A Fault-Diagnosis Method for Railway Turnout Systems Based on Improved Autoencoder and Data Augmentation
In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause in...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 22; H. 23; S. 9438 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
02.12.2022
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method. |
|---|---|
| AbstractList | In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method. In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method.In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method. |
| Audience | Academic |
| Author | Zhu, Lei Ji, Wenjiang Wang, Yichuan Li, Mengyang Hei, Xinhong Qiu, Yuan |
| AuthorAffiliation | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| AuthorAffiliation_xml | – name: School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| Author_xml | – sequence: 1 givenname: Mengyang surname: Li fullname: Li, Mengyang – sequence: 2 givenname: Xinhong orcidid: 0000-0002-6394-0492 surname: Hei fullname: Hei, Xinhong – sequence: 3 givenname: Wenjiang orcidid: 0000-0001-5502-1579 surname: Ji fullname: Ji, Wenjiang – sequence: 4 givenname: Lei orcidid: 0000-0001-5925-5743 surname: Zhu fullname: Zhu, Lei – sequence: 5 givenname: Yichuan orcidid: 0000-0001-6575-1954 surname: Wang fullname: Wang, Yichuan – sequence: 6 givenname: Yuan surname: Qiu fullname: Qiu, Yuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36502142$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl1vFCEUhiemxn7ohX_AkHijF9sywDDDjcnaWt2kxkTrNWHgsMtmBlZgavbfy7p10zaGC04Oz3nhPZzT6sgHD1X1usbnlAp8kQghVDDaPatOakbYrCMEHz2Ij6vTlNYYE0pp96I6przBpJyeVKs5ulbTkGdXTi19SC6hr5BXwSAbIvqu3PBbbdHtFH2YMvqxTRnGhD6qBAYFjxbjJoa7Es-nHMDrYCAi5Q26UlmV5HIEn1V2wb-snls1JHh1v59VP68_3V5-md18-7y4nN_MdIO7PAPTGquM6msNzFAjOiJawikA49AbDqwFQSwxGFPVY1Vs0M42YJXue2YNPasWe10T1FpuohtV3MqgnPybCHEpVcxODyA5w6UW19D0mgncCwGmJ9RYzgTvoC1aH_Zam6kfwejiJarhkejjE-9WchnupGgZ5owXgXf3AjH8miBlObqkYRiUhzAlSdqGElHskYK-fYKuQ-l6aVWhWNdw0pCd4PmeWqpiwHkbyr26LAOj02UqrCv5ect4Q1krdgVvHlo4vP3fBBTg_R7QMaQUwR6QGsvddMnDdBX24gmr3f53yyvc8J-KPzcL0VM |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_115920 crossref_primary_10_1155_2024_3715605 crossref_primary_10_1088_1742_6596_3024_1_012001 crossref_primary_10_32604_cmc_2024_048995 crossref_primary_10_3390_jsan13050060 crossref_primary_10_1080_10589759_2025_2523472 crossref_primary_10_1007_s40534_025_00396_2 crossref_primary_10_1016_j_engfailanal_2025_109597 crossref_primary_10_1088_1361_6501_adb2b5 crossref_primary_10_1016_j_engappai_2024_108847 crossref_primary_10_3390_app132212375 |
| Cites_doi | 10.3390/sym14050909 10.17531/ein.2018.4.2 10.1061/JTEPBS.0000432 10.1109/MITS.2019.2926366 10.1109/JIOT.2020.3026211 10.1016/j.asoc.2020.106333 10.1016/j.ymssp.2019.106587 10.3390/app9235129 10.1109/TIE.2010.2051399 10.1016/j.conengprac.2020.104358 10.1109/TITS.2021.3109632 10.3390/s16040549 10.3390/app9235139 10.23919/IConAC.2018.8749078 10.1155/2017/3192967 10.1016/j.engfailanal.2016.04.020 10.1080/00423114.2022.2103436 10.1109/TIM.2018.2869193 10.1109/CAC.2017.8242827 10.1016/j.engfailanal.2021.105446 10.1109/CCSSE.2014.7224524 10.1016/j.measurement.2021.109672 10.1109/TVT.2019.2955221 10.23919/IConAC.2018.8749098 10.3233/JIFS-189688 10.1109/TIM.2020.2991573 10.3390/pr10040724 10.1177/0954409714567487 10.1109/TSMC.2020.3005433 10.1109/ICIT.2016.7474989 10.1109/ITSC48978.2021.9565075 10.1109/TITS.2021.3116966 10.1109/TIM.2020.2998863 10.1080/23248378.2022.2096132 10.1177/0361198119837222 10.1109/TITS.2020.3029946 10.1007/s11465-021-0652-4 10.1088/1742-6596/1314/1/012086 10.3390/s20164627 10.1177/1687814018811402 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s22239438 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_64038f01e5bc490b99edb23df64968e7 PMC9740646 A746534796 36502142 10_3390_s22239438 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFB1201500 – fundername: National Natural Science Foundation of China grantid: U20B2050 – fundername: National Natural Science Foundation of China grantid: U1934222 – fundername: Key Research and Development Program of Shaanxi Province grantid: 2019GY-032 – fundername: Key Research and Development Program of Shaanxi Province grantid: 2020GY-039 – fundername: Key Research and Development Program of Shaanxi Province grantid: 2020GY-039; 2019GY-032 – fundername: National Natural Science Foundation of China grantid: U1934222; U20B2050; 62120106011 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c508t-ed7dfadab1ce4d3d98297263ee46ebd6e47e92f2d003ab0a02138f5efacbb4fd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896419800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:07:34 EDT 2025 Tue Nov 04 02:06:57 EST 2025 Fri Sep 05 11:17:39 EDT 2025 Tue Oct 07 07:08:22 EDT 2025 Tue Nov 04 18:15:19 EST 2025 Wed Feb 19 02:26:21 EST 2025 Tue Nov 18 21:57:45 EST 2025 Sat Nov 29 07:14:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | improved autoencoder fault diagnosis data augmentation railway turnout system unbalanced datasets |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-ed7dfadab1ce4d3d98297263ee46ebd6e47e92f2d003ab0a02138f5efacbb4fd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5502-1579 0000-0002-6394-0492 0000-0001-5925-5743 0000-0001-6575-1954 |
| OpenAccessLink | https://doaj.org/article/64038f01e5bc490b99edb23df64968e7 |
| PMID | 36502142 |
| PQID | 2748562526 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_64038f01e5bc490b99edb23df64968e7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9740646 proquest_miscellaneous_2753292632 proquest_journals_2748562526 gale_infotracacademiconefile_A746534796 pubmed_primary_36502142 crossref_primary_10_3390_s22239438 crossref_citationtrail_10_3390_s22239438 |
| PublicationCentury | 2000 |
| PublicationDate | 20221202 |
| PublicationDateYYYYMMDD | 2022-12-02 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221202 day: 2 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sun (ref_3) 2021; 13 Eker (ref_39) 2011; 58 ref_14 ref_13 ref_35 ref_33 ref_31 Wang (ref_7) 2021; 182 Atamuradov (ref_28) 2018; 68 Zhang (ref_6) 2016; 66 Yang (ref_36) 2020; 98 Guo (ref_12) 2020; 69 ref_18 Lei (ref_22) 2020; 137 Ou (ref_32) 2019; 2673 ref_17 ref_16 ref_38 ref_15 Vileiniskis (ref_21) 2016; 230 Ou (ref_10) 2018; 20 Huang (ref_24) 2020; 146 Chen (ref_1) 2022; 23 Xie (ref_30) 2022; 52 Huang (ref_9) 2017; 2017 Huang (ref_27) 2018; 10 Ji (ref_40) 2021; 41 Liu (ref_34) 2021; 16 ref_23 ref_20 Kou (ref_25) 2019; 69 Zhang (ref_4) 2021; 127 Marino (ref_11) 2020; 8 Chen (ref_41) 2020; 70 ref_2 Wang (ref_37) 2020; 92 Zhuo (ref_29) 2019; 1314 ref_26 Zhang (ref_8) 2022; 23 ref_5 Cao (ref_19) 2022; 23 |
| References_xml | – ident: ref_5 doi: 10.3390/sym14050909 – volume: 20 start-page: 514 year: 2018 ident: ref_10 article-title: Hybrid fault diagnosis of railway switches based on the segmentation of monitoring curves publication-title: Eksploat. Niezawodn. Maint. Reliab. doi: 10.17531/ein.2018.4.2 – volume: 146 start-page: 04020105 year: 2020 ident: ref_24 article-title: Turnout fault diagnosis based on CNNs with self-generated samples publication-title: J. Transp. Eng. Part A Syst. doi: 10.1061/JTEPBS.0000432 – volume: 13 start-page: 107 year: 2021 ident: ref_3 article-title: A fault diagnosis method for train plug doors via sound signals publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2019.2926366 – volume: 8 start-page: 4339 year: 2020 ident: ref_11 article-title: A machine-learning-based distributed system for fault diagnosis with scalable detection quality in industrial IoT publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3026211 – volume: 92 start-page: 106333 year: 2020 ident: ref_37 article-title: Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106333 – volume: 137 start-page: 106587 year: 2020 ident: ref_22 article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106587 – ident: ref_33 doi: 10.3390/app9235129 – volume: 58 start-page: 1718 year: 2011 ident: ref_39 article-title: A simple state-based prognostic model for railway turnout systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2010.2051399 – volume: 98 start-page: 104358 year: 2020 ident: ref_36 article-title: An improved ensemble fusion autoencoder model for fault diagnosis from imbalanced and incomplete data publication-title: Control. Eng. Pract. doi: 10.1016/j.conengprac.2020.104358 – volume: 23 start-page: 12074 year: 2022 ident: ref_19 article-title: A sound-based fault diagnosis method for railway point machines based on two-stage feature selection strategy and ensemble classifier publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3109632 – ident: ref_31 doi: 10.3390/s16040549 – ident: ref_35 doi: 10.3390/app9235139 – ident: ref_23 doi: 10.23919/IConAC.2018.8749078 – volume: 2017 start-page: 3192967 year: 2017 ident: ref_9 article-title: Turnout fault diagnosis through dynamic time warping and signal normalization publication-title: J. Adv. Transp. doi: 10.1155/2017/3192967 – volume: 66 start-page: 407 year: 2016 ident: ref_6 article-title: Gearbox fault diagnosis of high-speed railway train publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2016.04.020 – ident: ref_14 doi: 10.1080/00423114.2022.2103436 – volume: 68 start-page: 2691 year: 2018 ident: ref_28 article-title: Railway point machine prognostics based on feature fusion and health state assessment publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2869193 – ident: ref_20 doi: 10.1109/CAC.2017.8242827 – volume: 127 start-page: 105446 year: 2021 ident: ref_4 article-title: A hierarchical method based on improved deep forest and case-based reasoning for railway turnout fault diagnosis publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105446 – ident: ref_18 doi: 10.1109/CCSSE.2014.7224524 – volume: 182 start-page: 109672 year: 2021 ident: ref_7 article-title: A feature engineering framework for online fault diagnosis of freight train air brakes publication-title: Measurement doi: 10.1016/j.measurement.2021.109672 – volume: 69 start-page: 2513 year: 2019 ident: ref_25 article-title: A multi-dimension end-to-end CNN model for rotating devices fault diagnosis on high-speed train bogie publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2955221 – ident: ref_26 doi: 10.23919/IConAC.2018.8749098 – volume: 41 start-page: 4275 year: 2021 ident: ref_40 article-title: An intelligent fault diagnosis method based on curve segmentation and SVM for rail transit turnout publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-189688 – volume: 70 start-page: 1 year: 2020 ident: ref_41 article-title: Improved fault diagnosis of railway switch system using energy-based thresholding wavelets (EBTW) and neural networks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2991573 – ident: ref_2 doi: 10.3390/pr10040724 – volume: 230 start-page: 852 year: 2016 ident: ref_21 article-title: A fault detection method for railway point systems publication-title: Proc. Inst. Mech. Eng. Part F J. Rail. Rapid Trans. doi: 10.1177/0954409714567487 – volume: 52 start-page: 869 year: 2022 ident: ref_30 article-title: An improved sparse autoencoder and multilevel denoising strategy for diagnosing early multiple intermittent faults publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2020.3005433 – ident: ref_17 doi: 10.1109/ICIT.2016.7474989 – ident: ref_16 doi: 10.1109/ITSC48978.2021.9565075 – volume: 23 start-page: 12711 year: 2022 ident: ref_8 article-title: Fault Prediction of Railway Turnout Systems Based on Improved Sparse Auto Encoder and Gated Recurrent Unit Network publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3116966 – volume: 69 start-page: 8881 year: 2020 ident: ref_12 article-title: An unsupervised fault-detection method for railway turnouts publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2998863 – ident: ref_15 doi: 10.1080/23248378.2022.2096132 – volume: 2673 start-page: 448 year: 2019 ident: ref_32 article-title: A data-driven fault diagnosis method for railway turnouts publication-title: Transp. Res. Rec. doi: 10.1177/0361198119837222 – ident: ref_13 – volume: 23 start-page: 1700 year: 2022 ident: ref_1 article-title: Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3029946 – volume: 16 start-page: 829 year: 2021 ident: ref_34 article-title: Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning publication-title: Front. Mech. Eng. doi: 10.1007/s11465-021-0652-4 – volume: 1314 start-page: 012086 year: 2019 ident: ref_29 article-title: Research on rolling bearing fault diagnosis of high-speed train publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1314/1/012086 – ident: ref_38 doi: 10.3390/s20164627 – volume: 10 start-page: 1687814018811402 year: 2018 ident: ref_27 article-title: Two-stage turnout fault diagnosis based on similarity function and fuzzy c-means publication-title: Adv. Mech. Eng. doi: 10.1177/1687814018811402 |
| SSID | ssj0023338 |
| Score | 2.4587655 |
| Snippet | In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 9438 |
| SubjectTerms | Analysis Artificial intelligence China Classification Cognitive models data augmentation Discriminant analysis Fault diagnosis Feature selection improved autoencoder Intelligence Methods Railroads railway turnout system Safety and security measures Signal processing Stations Support vector machines Technology Transportation Transportation authorities unbalanced datasets Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BlwMceC8EFmQQElyiprbz8Al1WSqQ2FWFFrScIjt2diuVZGlSEP-emcQNrUCcuCXxKLI143nYM98AvIgTYalNdBgrZ0IpLQ_NxKUE42qcK4XNuqOLzx_Sk5Ps7EzNfXl049MqNzqxU9Q92jPlbaMSHtu6oBPzMcZSGbnuPHl9-S2kHlJ01-obalyFPQLeykawN39_PP8yBGAC47EeXUhgqD9uyDYqSaUpWzapg-7_U0FvWajd7MktczS79X8XchtuereUTXs5ugNXXHUXbmyBFd6Diymb6fWyDY_67LxFw4679tMM_V72US-WP_RPdoo_qtct80jo7BCtpGV1xfrTC3yertua0DOtWzFdWXakW40fz7_6KqjqPnyavT198y70fRrCAt27NnQ2taW22kwKJ62wisp1eSKck4kzNnEydYqX3KIG0SbS6FaIrIxdqQtjZGnFPoyqunIPgWX0bnUU2TJD186YIjU2czw2ZVaUKQ_g1YZTeeFBzKmXxjLHYIaYmg9MDeD5QHrZI3f8jeiQ2D0QENh296Fened-7-aJjHC-0cTFppAqMko5a7iwZSJVkrk0gJckLDmpBJxMoX1lAy6JwLXyaUogdjJVSQAHG5nIva5o8t8iEMCzYRh3OV3d6MrVa6KJBVeErR_Ag178hjkLdLIJOC-AdEcwdxa1O1ItLjokcQwm0SVNHv17Wo_hOqeiD0ri4Qcwaldr9wSuFd_bRbN66jfZLyLXPEk priority: 102 providerName: ProQuest |
| Title | A Fault-Diagnosis Method for Railway Turnout Systems Based on Improved Autoencoder and Data Augmentation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36502142 https://www.proquest.com/docview/2748562526 https://www.proquest.com/docview/2753292632 https://pubmed.ncbi.nlm.nih.gov/PMC9740646 https://doaj.org/article/64038f01e5bc490b99edb23df64968e7 |
| Volume | 22 |
| WOSCitedRecordID | wos000896419800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nr9MwDI_gwQEOiG8KjykgJLhUr0vSpjluvE0gsWl6AjROVdK4700aLdpaEBf-duy2mzaBxIVL1CY-JI5d22n8M2Ov4kR6KhMdxgZcqJQXoRuCJhhXB1BIn7ZHF58_6Pk8XS7N4qDUF90J6-CBO8adJSqSaRENIXa5MpEzBrwT0heJMkkKbR45ej27YKoPtSRGXh2OkMSg_mxLVtAoSkI5sD4tSP-fn-IDW3R8T_LA8Ezvsju9x8hH3UzvsWtQ3me3D3AEH7CrEZ_aZl2H593FudWWz9rK0BxdUn5hV-sf9ienovZVU_MepJyP0YB5XpW8O1jA51FTVwRs6WHDben5ua0tdl5-7ROUyofs03Ty8e27sC-hEOboedUheO0L660b5qC89IYyaUUiAVQCziegNBhRCI_KbV1k0eIjt2MobO6cKrx8xE7KqoQnjKf07m0U-SJFr8u5XDufgohdkeaFFgF7s2Ntlvf44lTmYp1hnEG7kO13IWAv96TfOlCNvxGNaX_2BISD3XagdGS9dGT_ko6AvabdzUhbcTK57ZMOcEmEe5WNNOHLKW2SgJ3uBCDr1XibYcieUoQocPjFfhgVkP6q2BKqhmhiKQzB3gfscScv-zlL9H8J0y5g-kiSjhZ1PFKurlqQb4zz0FtMnv4PLjxjtwRlbdAtHHHKTupNA8_Zzfx7vdpuBuy6Xuq2TQfsxngyX1wMWm3CdvZrgn2L97PFl9_F8CdU |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwl44H4JDDAIBC_RUjuJ4weEOsq0aV2FUJn6FuzY2SqVZLQp0_4Uv5FzkrRrBeJtD7wljmXZyedzcc75DsDrKBaWykT7kXLGD0PLfdNxkmhcjXO5sEl9dHHUl4NBMhqpzxvwa5ELQ2GVC5lYC2pbZnRGvo3eU0LGOo8_nP7wqWoU_V1dlNBoYHHgzs_QZZu93-_h933D-e6n4cc9v60q4GdojFS-s9Lm2mrTyVxohVWUXMpj4VwYO2NjF0qneM4t4l2bQKMSFEkeuVxnxoS5FTjuFbiKclxSCJkcXTh4Av29hr1ICBVsz0j3qpBSX1Z0Xl0a4E8FsKIB16MzV9Td7u3_7UXdgVutYc26zU64CxuuuAc3V-gW78NJl-3q-aTye0184XjGDusC2gwtd_ZFjydn-pwNcaByXrGWy53toJ63rCxYc_6C1915VRL_p3VTpgvLerrS2Hj8vc3jKh7A10tZ6kPYLMrCPQaW0L3VQWDzBI1TYzJpbOJ4ZPIkyyX34N0CC2nW0rBTNZBJiu4YwSZdwsaDV8uupw33yN867RCglh2ILrxuKKfHaSt90jgMcL5Bx0UmC1VglHLWcGHzOFRx4qQHbwmOKQk1nEym29wMXBLRg6VdSTR8oVSxB1sL1KWttJulF5Dz4OXyMcop-vmkC1fOqU8kuKLqAB48agC-nLNAN4Go_zyQa9BfW9T6k2J8UnOhozuMRnX85N_TegHX94aH_bS_Pzh4Cjc4pbBQSBLfgs1qOnfP4Fr2sxrPps_rDc3g22VvjN_nFJDX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglA58KYYCiwIBBcrzq7t9R4QSgkRVUtUoYJyM7vedRsp2CVxqPrX-HXM2E6aCMStB25-rKxd-5vXeuYbgJdRLCy1ifYj5Ywfhpb7pusk0bga53Jhk3rr4uuBHA6T0UgdbsCvRS0MpVUudGKtqG2Z0R55B6OnhJx1HnfyNi3isD94d_rDpw5S9Kd10U6jgci-Oz_D8G32dq-P3_oV54MPR-8_-m2HAT9Dx6TynZU211abbuZCK6yiQlMeC-fC2Bkbu1A6xXNuEfvaBBoNokjyyOU6MybMrcDnXoGrUghJbSPk6CLYExj7NUxGQqigMyM7rEIqg1mxf3WbgD-NwYo1XM_UXDF9g1v_80u7DTdbh5v1Ggm5AxuuuAs3VmgY78FJjw30fFL5_SbvcDxjn-rG2gw9evZZjydn-pwd4YPKecVajne2i_bfsrJgzb4MHvfmVUm8oNZNmS4s6-tK48Xj7219V3EfvlzKUh_AZlEW7iGwhM6tDgKbJ-i0GpNJYxPHI5MnWS65B28WuEizlp6duoRMUgzTCELpEkIevFgOPW04Sf42aJfAtRxANOL1hXJ6nLZaKY3DAOcbdF1kslAFRilnDRc2j0MVJ0568JqgmZKyw8lkuq3ZwCURbVjak0TPF0oVe7CzQGDaasFZegE_D54vb6P-op9SunDlnMZEgivqGuDBdgP25ZwFhg9ECeiBXBODtUWt3ynGJzVHOobJ6GzHj_49rWdwHeUhPdgb7j-GLU6VLZSpxHdgs5rO3RO4lv2sxrPp01q2GXy7bLn4DTiImYs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fault-Diagnosis+Method+for+Railway+Turnout+Systems+Based+on+Improved+Autoencoder+and+Data+Augmentation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mengyang+Li&rft.au=Xinhong+Hei&rft.au=Wenjiang+Ji&rft.au=Lei+Zhu&rft.date=2022-12-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9438&rft_id=info:doi/10.3390%2Fs22239438&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64038f01e5bc490b99edb23df64968e7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |