Leveraging Self-Attention Mechanism for Attitude Estimation in Smartphones
Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, su...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 22; H. 22; S. 9011 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
21.11.2022
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31∘, the GRU 21.90∘, the UKF 16.38∘, the Attformer 16.28∘ and, finally, the UKF–Attformer had mean angular distance of 10.86∘. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities. |
|---|---|
| AbstractList | Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31∘, the GRU 21.90∘, the UKF 16.38∘, the Attformer 16.28∘ and, finally, the UKF–Attformer had mean angular distance of 10.86∘. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities. Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31∘, the GRU 21.90∘, the UKF 16.38∘, the Attformer 16.28∘ and, finally, the UKF-Attformer had mean angular distance of 10.86∘. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities.Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31∘, the GRU 21.90∘, the UKF 16.38∘, the Attformer 16.28∘ and, finally, the UKF-Attformer had mean angular distance of 10.86∘. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities. Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31[sup.∘], the GRU 21.90[sup.∘], the UKF 16.38[sup.∘], the Attformer 16.28[sup.∘] and, finally, the UKF–Attformer had mean angular distance of 10.86[sup.∘]. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities. |
| Audience | Academic |
| Author | Shao, Wei Li, Wenchao Brotchie, James Kealy, Allison |
| AuthorAffiliation | 2 School of Electrical and Computer Engineering, UC Davis, Davis, CA 95616, USA 1 School of Science, RMIT, Melbourne, VIC 3000, Australia 3 Victorian Department of Environment, Land, Water and Planning, Melbourne, VIC 3000, Australia |
| AuthorAffiliation_xml | – name: 1 School of Science, RMIT, Melbourne, VIC 3000, Australia – name: 3 Victorian Department of Environment, Land, Water and Planning, Melbourne, VIC 3000, Australia – name: 2 School of Electrical and Computer Engineering, UC Davis, Davis, CA 95616, USA |
| Author_xml | – sequence: 1 givenname: James orcidid: 0000-0001-7912-8741 surname: Brotchie fullname: Brotchie, James – sequence: 2 givenname: Wei surname: Shao fullname: Shao, Wei – sequence: 3 givenname: Wenchao orcidid: 0000-0001-8926-5539 surname: Li fullname: Li, Wenchao – sequence: 4 givenname: Allison surname: Kealy fullname: Kealy, Allison |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36433607$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhiNURD_gwB9AkbjAIe3EdhL7grSqChRtxaFwthxnsutVYi92Uol_z3S3rNqq9sGj8TOv37F9mh354DHL3pdwzrmCi8RoKCjLV9lJKZgoJGNw9Cg-zk5T2gAwzrl8kx3zWnBeQ3OS_VjiHUazcn6V3-LQF4tpQj-54PMbtGvjXRrzPsSc8m6aO8yv0uRGsyOcz29HE6ftmvykt9nr3gwJ3z2sZ9nvr1e_Lr8Xy5_fri8Xy8JWIKcCOyHrrq8EmgYaBOxKI1vGoRGIVW3bSpXQSUBTNqJtK9YD9JVEgxSpruJn2fVetwtmo7eR3MS_Ohind4kQV5o8OTugtg0XguqZRerYmFZ1UkBtrClba4QkrS97re3cjthZaj2a4Yno0x3v1noV7rSqleKNIIFPDwIx_JkxTXp0yeIwGI9hTpo1AipoJL8_6-MzdBPm6OmqiOJKVLViNVHne2plqAHn-0DnWpodjs7SPfeO8otG1BUXAIoKPjxu4eD9_xsT8HkP2BhSitgfkBL0_f_Rh_9D7MUz1rpp99jkwg0vVPwDLjXGMA |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2023_113105 crossref_primary_10_3390_s23063217 |
| Cites_doi | 10.1109/TAC.2008.923738 10.1109/MFI.2010.5604460 10.1109/ROBOT.2004.1308895 10.1109/ISSNIP.2014.6827613 10.1016/j.heliyon.2018.e00938 10.1109/ICASSP.2018.8462497 10.1007/s10851-009-0161-2 10.1007/978-3-030-63846-7_47 10.2514/3.56190 10.2514/1.17951 10.1109/41.982256 10.1109/ACCESS.2021.3135012 10.1609/aaai.v32i1.12102 10.1109/LRA.2018.2792142 10.1109/LRA.2019.2959507 10.1609/aaai.v35i7.16763 10.3390/s21144650 10.1109/TII.2022.3158935 10.1155/2014/540235 10.2514/3.55779 10.3390/s90402586 10.2514/1.22452 10.23919/FUSION45008.2020.9190634 10.3390/ai2030028 10.3390/s19102372 10.1109/TVT.2021.3101515 10.1016/j.inffus.2020.10.018 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22229011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c7344f002ce643aab9d8406aca1bca48 PMC9699374 A746534009 36433607 10_3390_s22229011 |
| Genre | Journal Article |
| GeographicLocations | Australia |
| GeographicLocations_xml | – name: Australia |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c508t-ed486df54ea707e0ed1a8b23074ee56cb5910d80ea174bb52f00f58eae2f09d53 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887781000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:57:50 EDT 2025 Tue Nov 04 02:08:34 EST 2025 Wed Oct 01 14:32:59 EDT 2025 Tue Oct 07 07:51:18 EDT 2025 Tue Nov 04 18:17:24 EST 2025 Thu Apr 03 07:06:36 EDT 2025 Sat Nov 29 07:18:04 EST 2025 Tue Nov 18 22:24:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | inertial measurement unit deep learning self-attention smartphone attitude estimation |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-ed486df54ea707e0ed1a8b23074ee56cb5910d80ea174bb52f00f58eae2f09d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7912-8741 0000-0001-8926-5539 |
| OpenAccessLink | https://www.proquest.com/docview/2739456926?pq-origsite=%requestingapplication% |
| PMID | 36433607 |
| PQID | 2739456926 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c7344f002ce643aab9d8406aca1bca48 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9699374 proquest_miscellaneous_2740507838 proquest_journals_2739456926 gale_infotracacademiconefile_A746534009 pubmed_primary_36433607 crossref_primary_10_3390_s22229011 crossref_citationtrail_10_3390_s22229011 |
| PublicationCentury | 2000 |
| PublicationDate | 20221121 |
| PublicationDateYYYYMMDD | 2022-11-21 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221121 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lefferts (ref_2) 1982; 5 Liu (ref_3) 2014; 2014 Armesto (ref_37) 2021; 70 Abiodun (ref_11) 2018; 4 Ruegamer (ref_1) 2015; 3 ref_14 ref_36 ref_13 ref_35 Farrenkopf (ref_26) 1978; 1 Esfahani (ref_21) 2019; 5 ref_33 ref_10 ref_32 ref_31 Fathian (ref_29) 2018; 3 ref_30 Chiang (ref_18) 2009; 9 Zweiri (ref_20) 2019; 69 ref_19 Mahony (ref_27) 2008; 53 ref_39 ref_16 ref_38 ref_15 Shi (ref_34) 2002; 49 ref_25 ref_23 ref_22 ref_42 ref_40 Brossard (ref_17) 2020; 5 Nazarahari (ref_28) 2021; 68 Brotchie (ref_6) 2021; 9 Oshman (ref_8) 2006; 29 Weber (ref_24) 2021; 2 ref_9 Pazouki (ref_12) 2021; 9 ref_5 ref_4 Crassidis (ref_7) 2007; 30 Huynh (ref_41) 2009; 35 |
| References_xml | – ident: ref_9 – ident: ref_30 – volume: 9 start-page: 1 year: 2021 ident: ref_12 article-title: A transformer self-attention model for time series forecasting publication-title: J. Electr. Comput. Eng. Innov. (JECEI) – volume: 53 start-page: 1203 year: 2008 ident: ref_27 article-title: Nonlinear complementary filters on the special orthogonal group publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.923738 – ident: ref_5 doi: 10.1109/MFI.2010.5604460 – ident: ref_40 doi: 10.1109/ROBOT.2004.1308895 – ident: ref_4 doi: 10.1109/ISSNIP.2014.6827613 – volume: 4 start-page: e00938 year: 2018 ident: ref_11 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – ident: ref_15 doi: 10.1109/ICASSP.2018.8462497 – volume: 35 start-page: 155 year: 2009 ident: ref_41 article-title: Metrics for 3D rotations: Comparison and analysis publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-009-0161-2 – volume: 3 start-page: 17 year: 2015 ident: ref_1 article-title: Jamming and spoofing of gnss signals—An underestimated risk?! publication-title: Proc. Wisdom Ages Challenges Mod. World – ident: ref_16 – ident: ref_19 doi: 10.1007/978-3-030-63846-7_47 – ident: ref_39 – volume: 5 start-page: 417 year: 1982 ident: ref_2 article-title: Kalman filtering for spacecraft attitude estimation publication-title: J. Guid. Control Dyn. doi: 10.2514/3.56190 – volume: 29 start-page: 879 year: 2006 ident: ref_8 article-title: Attitude estimation from vector observations using a genetic-algorithm-embedded quaternion particle filter publication-title: J. Guid. Control Dyn. doi: 10.2514/1.17951 – volume: 49 start-page: 124 year: 2002 ident: ref_34 article-title: Speed estimation of an induction motor drive using an optimized extended Kalman filter publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.982256 – ident: ref_14 – volume: 9 start-page: 168806 year: 2021 ident: ref_6 article-title: Evaluating Tracking Rotations using Maximal Entropy Distributions for Smartphone Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3135012 – ident: ref_42 – ident: ref_35 – ident: ref_22 doi: 10.1609/aaai.v32i1.12102 – volume: 3 start-page: 857 year: 2018 ident: ref_29 article-title: QuEst: A Quaternion-Based Approach for Camera Motion Estimation From Minimal Feature Points publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2792142 – volume: 5 start-page: 399 year: 2019 ident: ref_21 article-title: OriNet: Robust 3-D orientation estimation with a single particular IMU publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2959507 – volume: 69 start-page: 24 year: 2019 ident: ref_20 article-title: Deep-learning-based neural network training for state estimation enhancement: Application to attitude estimation publication-title: IEEE Trans. Instrum. Meas. – ident: ref_23 doi: 10.1609/aaai.v35i7.16763 – ident: ref_25 – ident: ref_31 – ident: ref_36 doi: 10.3390/s21144650 – ident: ref_38 doi: 10.1109/TII.2022.3158935 – volume: 2014 start-page: 540235 year: 2014 ident: ref_3 article-title: An efficient nonlinear filter for spacecraft attitude estimation publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2014/540235 – ident: ref_10 – volume: 1 start-page: 282 year: 1978 ident: ref_26 article-title: Analytic steady-state accuracy solutions for two common spacecraft attitude estimators publication-title: J. Guid. Control doi: 10.2514/3.55779 – volume: 9 start-page: 2586 year: 2009 ident: ref_18 article-title: An artificial neural network embedded position and orientation determination algorithm for low cost MEMS INS/GPS integrated sensors publication-title: Sensors doi: 10.3390/s90402586 – ident: ref_13 – volume: 5 start-page: 4796 year: 2020 ident: ref_17 article-title: Denoising imu gyroscopes with deep learning for open-loop attitude estimation publication-title: IEEE Robot. Autom. Lett. – volume: 30 start-page: 12 year: 2007 ident: ref_7 article-title: Survey of nonlinear attitude estimation methods publication-title: J. Guid. Control Dyn. doi: 10.2514/1.22452 – ident: ref_32 doi: 10.23919/FUSION45008.2020.9190634 – volume: 2 start-page: 444 year: 2021 ident: ref_24 article-title: RIANN–A Robust Neural Network Outperforms Attitude Estimation Filters publication-title: AI doi: 10.3390/ai2030028 – ident: ref_33 doi: 10.3390/s19102372 – volume: 70 start-page: 8617 year: 2021 ident: ref_37 article-title: Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3101515 – volume: 68 start-page: 67 year: 2021 ident: ref_28 article-title: 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: Methods, lessons learned, and future challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.10.018 |
| SSID | ssj0023338 |
| Score | 2.4197578 |
| Snippet | Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 9011 |
| SubjectTerms | Accelerometry Algorithms Analysis attitude estimation Beliefs, opinions and attitudes Bias Computational linguistics deep learning Employees inertial measurement unit Language processing Natural language interfaces Neural networks self-attention Sensors Smart phones Smartphone Smartphones |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9cwEA8yfNAHmfNX55Qogr6UJW3TJI9fZWOIDmEKewv5ccXCVmXt_Pu9a_st36Lgi28lCW16l8vdh1w-x9ibyqLjaGzIBRQIUFLSuYfa5kYFYRuQDYhmLDahz8_N5aX9slPqi3LCJnrgSXDHUZdV1aDdRkDn6X2wCTFJ7aOXgRi5afcV2m7B1Ay1SkReE49QiaD-uC-obLWQcuV9RpL-P7fiHV-0zpPccTyn--zBHDHyzTTTh-wOdAfs_g6P4CP28RPgihzrDfELuGryzTBMaYz8M9DV3ra_5hidcmxvicySn6BlT5cWedvxi2uUAyWpQ_-YfTs9-frhLJ-LJOQRY6shh1SZOjWqAq-FBgFJehMovbsCUHUMCgOCZAR4xB4hqAJl2SgDHvDJJlU-YXsdvv8Z49ECCtQAmKAqXYCxWoIFBIypwHepjL3bCs_FmUGcCllcOUQSJGe3yDljr5ehPyfajL8Nek8aWAYQ0_XYgPp3s_7dv_SfsbekP0f2iJOJfr5WgL9EzFZuo4lBDncqm7GjrYrdbKi9w-jNYgxpizpjr5ZuNDE6N_Ed_LilMRjV0nEnfuzptCKWOZc4qbIWOmN6tVZWP7Xu6drvI423rSk2rA7_hxSes3sF3cuQMi_kEdsbbm7hBbsbfw1tf_NytI3f1hsWNg priority: 102 providerName: Directory of Open Access Journals |
| Title | Leveraging Self-Attention Mechanism for Attitude Estimation in Smartphones |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36433607 https://www.proquest.com/docview/2739456926 https://www.proquest.com/docview/2740507838 https://pubmed.ncbi.nlm.nih.gov/PMC9699374 https://doaj.org/article/c7344f002ce643aab9d8406aca1bca48 |
| Volume | 22 |
| WOSCitedRecordID | wos000887781000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BywEOvAuGEhmEBBer6-d6TyhFqQCRKKIghZO13h2DpdYpscuR386M7bixQFy4WNF65Yw9793ZbwBeRoocR6FyT2BACYq10tOYKC-Nc6EK9AsURdtsQi4W6Wqllv2CW92XVW5tYmuo7drwGvkRuVlFzl4FyZuLHx53jeLd1b6FxnXY57bZLOdydZVwhZR_dWhCIaX2R3XAzauF7498UAvV_6dB3vFI42rJHfdzcud_Cb8Lt_vA0512knIPrmF1H27twBE-gA8fkQS7bVvknuJZ4U2bpquGdOfIJ4TL-tylINel8ZIxMd0ZGYju7KNbVu7pOckh17pj_RC-nMw-v33n9b0WPEMhWuOhjdLEFnGEWgqJAq2v05yrxCPEODF5THGFTQVqSmHyPA4KIYo4RY30S9k4PIC9ip7_GFyjUJNZQEzzOJIBpkr6qJDyThvQs2IHXm-_fmZ6IHLuh3GWUULCjMoGRjnwYph60aFv_G3SMbNwmMCA2e3AevMt6_UvMzKMIqI5MEgxmNa5spTaJtpoP2dgdwdesQBkrNZEjNH96QR6JQbIyqaSgejI4CkHDrd8znp9r7MrJjvwfLhNmsrbL7rC9SXPoeCYd03pzx51IjXQHBJRYSKkA3IkbKOXGt-pyu8tGrhKOMSMnvybrKdwM-CDG77vBf4h7DWbS3wGN8zPpqw3k1Zt2ms6gf3j2WL5adKuTtB1_mtGY8v38-XX37szKgA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQk48H4YChgEoher6_VjvQeEArRqaRohtUi5mbU9BkutU2IXxJ_iNzLjV2OBuPXALbJXzm787Tcz2ZlvAF74mgxHrhNHoKQAJcuUYzDUThQkQufo5ijyptmEms2i-Vx_XINffS0Mp1X2nNgQdbZI-T_yLTKzmoy9luGb028Od43i09W-hUYLi338-YNCtur13nt6vy-l3Nk-erfrdF0FnJSckdrBzI_CLA98NEooFJi5Jko4H9pHDMI0CciCZpFAQ856kgQyFyIPIjRIn3TGXSKI8i8RjysO9tT8PMDzKN5r1Ys8T4utSnKzbOG6I5vXtAb40wCsWMBxduaKudu58b_9UDfheudY25N2J9yCNSxvw7UVucU78GGKtHGbtkz2IR7nzqSu22xP-wC5ArqoTmxy4m26XrDmp71NBNjWdtpFaR-e0D7jXH6s7sKnC1nMPVgv6fkPwE41GqI9xCgJfCUx0spFjRRXZ5KeFViw2b_tOO2E1rnfx3FMARcDIx6AYcHzYehpqy7yt0FvGTLDABYEby4sll_ijl_iVHm-T3OWKZKPaUyiMwrdQ5MaN2HhegteMeBipi2aTGq66gtaEguAxRPFQntE6NqCjR5XccdnVXwOKgueDbeJifh4yZS4OOMx5PzzqTB92f0WwsOcPZqUFwplgRqBe7So8Z2y-NqoneuQXWj_4b-n9RSu7B4dTOPp3mz_EVyVXKTiuo50N2C9Xp7hY7icfq-Lavmk2bI2fL5o6P8G5UuB4A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJw4P0wFDAIBBcr6_VzDwgF2ojQNopUkMrJrO1xa6l1SuyC-Gv8Omb8IhaIWw_cInvl7MbffjOTnfkG4LmryHBkKrYESgpQ0jSwNPrKCr1YqAztDEVWN5sI5vPw8FAtNuBnVwvDaZUdJ9ZEnS4T_o98TGZWkbFX0h9nbVrEYnv65uyrxR2k-KS1a6fRQGQXf3yn8K18Pdumd_1CyunOx3fvrbbDgJWQY1JZmLqhn2aeizoQAQpMbR3GnBvtInp-EntkTdNQoCbHPY49mQmReSFqpE8q5Y4RRP-b5JK7cgSbi9n-4nMf7jkU_TVaRo6jxLiU3Dpb2PbAAtaNAv40B2v2cJiruWb8ptf_55_tBlxrXW5z0uyRm7CBxS24uibEeBs-7CFt6bphk3mAJ5k1qaomD9TcR66NzstTk9x7k67nrAZq7hA1NlWfZl6YB6e0AznLH8s78OlCFnMXRgU9_z6YiUJNhIgYxp4bSAxVYKNCirhTSc_yDHjVvfkoaSXYuRPISUShGIMk6kFiwLN-6FmjO_K3QW8ZPv0AlgqvLyxXR1HLPFESOK5Lc5YJkvepdaxSCup9nWg7Zkl7A14y-CImNJpMotu6DFoSS4NFk4Al-IjqlQFbHcailunK6DfADHja3yaO4oMnXeDynMdQWMDnxfRl9xo493N2aFKOLwIDggHQB4sa3iny41oHXfnsXLsP_j2tJ3CZEB_tzea7D-GK5OoV27akvQWjanWOj-BS8q3Ky9Xjdv-a8OWisf8LUjSMLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Self-Attention+Mechanism+for+Attitude+Estimation+in+Smartphones&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Brotchie%2C+James&rft.au=Shao%2C+Wei&rft.au=Li%2C+Wenchao&rft.au=Kealy%2C+Allison&rft.date=2022-11-21&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=22&rft.spage=9011&rft_id=info:doi/10.3390%2Fs22229011&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |