A Fault-Diagnosis Method for Railway Turnout Systems Based on Improved Autoencoder and Data Augmentation

In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 23; S. 9438
Hauptverfasser: Li, Mengyang, Hei, Xinhong, Ji, Wenjiang, Zhu, Lei, Wang, Yichuan, Qiu, Yuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 02.12.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method.
AbstractList In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method.
In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method.In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method.
Audience Academic
Author Zhu, Lei
Ji, Wenjiang
Wang, Yichuan
Li, Mengyang
Hei, Xinhong
Qiu, Yuan
AuthorAffiliation School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
AuthorAffiliation_xml – name: School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
Author_xml – sequence: 1
  givenname: Mengyang
  surname: Li
  fullname: Li, Mengyang
– sequence: 2
  givenname: Xinhong
  orcidid: 0000-0002-6394-0492
  surname: Hei
  fullname: Hei, Xinhong
– sequence: 3
  givenname: Wenjiang
  orcidid: 0000-0001-5502-1579
  surname: Ji
  fullname: Ji, Wenjiang
– sequence: 4
  givenname: Lei
  orcidid: 0000-0001-5925-5743
  surname: Zhu
  fullname: Zhu, Lei
– sequence: 5
  givenname: Yichuan
  orcidid: 0000-0001-6575-1954
  surname: Wang
  fullname: Wang, Yichuan
– sequence: 6
  givenname: Yuan
  surname: Qiu
  fullname: Qiu, Yuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36502142$$D View this record in MEDLINE/PubMed
BookMark eNptkl1vFCEUhiemxn7ohX_AkHijF9sywDDDjcnaWt2kxkTrNWHgsMtmBlZgavbfy7p10zaGC04Oz3nhPZzT6sgHD1X1usbnlAp8kQghVDDaPatOakbYrCMEHz2Ij6vTlNYYE0pp96I6przBpJyeVKs5ulbTkGdXTi19SC6hr5BXwSAbIvqu3PBbbdHtFH2YMvqxTRnGhD6qBAYFjxbjJoa7Es-nHMDrYCAi5Q26UlmV5HIEn1V2wb-snls1JHh1v59VP68_3V5-md18-7y4nN_MdIO7PAPTGquM6msNzFAjOiJawikA49AbDqwFQSwxGFPVY1Vs0M42YJXue2YNPasWe10T1FpuohtV3MqgnPybCHEpVcxODyA5w6UW19D0mgncCwGmJ9RYzgTvoC1aH_Zam6kfwejiJarhkejjE-9WchnupGgZ5owXgXf3AjH8miBlObqkYRiUhzAlSdqGElHskYK-fYKuQ-l6aVWhWNdw0pCd4PmeWqpiwHkbyr26LAOj02UqrCv5ect4Q1krdgVvHlo4vP3fBBTg_R7QMaQUwR6QGsvddMnDdBX24gmr3f53yyvc8J-KPzcL0VM
CitedBy_id crossref_primary_10_1016_j_measurement_2024_115920
crossref_primary_10_1155_2024_3715605
crossref_primary_10_1088_1742_6596_3024_1_012001
crossref_primary_10_32604_cmc_2024_048995
crossref_primary_10_3390_jsan13050060
crossref_primary_10_1080_10589759_2025_2523472
crossref_primary_10_1007_s40534_025_00396_2
crossref_primary_10_1016_j_engfailanal_2025_109597
crossref_primary_10_1088_1361_6501_adb2b5
crossref_primary_10_1016_j_engappai_2024_108847
crossref_primary_10_3390_app132212375
Cites_doi 10.3390/sym14050909
10.17531/ein.2018.4.2
10.1061/JTEPBS.0000432
10.1109/MITS.2019.2926366
10.1109/JIOT.2020.3026211
10.1016/j.asoc.2020.106333
10.1016/j.ymssp.2019.106587
10.3390/app9235129
10.1109/TIE.2010.2051399
10.1016/j.conengprac.2020.104358
10.1109/TITS.2021.3109632
10.3390/s16040549
10.3390/app9235139
10.23919/IConAC.2018.8749078
10.1155/2017/3192967
10.1016/j.engfailanal.2016.04.020
10.1080/00423114.2022.2103436
10.1109/TIM.2018.2869193
10.1109/CAC.2017.8242827
10.1016/j.engfailanal.2021.105446
10.1109/CCSSE.2014.7224524
10.1016/j.measurement.2021.109672
10.1109/TVT.2019.2955221
10.23919/IConAC.2018.8749098
10.3233/JIFS-189688
10.1109/TIM.2020.2991573
10.3390/pr10040724
10.1177/0954409714567487
10.1109/TSMC.2020.3005433
10.1109/ICIT.2016.7474989
10.1109/ITSC48978.2021.9565075
10.1109/TITS.2021.3116966
10.1109/TIM.2020.2998863
10.1080/23248378.2022.2096132
10.1177/0361198119837222
10.1109/TITS.2020.3029946
10.1007/s11465-021-0652-4
10.1088/1742-6596/1314/1/012086
10.3390/s20164627
10.1177/1687814018811402
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22239438
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_64038f01e5bc490b99edb23df64968e7
PMC9740646
A746534796
36502142
10_3390_s22239438
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1201500
– fundername: National Natural Science Foundation of China
  grantid: U20B2050
– fundername: National Natural Science Foundation of China
  grantid: U1934222
– fundername: Key Research and Development Program of Shaanxi Province
  grantid: 2019GY-032
– fundername: Key Research and Development Program of Shaanxi Province
  grantid: 2020GY-039
– fundername: Key Research and Development Program of Shaanxi Province
  grantid: 2020GY-039; 2019GY-032
– fundername: National Natural Science Foundation of China
  grantid: U1934222; U20B2050; 62120106011
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-ed7dfadab1ce4d3d98297263ee46ebd6e47e92f2d003ab0a02138f5efacbb4fd3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896419800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:07:34 EDT 2025
Tue Nov 04 02:06:57 EST 2025
Fri Sep 05 11:17:39 EDT 2025
Tue Oct 07 07:08:22 EDT 2025
Tue Nov 04 18:15:19 EST 2025
Wed Feb 19 02:26:21 EST 2025
Tue Nov 18 21:57:45 EST 2025
Sat Nov 29 07:14:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords improved autoencoder
fault diagnosis
data augmentation
railway turnout system
unbalanced datasets
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-ed7dfadab1ce4d3d98297263ee46ebd6e47e92f2d003ab0a02138f5efacbb4fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5502-1579
0000-0002-6394-0492
0000-0001-5925-5743
0000-0001-6575-1954
OpenAccessLink https://doaj.org/article/64038f01e5bc490b99edb23df64968e7
PMID 36502142
PQID 2748562526
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_64038f01e5bc490b99edb23df64968e7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9740646
proquest_miscellaneous_2753292632
proquest_journals_2748562526
gale_infotracacademiconefile_A746534796
pubmed_primary_36502142
crossref_primary_10_3390_s22239438
crossref_citationtrail_10_3390_s22239438
PublicationCentury 2000
PublicationDate 20221202
PublicationDateYYYYMMDD 2022-12-02
PublicationDate_xml – month: 12
  year: 2022
  text: 20221202
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sun (ref_3) 2021; 13
Eker (ref_39) 2011; 58
ref_14
ref_13
ref_35
ref_33
ref_31
Wang (ref_7) 2021; 182
Atamuradov (ref_28) 2018; 68
Zhang (ref_6) 2016; 66
Yang (ref_36) 2020; 98
Guo (ref_12) 2020; 69
ref_18
Lei (ref_22) 2020; 137
Ou (ref_32) 2019; 2673
ref_17
ref_16
ref_38
ref_15
Vileiniskis (ref_21) 2016; 230
Ou (ref_10) 2018; 20
Huang (ref_24) 2020; 146
Chen (ref_1) 2022; 23
Xie (ref_30) 2022; 52
Huang (ref_9) 2017; 2017
Huang (ref_27) 2018; 10
Ji (ref_40) 2021; 41
Liu (ref_34) 2021; 16
ref_23
ref_20
Kou (ref_25) 2019; 69
Zhang (ref_4) 2021; 127
Marino (ref_11) 2020; 8
Chen (ref_41) 2020; 70
ref_2
Wang (ref_37) 2020; 92
Zhuo (ref_29) 2019; 1314
ref_26
Zhang (ref_8) 2022; 23
ref_5
Cao (ref_19) 2022; 23
References_xml – ident: ref_5
  doi: 10.3390/sym14050909
– volume: 20
  start-page: 514
  year: 2018
  ident: ref_10
  article-title: Hybrid fault diagnosis of railway switches based on the segmentation of monitoring curves
  publication-title: Eksploat. Niezawodn. Maint. Reliab.
  doi: 10.17531/ein.2018.4.2
– volume: 146
  start-page: 04020105
  year: 2020
  ident: ref_24
  article-title: Turnout fault diagnosis based on CNNs with self-generated samples
  publication-title: J. Transp. Eng. Part A Syst.
  doi: 10.1061/JTEPBS.0000432
– volume: 13
  start-page: 107
  year: 2021
  ident: ref_3
  article-title: A fault diagnosis method for train plug doors via sound signals
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2019.2926366
– volume: 8
  start-page: 4339
  year: 2020
  ident: ref_11
  article-title: A machine-learning-based distributed system for fault diagnosis with scalable detection quality in industrial IoT
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3026211
– volume: 92
  start-page: 106333
  year: 2020
  ident: ref_37
  article-title: Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106333
– volume: 137
  start-page: 106587
  year: 2020
  ident: ref_22
  article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106587
– ident: ref_33
  doi: 10.3390/app9235129
– volume: 58
  start-page: 1718
  year: 2011
  ident: ref_39
  article-title: A simple state-based prognostic model for railway turnout systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2051399
– volume: 98
  start-page: 104358
  year: 2020
  ident: ref_36
  article-title: An improved ensemble fusion autoencoder model for fault diagnosis from imbalanced and incomplete data
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104358
– volume: 23
  start-page: 12074
  year: 2022
  ident: ref_19
  article-title: A sound-based fault diagnosis method for railway point machines based on two-stage feature selection strategy and ensemble classifier
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3109632
– ident: ref_31
  doi: 10.3390/s16040549
– ident: ref_35
  doi: 10.3390/app9235139
– ident: ref_23
  doi: 10.23919/IConAC.2018.8749078
– volume: 2017
  start-page: 3192967
  year: 2017
  ident: ref_9
  article-title: Turnout fault diagnosis through dynamic time warping and signal normalization
  publication-title: J. Adv. Transp.
  doi: 10.1155/2017/3192967
– volume: 66
  start-page: 407
  year: 2016
  ident: ref_6
  article-title: Gearbox fault diagnosis of high-speed railway train
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2016.04.020
– ident: ref_14
  doi: 10.1080/00423114.2022.2103436
– volume: 68
  start-page: 2691
  year: 2018
  ident: ref_28
  article-title: Railway point machine prognostics based on feature fusion and health state assessment
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2869193
– ident: ref_20
  doi: 10.1109/CAC.2017.8242827
– volume: 127
  start-page: 105446
  year: 2021
  ident: ref_4
  article-title: A hierarchical method based on improved deep forest and case-based reasoning for railway turnout fault diagnosis
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105446
– ident: ref_18
  doi: 10.1109/CCSSE.2014.7224524
– volume: 182
  start-page: 109672
  year: 2021
  ident: ref_7
  article-title: A feature engineering framework for online fault diagnosis of freight train air brakes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109672
– volume: 69
  start-page: 2513
  year: 2019
  ident: ref_25
  article-title: A multi-dimension end-to-end CNN model for rotating devices fault diagnosis on high-speed train bogie
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2955221
– ident: ref_26
  doi: 10.23919/IConAC.2018.8749098
– volume: 41
  start-page: 4275
  year: 2021
  ident: ref_40
  article-title: An intelligent fault diagnosis method based on curve segmentation and SVM for rail transit turnout
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-189688
– volume: 70
  start-page: 1
  year: 2020
  ident: ref_41
  article-title: Improved fault diagnosis of railway switch system using energy-based thresholding wavelets (EBTW) and neural networks
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2991573
– ident: ref_2
  doi: 10.3390/pr10040724
– volume: 230
  start-page: 852
  year: 2016
  ident: ref_21
  article-title: A fault detection method for railway point systems
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail. Rapid Trans.
  doi: 10.1177/0954409714567487
– volume: 52
  start-page: 869
  year: 2022
  ident: ref_30
  article-title: An improved sparse autoencoder and multilevel denoising strategy for diagnosing early multiple intermittent faults
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2020.3005433
– ident: ref_17
  doi: 10.1109/ICIT.2016.7474989
– ident: ref_16
  doi: 10.1109/ITSC48978.2021.9565075
– volume: 23
  start-page: 12711
  year: 2022
  ident: ref_8
  article-title: Fault Prediction of Railway Turnout Systems Based on Improved Sparse Auto Encoder and Gated Recurrent Unit Network
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3116966
– volume: 69
  start-page: 8881
  year: 2020
  ident: ref_12
  article-title: An unsupervised fault-detection method for railway turnouts
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2998863
– ident: ref_15
  doi: 10.1080/23248378.2022.2096132
– volume: 2673
  start-page: 448
  year: 2019
  ident: ref_32
  article-title: A data-driven fault diagnosis method for railway turnouts
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198119837222
– ident: ref_13
– volume: 23
  start-page: 1700
  year: 2022
  ident: ref_1
  article-title: Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3029946
– volume: 16
  start-page: 829
  year: 2021
  ident: ref_34
  article-title: Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-021-0652-4
– volume: 1314
  start-page: 012086
  year: 2019
  ident: ref_29
  article-title: Research on rolling bearing fault diagnosis of high-speed train
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1314/1/012086
– ident: ref_38
  doi: 10.3390/s20164627
– volume: 10
  start-page: 1687814018811402
  year: 2018
  ident: ref_27
  article-title: Two-stage turnout fault diagnosis based on similarity function and fuzzy c-means
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814018811402
SSID ssj0023338
Score 2.4587655
Snippet In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9438
SubjectTerms Analysis
Artificial intelligence
China
Classification
Cognitive models
data augmentation
Discriminant analysis
Fault diagnosis
Feature selection
improved autoencoder
Intelligence
Methods
Railroads
railway turnout system
Safety and security measures
Signal processing
Stations
Support vector machines
Technology
Transportation
Transportation authorities
unbalanced datasets
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BlwMceC8EFmQQElyiprbz8Al1WSqQ2FWFFrScIjt2diuVZGlSEP-emcQNrUCcuCXxKLI143nYM98AvIgTYalNdBgrZ0IpLQ_NxKUE42qcK4XNuqOLzx_Sk5Ps7EzNfXl049MqNzqxU9Q92jPlbaMSHtu6oBPzMcZSGbnuPHl9-S2kHlJ01-obalyFPQLeykawN39_PP8yBGAC47EeXUhgqD9uyDYqSaUpWzapg-7_U0FvWajd7MktczS79X8XchtuereUTXs5ugNXXHUXbmyBFd6Diymb6fWyDY_67LxFw4679tMM_V72US-WP_RPdoo_qtct80jo7BCtpGV1xfrTC3yertua0DOtWzFdWXakW40fz7_6KqjqPnyavT198y70fRrCAt27NnQ2taW22kwKJ62wisp1eSKck4kzNnEydYqX3KIG0SbS6FaIrIxdqQtjZGnFPoyqunIPgWX0bnUU2TJD186YIjU2czw2ZVaUKQ_g1YZTeeFBzKmXxjLHYIaYmg9MDeD5QHrZI3f8jeiQ2D0QENh296Fened-7-aJjHC-0cTFppAqMko5a7iwZSJVkrk0gJckLDmpBJxMoX1lAy6JwLXyaUogdjJVSQAHG5nIva5o8t8iEMCzYRh3OV3d6MrVa6KJBVeErR_Ag178hjkLdLIJOC-AdEcwdxa1O1ItLjokcQwm0SVNHv17Wo_hOqeiD0ri4Qcwaldr9wSuFd_bRbN66jfZLyLXPEk
  priority: 102
  providerName: ProQuest
Title A Fault-Diagnosis Method for Railway Turnout Systems Based on Improved Autoencoder and Data Augmentation
URI https://www.ncbi.nlm.nih.gov/pubmed/36502142
https://www.proquest.com/docview/2748562526
https://www.proquest.com/docview/2753292632
https://pubmed.ncbi.nlm.nih.gov/PMC9740646
https://doaj.org/article/64038f01e5bc490b99edb23df64968e7
Volume 22
WOSCitedRecordID wos000896419800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nr9MwDI_gwQEOiG8KjykgJLhUr0vSpjluvE0gsWl6AjROVdK4700aLdpaEBf-duy2mzaBxIVL1CY-JI5d22n8M2Ov4kR6KhMdxgZcqJQXoRuCJhhXB1BIn7ZHF58_6Pk8XS7N4qDUF90J6-CBO8adJSqSaRENIXa5MpEzBrwT0heJMkkKbR45ej27YKoPtSRGXh2OkMSg_mxLVtAoSkI5sD4tSP-fn-IDW3R8T_LA8Ezvsju9x8hH3UzvsWtQ3me3D3AEH7CrEZ_aZl2H593FudWWz9rK0BxdUn5hV-sf9ienovZVU_MepJyP0YB5XpW8O1jA51FTVwRs6WHDben5ua0tdl5-7ROUyofs03Ty8e27sC-hEOboedUheO0L660b5qC89IYyaUUiAVQCziegNBhRCI_KbV1k0eIjt2MobO6cKrx8xE7KqoQnjKf07m0U-SJFr8u5XDufgohdkeaFFgF7s2Ntlvf44lTmYp1hnEG7kO13IWAv96TfOlCNvxGNaX_2BISD3XagdGS9dGT_ko6AvabdzUhbcTK57ZMOcEmEe5WNNOHLKW2SgJ3uBCDr1XibYcieUoQocPjFfhgVkP6q2BKqhmhiKQzB3gfscScv-zlL9H8J0y5g-kiSjhZ1PFKurlqQb4zz0FtMnv4PLjxjtwRlbdAtHHHKTupNA8_Zzfx7vdpuBuy6Xuq2TQfsxngyX1wMWm3CdvZrgn2L97PFl9_F8CdU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwl44H4JDDAIBC_RUjuJ4weEOsq0aV2FUJn6FuzY2SqVZLQp0_4Uv5FzkrRrBeJtD7wljmXZyedzcc75DsDrKBaWykT7kXLGD0PLfdNxkmhcjXO5sEl9dHHUl4NBMhqpzxvwa5ELQ2GVC5lYC2pbZnRGvo3eU0LGOo8_nP7wqWoU_V1dlNBoYHHgzs_QZZu93-_h933D-e6n4cc9v60q4GdojFS-s9Lm2mrTyVxohVWUXMpj4VwYO2NjF0qneM4t4l2bQKMSFEkeuVxnxoS5FTjuFbiKclxSCJkcXTh4Av29hr1ICBVsz0j3qpBSX1Z0Xl0a4E8FsKIB16MzV9Td7u3_7UXdgVutYc26zU64CxuuuAc3V-gW78NJl-3q-aTye0184XjGDusC2gwtd_ZFjydn-pwNcaByXrGWy53toJ63rCxYc_6C1915VRL_p3VTpgvLerrS2Hj8vc3jKh7A10tZ6kPYLMrCPQaW0L3VQWDzBI1TYzJpbOJ4ZPIkyyX34N0CC2nW0rBTNZBJiu4YwSZdwsaDV8uupw33yN867RCglh2ILrxuKKfHaSt90jgMcL5Bx0UmC1VglHLWcGHzOFRx4qQHbwmOKQk1nEym29wMXBLRg6VdSTR8oVSxB1sL1KWttJulF5Dz4OXyMcop-vmkC1fOqU8kuKLqAB48agC-nLNAN4Go_zyQa9BfW9T6k2J8UnOhozuMRnX85N_TegHX94aH_bS_Pzh4Cjc4pbBQSBLfgs1qOnfP4Fr2sxrPps_rDc3g22VvjN_nFJDX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglA58KYYCiwIBBcrzq7t9R4QSgkRVUtUoYJyM7vedRsp2CVxqPrX-HXM2E6aCMStB25-rKxd-5vXeuYbgJdRLCy1ifYj5Ywfhpb7pusk0bga53Jhk3rr4uuBHA6T0UgdbsCvRS0MpVUudGKtqG2Z0R55B6OnhJx1HnfyNi3isD94d_rDpw5S9Kd10U6jgci-Oz_D8G32dq-P3_oV54MPR-8_-m2HAT9Dx6TynZU211abbuZCK6yiQlMeC-fC2Bkbu1A6xXNuEfvaBBoNokjyyOU6MybMrcDnXoGrUghJbSPk6CLYExj7NUxGQqigMyM7rEIqg1mxf3WbgD-NwYo1XM_UXDF9g1v_80u7DTdbh5v1Ggm5AxuuuAs3VmgY78FJjw30fFL5_SbvcDxjn-rG2gw9evZZjydn-pwd4YPKecVajne2i_bfsrJgzb4MHvfmVUm8oNZNmS4s6-tK48Xj7219V3EfvlzKUh_AZlEW7iGwhM6tDgKbJ-i0GpNJYxPHI5MnWS65B28WuEizlp6duoRMUgzTCELpEkIevFgOPW04Sf42aJfAtRxANOL1hXJ6nLZaKY3DAOcbdF1kslAFRilnDRc2j0MVJ0568JqgmZKyw8lkuq3ZwCURbVjak0TPF0oVe7CzQGDaasFZegE_D54vb6P-op9SunDlnMZEgivqGuDBdgP25ZwFhg9ECeiBXBODtUWt3ynGJzVHOobJ6GzHj_49rWdwHeUhPdgb7j-GLU6VLZSpxHdgs5rO3RO4lv2sxrPp01q2GXy7bLn4DTiImYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fault-Diagnosis+Method+for+Railway+Turnout+Systems+Based+on+Improved+Autoencoder+and+Data+Augmentation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mengyang+Li&rft.au=Xinhong+Hei&rft.au=Wenjiang+Ji&rft.au=Lei+Zhu&rft.date=2022-12-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9438&rft_id=info:doi/10.3390%2Fs22239438&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64038f01e5bc490b99edb23df64968e7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon