW-zqGt3ibfZziFGxoKIX_h6mU-BDSLMCKovPR9UpBu-Tb29qU3lyyrswB95b0J4iLyyXXdHPup0hH5sZNdfgI4Qmhzyt5qqfqh6hsh0-MtNMdBZzKhwpFiU_6nzivWPaDinvsKNzWY27bDsvcnOfcSlTJ5KR8RxtPUd60Laha6UOcSxYE7XYyyVcYt0wtVPDkOMYMzZCVrxCVos9Ww09qelJ_jboDWFuNYAYxasLxexL3BioGCDCYJNq1DXadVeB8gBVNXEgkZHUfovtEmJjsnsojIamfANfiRjE4o4ipj4MB1WL7SyBGTcGsYzPUNliT1e30ZTR-RTkBj8CjsHcAyMphRLfq3VgJbPETAJjV5xcbWjHxktt3smzrxVdeqSkH3n-g3-L9YRd3h9_6Mf9g8HhQ3bFpSqXdlu4wQ7bns8W5hG7pL_Ps3L2uNJ5zj6ft-78BsBamC4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLkJw4P0oLGAQCC5R0ziJkwNChVKotlRVu4uWU5g4NlTaJkuTgvY38I_4dcwkaWgF4rYHrolj2c43L9vzDWNPEhX73dhPLC2JVNsXvhX60rcSz0sgEArNbMkzO5LjcXB0FE522M91Lgxdq1zrxFJRJ5miPfIORk8BWWfX75j6WsSkP3h58tWiClJ00roup1FBZF-ffsfwLX8x7OO_fuo4gzcHr99ZdYUBS6FjUlhGJn6sBXhCe0p6SsskMB5IbYwwCaBat4UERC0YnIWv7dhIERvHN2B7cRwI7Pcc20WX3HVabHcyfD_52IR7AqO_istIiNDu5GSJQ4zxtyxgWSjgT3OwYQ-372puGL_Blf952a6yy7XLzXuVjFxjOzq9zi5tEDHeYD-m6C9blA7D38JiAXwKyTyD0hbwWXm-wUdk9eusVR6f8j4UwAcr2m3kmeGib43m_d6UH-glld3gMwQthzQp-6q-Kj-hhB4-04u51VsVlFKSrXJ-2PvAB8e0UZLfZIdnshq3WCvNUn2HcSESOxShdm1lXFu40DWBY4QKsC0YHbbZ8zV0IlVzuFMpkeMIYzlCWdSgrM0eN01PKuKSvzV6RfhrGhDXePkgW36OatUVAYTohlL2ukKN70iQLqAQxzbEIhTKa7NnhN6INCIORkGd2IFTIm6xqCeJww8dRdlme2uQRrWqzKPfCG2zR81rVHJ0cgWpxp-AbTAqQR9L4ohvV_LQjFlgjIFeLXYutyRla1Lbb9L5l5JIPZTCC13v7r-H9ZBdQJGJRsPx_j120aH0l27Xcvw91iqWK32fnVffinm-fFArAM4-nbXw_AK-zaJ9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Gamma+Radioactive+Source+Localization+by+Data+Fusion+of+3D-LiDAR+Terrain+Scan+and+Radiation+Data+from+Semi-Autonomous+UAV+Flights&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Schraml%2C+Stephan&rft.au=Hubner%2C+Michael&rft.au=Taupe%2C+Philip&rft.au=Hofst%C3%A4tter%2C+Michael&rft.date=2022-11-26&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft_id=info:doi/10.3390%2Fs22239198&rft.externalDocID=A746534157 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |