Human Action Recognition: A Taxonomy-Based Survey, Updates, and Opportunities
Human action recognition systems use data collected from a wide range of sensors to accurately identify and interpret human actions. One of the most challenging issues for computer vision is the automatic and precise identification of human activities. A significant increase in feature learning-base...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 4; p. 2182 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
15.02.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Human action recognition systems use data collected from a wide range of sensors to accurately identify and interpret human actions. One of the most challenging issues for computer vision is the automatic and precise identification of human activities. A significant increase in feature learning-based representations for action recognition has emerged in recent years, due to the widespread use of deep learning-based features. This study presents an in-depth analysis of human activity recognition that investigates recent developments in computer vision. Augmented reality, human–computer interaction, cybersecurity, home monitoring, and surveillance cameras are all examples of computer vision applications that often go in conjunction with human action detection. We give a taxonomy-based, rigorous study of human activity recognition techniques, discussing the best ways to acquire human action features, derived using RGB and depth data, as well as the latest research on deep learning and hand-crafted techniques. We also explain a generic architecture to recognize human actions in the real world and its current prominent research topic. At long last, we are able to offer some study analysis concepts and proposals for academics. In-depth researchers of human action recognition will find this review an effective tool. |
|---|---|
| AbstractList | Human action recognition systems use data collected from a wide range of sensors to accurately identify and interpret human actions. One of the most challenging issues for computer vision is the automatic and precise identification of human activities. A significant increase in feature learning-based representations for action recognition has emerged in recent years, due to the widespread use of deep learning-based features. This study presents an in-depth analysis of human activity recognition that investigates recent developments in computer vision. Augmented reality, human–computer interaction, cybersecurity, home monitoring, and surveillance cameras are all examples of computer vision applications that often go in conjunction with human action detection. We give a taxonomy-based, rigorous study of human activity recognition techniques, discussing the best ways to acquire human action features, derived using RGB and depth data, as well as the latest research on deep learning and hand-crafted techniques. We also explain a generic architecture to recognize human actions in the real world and its current prominent research topic. At long last, we are able to offer some study analysis concepts and proposals for academics. In-depth researchers of human action recognition will find this review an effective tool. Human action recognition systems use data collected from a wide range of sensors to accurately identify and interpret human actions. One of the most challenging issues for computer vision is the automatic and precise identification of human activities. A significant increase in feature learning-based representations for action recognition has emerged in recent years, due to the widespread use of deep learning-based features. This study presents an in-depth analysis of human activity recognition that investigates recent developments in computer vision. Augmented reality, human-computer interaction, cybersecurity, home monitoring, and surveillance cameras are all examples of computer vision applications that often go in conjunction with human action detection. We give a taxonomy-based, rigorous study of human activity recognition techniques, discussing the best ways to acquire human action features, derived using RGB and depth data, as well as the latest research on deep learning and hand-crafted techniques. We also explain a generic architecture to recognize human actions in the real world and its current prominent research topic. At long last, we are able to offer some study analysis concepts and proposals for academics. In-depth researchers of human action recognition will find this review an effective tool.Human action recognition systems use data collected from a wide range of sensors to accurately identify and interpret human actions. One of the most challenging issues for computer vision is the automatic and precise identification of human activities. A significant increase in feature learning-based representations for action recognition has emerged in recent years, due to the widespread use of deep learning-based features. This study presents an in-depth analysis of human activity recognition that investigates recent developments in computer vision. Augmented reality, human-computer interaction, cybersecurity, home monitoring, and surveillance cameras are all examples of computer vision applications that often go in conjunction with human action detection. We give a taxonomy-based, rigorous study of human activity recognition techniques, discussing the best ways to acquire human action features, derived using RGB and depth data, as well as the latest research on deep learning and hand-crafted techniques. We also explain a generic architecture to recognize human actions in the real world and its current prominent research topic. At long last, we are able to offer some study analysis concepts and proposals for academics. In-depth researchers of human action recognition will find this review an effective tool. |
| Audience | Academic |
| Author | Alam, Aftab Sultana, Tangina Morshed, Md Golam Lee, Young-Koo |
| AuthorAffiliation | 2 Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh 3 Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar 1 Department of Computer Science and Engineering, Kyung Hee University, Global Campus, Yongin-si 17104, Republic of Korea |
| AuthorAffiliation_xml | – name: 2 Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh – name: 1 Department of Computer Science and Engineering, Kyung Hee University, Global Campus, Yongin-si 17104, Republic of Korea – name: 3 Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar |
| Author_xml | – sequence: 1 givenname: Md Golam orcidid: 0000-0002-6262-6952 surname: Morshed fullname: Morshed, Md Golam – sequence: 2 givenname: Tangina orcidid: 0000-0002-3896-5591 surname: Sultana fullname: Sultana, Tangina – sequence: 3 givenname: Aftab orcidid: 0000-0001-9222-2468 surname: Alam fullname: Alam, Aftab – sequence: 4 givenname: Young-Koo orcidid: 0000-0003-2314-5395 surname: Lee fullname: Lee, Young-Koo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36850778$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkk1v1DAQhiNURD_gwB9AkbiA1G0nnmRtc0BaKqCViipBe7YmtrN4ldhbO6nov8fLtlVb5INH43cez_j1frHjg7dF8baCI0QJx4kh1KwS7EWxV9WsngnGYOdRvFvsp7QCYIgoXhW7OBcNcC72ih-n00C-XOjRBV_-tDosvdvEn8pFeUl_gg_D7ewLJWvKX1O8sbeH5dXa0GjTYUnelBfrdYjjtCmy6XXxsqM-2Td3-0Fx9e3r5cnp7Pzi-9nJ4nymGxDjzBrMzbbASLYV6QZbYxpWgWEG29ZSBdrwxkqUtkaoUEje6qYTQhKCRcKD4mzLNYFWah3dQPFWBXLqXyLEpaI4Ot1bVdcGa-xIStA1oBG8qbUUsiICEFxm1uctaz21gzXa-jFS_wT69MS732oZbpSUc5QcMuDDHSCG68mmUQ0uadv35G2YkmJcAJ9jgyxL3z-TrsIUfX6qrOJyLkA2PKuOtqol5QGc70K-V-dl7OB0tr5zOb_gNWYf57gpePd4hIfe723OguOtQMeQUrSd0m6kjc2Z7HpVgdp8JPXwkXLFx2cV99D_tX8BitjFVQ |
| CitedBy_id | crossref_primary_10_3390_s25165213 crossref_primary_10_3390_electronics12244925 crossref_primary_10_3390_make5040067 crossref_primary_10_1109_ACCESS_2024_3413822 crossref_primary_10_1109_TIM_2024_3374286 crossref_primary_10_1109_TBDATA_2023_3291558 crossref_primary_10_1109_ACCESS_2025_3553196 crossref_primary_10_1109_TCE_2025_3540853 crossref_primary_10_1016_j_asoc_2023_111166 crossref_primary_10_3390_math12203245 crossref_primary_10_1109_JSEN_2024_3422272 crossref_primary_10_3390_s24144508 crossref_primary_10_1177_14727978251369641 crossref_primary_10_1038_s41598_024_58074_y crossref_primary_10_3390_sym15071438 crossref_primary_10_63463_kjes1137 crossref_primary_10_1109_ACCESS_2024_3441108 crossref_primary_10_3390_s25030896 crossref_primary_10_1109_ACCESS_2025_3563302 crossref_primary_10_1371_journal_pone_0322555 crossref_primary_10_3389_fphar_2025_1564157 crossref_primary_10_3390_s23115121 crossref_primary_10_1016_j_cviu_2024_104275 crossref_primary_10_3390_electronics13122294 crossref_primary_10_1007_s11042_025_21053_0 crossref_primary_10_36680_j_itcon_2025_038 crossref_primary_10_1109_JSEN_2024_3446673 crossref_primary_10_1016_j_imavis_2025_105689 crossref_primary_10_3390_app15148089 crossref_primary_10_1016_j_engappai_2024_107850 crossref_primary_10_1016_j_neucom_2024_127389 crossref_primary_10_1007_s11042_024_20484_5 crossref_primary_10_3390_ani14121774 crossref_primary_10_3390_make6020040 crossref_primary_10_3389_fphy_2025_1576591 crossref_primary_10_1109_ACCESS_2024_3378515 crossref_primary_10_1109_ACCESS_2023_3326259 crossref_primary_10_3390_technologies12100205 crossref_primary_10_3390_jsan14020042 crossref_primary_10_1016_j_compbiomed_2024_109578 crossref_primary_10_1371_journal_pone_0321754 crossref_primary_10_3389_fnins_2025_1588570 crossref_primary_10_3390_data9010009 crossref_primary_10_1109_ACCESS_2024_3437371 crossref_primary_10_1016_j_pmcj_2024_101976 crossref_primary_10_1016_j_knosys_2025_113594 crossref_primary_10_1016_j_rineng_2025_104194 crossref_primary_10_3389_fmats_2025_1560419 crossref_primary_10_1109_ACCESS_2024_3373199 crossref_primary_10_1007_s11042_023_16795_8 crossref_primary_10_1016_j_bspc_2025_108207 crossref_primary_10_1007_s10462_024_10934_9 crossref_primary_10_3390_asi7040059 crossref_primary_10_1016_j_imavis_2025_105544 crossref_primary_10_1016_j_ins_2024_120393 crossref_primary_10_1111_exsy_13680 crossref_primary_10_3389_fpubh_2025_1592228 crossref_primary_10_1155_2024_1052344 crossref_primary_10_1109_JSEN_2023_3317645 crossref_primary_10_1007_s10845_024_02434_y crossref_primary_10_3390_s23135845 crossref_primary_10_3390_s24227351 |
| Cites_doi | 10.1016/j.image.2011.05.002 10.1109/TPAMI.2017.2691321 10.1109/CVPR.2014.326 10.1007/s10462-012-9356-9 10.1016/j.cviu.2017.01.011 10.1109/ICACI.2013.6748512 10.1016/j.neucom.2019.12.151 10.1109/CVPR.2017.387 10.1109/ICALIP.2016.7846646 10.1109/CVPR.2016.115 10.1016/j.patcog.2015.11.019 10.1109/CVPR52688.2022.00297 10.1109/TIP.2014.2302677 10.1109/CVPRW.2017.207 10.1016/j.patcog.2017.02.030 10.1016/j.patcog.2016.01.012 10.1109/CVPR.2016.333 10.1016/j.imavis.2014.04.005 10.1016/j.patcog.2017.10.033 10.1109/AVSS.2014.6918650 10.1145/3503161.3548546 10.1007/s11760-013-0501-y 10.1109/ICPR48806.2021.9412060 10.1109/CVPR.2018.00056 10.1109/TIP.2017.2785279 10.1016/j.future.2019.01.029 10.1109/CVPR.2016.213 10.1109/TPAMI.2016.2537340 10.1109/CVPR.2018.00762 10.1023/B:VISI.0000029664.99615.94 10.1016/j.patcog.2017.01.001 10.1145/2994258.2994268 10.1109/CVPR.2014.108 10.1109/JIOT.2018.2846359 10.1109/CVPRW.2010.5543273 10.1109/CVPR.2017.486 10.1109/ICCV.2011.6126543 10.1186/s40064-016-2876-z 10.3390/s22010323 10.1016/j.neucom.2016.03.024 10.1007/978-3-642-24082-9_92 10.1109/ICME.2016.7552941 10.1016/j.compeleceng.2018.01.037 10.1007/s00138-012-0450-4 10.1016/j.sigpro.2017.08.016 10.1109/JSEN.2016.2628346 10.1016/j.asoc.2021.107102 10.1109/AVSS.2016.7738021 10.1109/ACCESS.2021.3085708 10.1109/TMM.2017.2666540 10.1109/WACVW54805.2022.00017 10.1007/978-3-642-33709-3_62 10.1016/j.asoc.2017.06.007 10.1016/j.imavis.2017.01.010 10.1109/ICCVW.2017.369 10.5244/C.26.124 10.1109/WACV.2019.00015 10.1142/S0218001415550083 10.1016/j.engappai.2013.10.003 10.1145/2750858.2807520 10.1109/CVPR.2018.00127 10.1007/978-3-319-46487-9_50 10.1109/WACV51458.2022.00073 10.1609/aaai.v31i1.11212 10.1109/CVPR.2015.7299097 10.1007/s00371-015-1066-2 10.1145/3474085.3475572 10.1145/3158645 10.1016/j.patcog.2017.01.015 10.1109/ICCV.2009.5459361 10.3837/tiis.2015.02.016 10.1109/TII.2018.2808910 10.1109/TPAMI.2013.198 10.1016/j.inffus.2018.06.002 10.1109/JSEN.2018.2877662 10.1016/j.neucom.2018.03.077 10.1109/ICIP.2017.8296405 10.1109/JSEN.2017.2697077 10.1109/TCE.2011.6131162 10.1109/TCYB.2014.2350774 10.1016/j.robot.2015.11.013 10.1109/ICCV.2017.233 10.1109/TMM.2015.2404779 10.1016/j.imavis.2016.06.007 10.1109/CVPR.2017.498 10.1016/j.sigpro.2014.08.038 10.1109/CVPR.2017.143 10.1109/BigComp54360.2022.00055 10.1007/978-3-319-46484-8_2 10.1109/CVPRW.2013.78 10.18653/v1/D16-1264 10.24963/ijcai.2018/227 10.1109/TPAMI.2012.59 10.1109/CVPR52688.2022.00320 10.1016/j.jvcir.2013.03.001 10.1145/1390156.1390294 10.1016/j.imavis.2016.04.004 10.18653/v1/D18-1009 10.1109/TIP.2016.2552404 10.1016/j.eswa.2015.04.039 10.1007/978-3-030-01246-5_7 10.1109/ICCV.2017.256 10.1109/TPAMI.2022.3157033 10.3389/frobt.2015.00028 10.1109/CVPR.2017.52 10.1109/CVPR.2019.00371 10.1109/WACV.2015.150 10.1145/1922649.1922653 10.1109/SMC.2017.8122666 10.1007/s11554-013-0370-1 10.1609/aaai.v30i1.10451 10.1109/ICCV.2015.510 10.1109/CVPR52688.2022.00333 10.1016/j.neucom.2013.09.055 10.1109/ICCV.2017.317 10.1109/CVPR.2019.01230 10.1109/WACV.2017.24 10.1109/CVPR52688.2022.01930 10.1109/CVPR.2014.82 10.1109/CVPR.2013.98 10.1109/TSMC.2018.2850149 10.1109/TCSVT.2016.2628339 10.1109/CVPR52688.2022.01322 10.1109/WACV51458.2022.00086 10.1109/LSP.2017.2678539 10.1109/CVPR.2019.00132 10.1109/SURV.2012.110112.00192 10.1016/j.patcog.2021.108360 10.1109/TIP.2017.2718189 10.1016/S0338-9898(05)80195-7 10.1016/j.patcog.2017.10.034 10.18653/v1/2021.findings-acl.370 10.1016/j.patcog.2017.08.009 10.1109/CVPRW.2013.76 10.1162/neco.2006.18.7.1527 10.1109/AVSS.2010.63 10.1109/CVPR.2016.484 10.1109/WACV51458.2022.00090 10.1109/CVPR46437.2021.00193 10.1109/CVPR.2017.137 10.1109/CVPR42600.2020.01047 10.1609/aaai.v35i2.16235 10.1016/j.imavis.2022.104465 10.1109/CVPRW.2017.203 10.18653/v1/W18-5446 10.1109/TPAMI.2016.2565479 10.1109/ACCESS.2017.2759058 10.1109/ICPR.2014.602 10.1109/CVPR.2008.4587756 10.1016/j.patcog.2018.07.028 10.4304/jsw.8.9.2238-2245 10.1016/j.patcog.2016.08.003 10.1109/TPAMI.2019.2916873 10.1016/j.patrec.2014.04.011 10.1109/CVPR.2009.5206557 10.1109/CVPR.2014.223 10.1609/aaai.v32i1.12328 10.1109/CVPR.2015.7298698 10.1109/ICCV.2015.460 10.1109/CVPR52688.2022.01932 10.1016/j.eswa.2013.08.009 10.1109/TCSVT.2014.2333151 10.1007/s11760-014-0672-1 10.1109/CVPR52688.2022.00298 10.1007/978-3-319-08991-1_58 10.1109/TCYB.2015.2399172 10.1126/science.1127647 10.1016/j.patrec.2013.02.006 10.1007/s11042-018-6034-1 10.1109/CVPR42600.2020.00877 10.1109/ICCV.2013.441 10.1016/j.neucom.2015.11.005 10.1109/CVPR.2015.7298708 10.1007/s11263-016-0982-6 10.1016/j.patcog.2016.05.019 10.1007/978-3-319-10605-2_1 10.1109/CVPR52688.2022.01942 10.1109/ICCV.2011.6126443 10.1109/CONFLUENCE.2016.7508177 10.1016/j.cviu.2006.07.013 10.1109/WACVW54805.2022.00021 10.1109/5.726791 10.1109/ICCVW.2009.5457583 10.1109/ICPR.2004.1334462 10.1109/BigMM.2015.82 10.1109/THMS.2015.2504550 10.1109/AVSS.2018.8639122 10.1007/978-3-319-16181-5_3 10.1109/CVPR.2018.00054 10.1109/CVPR.2013.365 10.1109/TMM.2017.2786868 10.4236/etsn.2017.61001 10.1109/ICRA.2011.5980382 10.1007/978-3-319-16178-5_38 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s23042182 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_44d343fa990c403d8754c9891aa00879 PMC9963970 A743368637 36850778 10_3390_s23042182 |
| Genre | Journal Article Review |
| GeographicLocations | United States New Jersey Germany |
| GeographicLocations_xml | – name: New Jersey – name: Germany – name: United States |
| GrantInformation_xml | – fundername: Institute for Information & communications Technology Promotion (IITP) grantid: IITP-2022-2021-0-00859 – fundername: Korea Government (MSIT) (Artificial Intelligence Innovation Hub) grantid: 2021-0-02068 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c508t-ed3182b02a9b1ac53bdd5210d2d3bbea10cd75e939e43013897bc5f889a30e3a3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942101700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Tue Nov 04 02:06:40 EST 2025 Thu Oct 02 11:51:24 EDT 2025 Tue Oct 07 07:48:59 EDT 2025 Tue Nov 04 18:14:17 EST 2025 Mon Jul 21 05:44:24 EDT 2025 Sat Nov 29 07:11:06 EST 2025 Tue Nov 18 22:11:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | deep learning survey human action recognition hand-crafted taxonomy computer vision |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-ed3182b02a9b1ac53bdd5210d2d3bbea10cd75e939e43013897bc5f889a30e3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3896-5591 0000-0003-2314-5395 0000-0001-9222-2468 0000-0002-6262-6952 |
| OpenAccessLink | https://www.proquest.com/docview/2779680957?pq-origsite=%requestingapplication% |
| PMID | 36850778 |
| PQID | 2779680957 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_44d343fa990c403d8754c9891aa00879 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963970 proquest_miscellaneous_2780763532 proquest_journals_2779680957 gale_infotracacademiconefile_A743368637 pubmed_primary_36850778 crossref_citationtrail_10_3390_s23042182 crossref_primary_10_3390_s23042182 |
| PublicationCentury | 2000 |
| PublicationDate | 20230215 |
| PublicationDateYYYYMMDD | 2023-02-15 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230215 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_137 ref_136 Hinton (ref_166) 2006; 18 ref_92 Ullah (ref_130) 2019; 96 ref_139 Zhang (ref_66) 2017; 26 ref_138 ref_90 Zhu (ref_11) 2016; 55 ref_250 Shahroudy (ref_242) 2017; 40 ref_252 ref_99 ref_133 Chaaraoui (ref_83) 2014; 41 ref_132 Zhang (ref_157) 2018; 14 ref_135 Liou (ref_150) 2014; 139 Li (ref_110) 2017; 24 Nunez (ref_62) 2018; 76 ref_246 Ji (ref_75) 2018; 143 ref_128 ref_248 ref_129 ref_120 Jalal (ref_49) 2017; 61 ref_240 ref_122 ref_243 ref_121 ref_124 Liu (ref_126) 2017; 68 ref_245 ref_123 ref_244 Prati (ref_56) 2019; 11 Chen (ref_65) 2017; 5 Kamel (ref_169) 2018; 49 Vishwakarma (ref_105) 2015; 42 Guo (ref_79) 2018; 76 ref_72 ref_71 ref_158 Zhou (ref_34) 2015; 17 ref_70 Krizhevsky (ref_164) 2012; 25 ref_153 Lowe (ref_81) 2004; 60 ref_152 Lun (ref_6) 2015; 29 ref_76 ref_155 ref_154 Cai (ref_2) 2018; 19 Tang (ref_118) 2022; 18 Ji (ref_127) 2012; 35 Liu (ref_104) 2015; 46 ref_160 Herath (ref_48) 2017; 60 ref_148 ref_82 ref_147 ref_80 ref_149 Khan (ref_170) 2022; 22 Nweke (ref_251) 2019; 46 ref_89 ref_142 ref_141 ref_87 ref_144 ref_143 ref_84 ref_145 Presti (ref_7) 2016; 53 Liu (ref_73) 2016; 175 ref_214 ref_213 ref_216 Everts (ref_97) 2014; 23 ref_215 ref_218 ref_219 Lara (ref_54) 2012; 15 ref_210 Weinland (ref_46) 2006; 104 ref_212 ref_211 Chaaraoui (ref_108) 2014; 31 Reddy (ref_217) 2013; 24 Saghafi (ref_188) 2012; 27 ref_203 ref_202 ref_205 ref_204 Wang (ref_27) 2015; 46 ref_207 Nguyen (ref_15) 2014; 25 ref_209 ref_208 Shi (ref_125) 2017; 19 ref_201 ref_200 Qiao (ref_77) 2017; 66 Hinton (ref_159) 1986; 1 Hou (ref_113) 2016; 28 ref_115 ref_236 ref_114 ref_235 ref_117 Xu (ref_224) 2015; 9 ref_116 ref_237 ref_119 Liu (ref_146) 2017; 27 ref_239 ref_111 ref_232 ref_234 ref_112 ref_233 Ponce (ref_60) 2019; 15 ref_225 ref_103 LeCun (ref_206) 1998; 86 ref_227 ref_226 ref_228 ref_109 ref_221 ref_220 ref_102 ref_222 Burghouts (ref_17) 2014; 8 Khan (ref_107) 2011; 57 Liu (ref_174) 2016; 55 Dawn (ref_13) 2016; 32 Xu (ref_51) 2017; 72 ref_14 Wenkai (ref_223) 2012; 6 Zhang (ref_35) 2015; 9 Rautaray (ref_249) 2015; 43 Chen (ref_5) 2013; 34 ref_19 ref_18 Vrigkas (ref_229) 2015; 2 Liu (ref_231) 2019; 42 Raman (ref_88) 2016; 199 Du (ref_140) 2016; 25 Jian (ref_184) 2019; 328 ref_25 ref_24 ref_23 ref_20 Abhayaratne (ref_95) 2021; 9 Yang (ref_50) 2016; 39 ref_29 ref_28 Zhang (ref_4) 2016; 60 ref_26 Ullah (ref_241) 2021; 435 Qi (ref_52) 2018; 6 Kong (ref_93) 2017; 123 Schuldt (ref_230) 2004; Volume 3 Yang (ref_21) 2014; 25 Liu (ref_74) 2017; 20 Kumar (ref_57) 2020; 79 Perez (ref_85) 2022; 122 Devanne (ref_78) 2014; 45 Minnen (ref_238) 2006; 4 Liu (ref_91) 2015; 112 Wu (ref_171) 2016; 38 Singh (ref_96) 2017; 65 Cornacchia (ref_55) 2016; 17 Ijjina (ref_131) 2016; 59 Song (ref_176) 2022; 45 Hejazi (ref_94) 2022; 123 Aggarwal (ref_10) 2014; 48 Chen (ref_22) 2016; 12 ref_58 ref_173 ref_172 ref_175 ref_177 ref_179 ref_178 Gharaee (ref_193) 2017; 59 ref_180 Wang (ref_86) 2013; 36 Nazir (ref_101) 2018; 72 Han (ref_8) 2017; 158 ref_182 ref_59 ref_181 Vincent (ref_156) 2010; 11 Zhang (ref_16) 2016; 5 Cippitelli (ref_1) 2017; 17 ref_69 ref_162 Yang (ref_61) 2019; 85 ref_68 ref_161 ref_67 ref_163 Abdallah (ref_47) 2018; 51 ref_64 ref_165 ref_63 ref_168 ref_167 Hinton (ref_151) 2006; 313 ref_36 ref_195 ref_194 ref_197 ref_33 ref_196 ref_32 ref_199 ref_31 ref_198 ref_30 Vishwakarma (ref_100) 2016; 77 ref_39 ref_38 ref_37 Alsinglawi (ref_53) 2017; 6 Zhu (ref_98) 2014; 32 Aggarwal (ref_12) 2011; 43 Hua (ref_134) 2019; 16 Gan (ref_106) 2013; 8 ref_183 ref_45 ref_186 ref_44 ref_185 ref_43 ref_42 ref_187 ref_41 ref_40 ref_189 ref_3 ref_191 ref_190 ref_192 ref_9 Ullah (ref_247) 2021; 103 |
| References_xml | – volume: 27 start-page: 96 year: 2012 ident: ref_188 article-title: Human action recognition using pose-based discriminant embedding publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2011.05.002 – ident: ref_190 – ident: ref_9 – volume: 40 start-page: 1045 year: 2017 ident: ref_242 article-title: Deep multimodal feature analysis for action recognition in rgb+ d videos publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2691321 – ident: ref_37 doi: 10.1109/CVPR.2014.326 – volume: 25 start-page: 1097 year: 2012 ident: ref_164 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_178 – volume: 43 start-page: 1 year: 2015 ident: ref_249 article-title: Vision based hand gesture recognition for human computer interaction: A survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9356-9 – volume: 158 start-page: 85 year: 2017 ident: ref_8 article-title: Space-time representation of people based on 3D skeletal data: A review publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.01.011 – ident: ref_42 – ident: ref_153 doi: 10.1109/ICACI.2013.6748512 – ident: ref_161 – volume: 435 start-page: 321 year: 2021 ident: ref_241 article-title: Conflux LSTMs network: A novel approach for multi-view action recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.151 – ident: ref_148 doi: 10.1109/CVPR.2017.387 – ident: ref_103 doi: 10.1109/ICALIP.2016.7846646 – ident: ref_142 doi: 10.1109/CVPR.2016.115 – volume: 53 start-page: 130 year: 2016 ident: ref_7 article-title: 3D skeleton-based human action classification: A survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.11.019 – ident: ref_120 doi: 10.1109/CVPR52688.2022.00297 – volume: 23 start-page: 1569 year: 2014 ident: ref_97 article-title: Evaluation of color spatio-temporal interest points for human action recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2302677 – volume: 1 start-page: 2 year: 1986 ident: ref_159 article-title: Learning and relearning in Boltzmann machines publication-title: Parallel Distrib. Process. Explor. Microstruct. Cogn. – ident: ref_133 doi: 10.1109/CVPRW.2017.207 – volume: 68 start-page: 346 year: 2017 ident: ref_126 article-title: Enhanced skeleton visualization for view invariant human action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.02.030 – volume: 59 start-page: 199 year: 2016 ident: ref_131 article-title: Human action recognition using genetic algorithms and convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.01.012 – ident: ref_143 doi: 10.1109/CVPR.2016.333 – ident: ref_212 – volume: 32 start-page: 453 year: 2014 ident: ref_98 article-title: Evaluating spatiotemporal interest point features for depth-based action recognition publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2014.04.005 – volume: 76 start-page: 80 year: 2018 ident: ref_62 article-title: Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.033 – volume: 15 start-page: 1550147719853987 year: 2019 ident: ref_60 article-title: A concise review on sensor signal acquisition and transformation applied to human activity recognition and human–robot interaction publication-title: Int. J. Distrib. Sens. Netw. – ident: ref_186 doi: 10.1109/AVSS.2014.6918650 – volume: 11 start-page: 5 year: 2019 ident: ref_56 article-title: Sensors, vision and networks: From video surveillance to activity recognition and health monitoring publication-title: J. Ambient Intell. Smart Environ. – ident: ref_177 doi: 10.1145/3503161.3548546 – volume: 9 start-page: 705 year: 2015 ident: ref_35 article-title: Locating and recognizing multiple human actions by searching for maximum score subsequences publication-title: Signal Image Video Process. doi: 10.1007/s11760-013-0501-y – ident: ref_240 doi: 10.1109/ICPR48806.2021.9412060 – ident: ref_41 doi: 10.1109/CVPR.2018.00056 – ident: ref_59 – volume: 27 start-page: 1586 year: 2017 ident: ref_146 article-title: Skeleton-based human action recognition with global context-aware attention LSTM networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2785279 – volume: 96 start-page: 386 year: 2019 ident: ref_130 article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.01.029 – ident: ref_129 doi: 10.1109/CVPR.2016.213 – volume: 38 start-page: 1583 year: 2016 ident: ref_171 article-title: Deep dynamic neural networks for multimodal gesture segmentation and recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2537340 – ident: ref_28 doi: 10.1109/CVPR.2018.00762 – volume: 60 start-page: 91 year: 2004 ident: ref_81 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 65 start-page: 265 year: 2017 ident: ref_96 article-title: Graph formulation of video activities for abnormal activity recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.001 – ident: ref_211 – ident: ref_20 doi: 10.1145/2994258.2994268 – ident: ref_69 doi: 10.1109/CVPR.2014.108 – ident: ref_234 – volume: 6 start-page: 1384 year: 2018 ident: ref_52 article-title: A hybrid hierarchical framework for gym physical activity recognition and measurement using wearable sensors publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2846359 – ident: ref_63 doi: 10.1109/CVPRW.2010.5543273 – ident: ref_111 doi: 10.1109/CVPR.2017.486 – ident: ref_235 doi: 10.1109/ICCV.2011.6126543 – ident: ref_200 – volume: 5 start-page: 1 year: 2016 ident: ref_16 article-title: Multi-surface analysis for human action recognition in video publication-title: SpringerPlus doi: 10.1186/s40064-016-2876-z – volume: 22 start-page: 323 year: 2022 ident: ref_170 article-title: Human activity recognition via hybrid deep learning based model publication-title: Sensors doi: 10.3390/s22010323 – volume: 199 start-page: 163 year: 2016 ident: ref_88 article-title: Activity recognition using a supervised non-parametric hierarchical HMM publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.024 – ident: ref_221 doi: 10.1007/978-3-642-24082-9_92 – ident: ref_250 doi: 10.1109/ICME.2016.7552941 – volume: 72 start-page: 660 year: 2018 ident: ref_101 article-title: Evaluating a bag-of-visual features approach using spatio-temporal features for action recognition publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.01.037 – volume: 24 start-page: 971 year: 2013 ident: ref_217 article-title: Recognizing 50 human action categories of web videos publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-012-0450-4 – volume: 143 start-page: 56 year: 2018 ident: ref_75 article-title: Skeleton embedded motion body partition for human action recognition using depth sequences publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.08.016 – volume: 17 start-page: 386 year: 2016 ident: ref_55 article-title: A survey on activity detection and classification using wearable sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2628346 – volume: 103 start-page: 107102 year: 2021 ident: ref_247 article-title: Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107102 – ident: ref_248 doi: 10.1109/AVSS.2016.7738021 – volume: 9 start-page: 82686 year: 2021 ident: ref_95 article-title: Making sense of neuromorphic event data for human action recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3085708 – volume: 19 start-page: 1510 year: 2017 ident: ref_125 article-title: Sequential deep trajectory descriptor for action recognition with three-stream CNN publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2666540 – ident: ref_154 – ident: ref_239 – ident: ref_160 – ident: ref_122 doi: 10.1109/WACVW54805.2022.00017 – ident: ref_71 doi: 10.1007/978-3-642-33709-3_62 – volume: 59 start-page: 574 year: 2017 ident: ref_193 article-title: First and second order dynamics in a hierarchical SOM system for action recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.007 – volume: 60 start-page: 4 year: 2017 ident: ref_48 article-title: Going deeper into action recognition: A survey publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2017.01.010 – ident: ref_168 doi: 10.1109/ICCVW.2017.369 – volume: 6 start-page: 339 year: 2012 ident: ref_223 article-title: Continuous gesture trajectory recognition system based on computer vision publication-title: Int. J. Appl. Math. Inf. Sci. – ident: ref_158 doi: 10.5244/C.26.124 – ident: ref_137 doi: 10.1109/WACV.2019.00015 – volume: 29 start-page: 1555008 year: 2015 ident: ref_6 article-title: A survey of applications and human motion recognition with microsoft kinect publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001415550083 – volume: 31 start-page: 116 year: 2014 ident: ref_108 article-title: Optimizing human action recognition based on a cooperative coevolutionary algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.10.003 – ident: ref_40 doi: 10.1145/2750858.2807520 – ident: ref_117 doi: 10.1109/CVPR.2018.00127 – ident: ref_26 doi: 10.1007/978-3-319-46487-9_50 – ident: ref_202 doi: 10.1109/WACV51458.2022.00073 – ident: ref_147 doi: 10.1609/aaai.v31i1.11212 – ident: ref_226 doi: 10.1109/CVPR.2015.7299097 – volume: 32 start-page: 289 year: 2016 ident: ref_13 article-title: A comprehensive survey of human action recognition with spatio-temporal interest point (STIP) detector publication-title: Vis. Comput. doi: 10.1007/s00371-015-1066-2 – ident: ref_139 – ident: ref_246 doi: 10.1145/3474085.3475572 – ident: ref_227 – volume: 51 start-page: 1 year: 2018 ident: ref_47 article-title: Activity recognition with evolving data streams: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3158645 – volume: 66 start-page: 202 year: 2017 ident: ref_77 article-title: Learning discriminative trajectorylet detector sets for accurate skeleton-based action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.015 – ident: ref_228 doi: 10.1109/ICCV.2009.5459361 – ident: ref_87 – volume: 9 start-page: 763 year: 2015 ident: ref_224 article-title: A novel method for hand posture recognition based on depth information descriptor publication-title: KSII Trans. Internet Inf. Syst. (TIIS) doi: 10.3837/tiis.2015.02.016 – volume: 14 start-page: 3170 year: 2018 ident: ref_157 article-title: An efficient deep learning model to predict cloud workload for industry informatics publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2808910 – volume: 36 start-page: 914 year: 2013 ident: ref_86 article-title: Learning actionlet ensemble for 3D human action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.198 – volume: 46 start-page: 147 year: 2019 ident: ref_251 article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.06.002 – ident: ref_162 – volume: 19 start-page: 1508 year: 2018 ident: ref_2 article-title: Sensing-enhanced therapy system for assessing children with autism spectrum disorders: A feasibility study publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2877662 – volume: 328 start-page: 147 year: 2019 ident: ref_184 article-title: Deep key frame extraction for sport training publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.077 – ident: ref_76 – ident: ref_192 doi: 10.1109/ICIP.2017.8296405 – ident: ref_82 – volume: 11 start-page: 3371 year: 2010 ident: ref_156 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 3585 year: 2017 ident: ref_1 article-title: Radar and RGB-depth sensors for fall detection: A review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2697077 – volume: 57 start-page: 1843 year: 2011 ident: ref_107 article-title: Abnormal human activity recognition system based on R-transform and kernel discriminant technique for elderly home care publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2011.6131162 – volume: 45 start-page: 1340 year: 2014 ident: ref_78 article-title: 3-d human action recognition by shape analysis of motion trajectories on riemannian manifold publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2350774 – volume: 77 start-page: 25 year: 2016 ident: ref_100 article-title: A proposed unified framework for the recognition of human activity by exploiting the characteristics of action dynamics publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2015.11.013 – ident: ref_145 doi: 10.1109/ICCV.2017.233 – ident: ref_243 – volume: 17 start-page: 512 year: 2015 ident: ref_34 article-title: Learning spatial and temporal extents of human actions for action detection publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2015.2404779 – volume: 55 start-page: 42 year: 2016 ident: ref_11 article-title: From handcrafted to learned representations for human action recognition: A survey publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2016.06.007 – ident: ref_173 doi: 10.1109/CVPR.2017.498 – ident: ref_167 – volume: 112 start-page: 74 year: 2015 ident: ref_91 article-title: Coupled hidden conditional random fields for RGB-D human action recognition publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.08.038 – ident: ref_30 doi: 10.1109/CVPR.2017.143 – ident: ref_189 – ident: ref_33 doi: 10.1109/BigComp54360.2022.00055 – ident: ref_183 doi: 10.1007/978-3-319-46484-8_2 – ident: ref_89 doi: 10.1109/CVPRW.2013.78 – ident: ref_197 doi: 10.18653/v1/D16-1264 – ident: ref_210 – ident: ref_195 – ident: ref_114 doi: 10.24963/ijcai.2018/227 – volume: 35 start-page: 221 year: 2012 ident: ref_127 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.59 – ident: ref_215 doi: 10.1109/CVPR52688.2022.00320 – volume: 25 start-page: 2 year: 2014 ident: ref_21 article-title: Effective 3d action recognition using eigenjoints publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2013.03.001 – ident: ref_155 doi: 10.1145/1390156.1390294 – volume: 55 start-page: 93 year: 2016 ident: ref_174 article-title: 3D-based deep convolutional neural network for action recognition with depth sequences publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2016.04.004 – ident: ref_198 doi: 10.18653/v1/D18-1009 – volume: 25 start-page: 3010 year: 2016 ident: ref_140 article-title: Representation learning of temporal dynamics for skeleton-based action recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2552404 – volume: 42 start-page: 6957 year: 2015 ident: ref_105 article-title: Hybrid classifier based human activity recognition using the silhouette and cells publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.039 – ident: ref_149 doi: 10.1007/978-3-030-01246-5_7 – ident: ref_29 doi: 10.1109/ICCV.2017.256 – volume: 45 start-page: 1474 year: 2022 ident: ref_176 article-title: Constructing stronger and faster baselines for skeleton-based action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3157033 – volume: 2 start-page: 28 year: 2015 ident: ref_229 article-title: A review of human activity recognition methods publication-title: Front. Robot. AI doi: 10.3389/frobt.2015.00028 – ident: ref_172 doi: 10.1109/CVPR.2017.52 – ident: ref_128 doi: 10.1109/CVPR.2019.00371 – ident: ref_39 – ident: ref_109 doi: 10.1109/WACV.2015.150 – volume: 43 start-page: 1 year: 2011 ident: ref_12 article-title: Human activity analysis: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/1922649.1922653 – ident: ref_132 doi: 10.1109/SMC.2017.8122666 – volume: 12 start-page: 155 year: 2016 ident: ref_22 article-title: Real-time human action recognition based on depth motion maps publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-013-0370-1 – ident: ref_144 doi: 10.1609/aaai.v30i1.10451 – ident: ref_25 doi: 10.1109/ICCV.2015.510 – ident: ref_205 doi: 10.1109/CVPR52688.2022.00333 – volume: 139 start-page: 84 year: 2014 ident: ref_150 article-title: Autoencoder for words publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.055 – ident: ref_32 doi: 10.1109/ICCV.2017.317 – ident: ref_44 doi: 10.1109/CVPR.2019.01230 – ident: ref_141 doi: 10.1109/WACV.2017.24 – ident: ref_194 doi: 10.1109/CVPR52688.2022.01930 – ident: ref_244 – ident: ref_84 doi: 10.1109/CVPR.2014.82 – ident: ref_237 – ident: ref_19 doi: 10.1109/CVPR.2013.98 – volume: 18 start-page: 1 year: 2022 ident: ref_118 article-title: Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based Action Recognition publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) – ident: ref_187 – volume: 49 start-page: 1806 year: 2018 ident: ref_169 article-title: Deep convolutional neural networks for human action recognition using depth maps and postures publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2018.2850149 – volume: 28 start-page: 807 year: 2016 ident: ref_113 article-title: Skeleton optical spectra-based action recognition using convolutional neural networks publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2628339 – ident: ref_204 doi: 10.1109/CVPR52688.2022.01322 – ident: ref_203 doi: 10.1109/WACV51458.2022.00086 – volume: 24 start-page: 624 year: 2017 ident: ref_110 article-title: Joint distance maps based action recognition with convolutional neural networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2678539 – ident: ref_180 doi: 10.1109/CVPR.2019.00132 – volume: 15 start-page: 1192 year: 2012 ident: ref_54 article-title: A survey on human activity recognition using wearable sensors publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2012.110112.00192 – volume: 122 start-page: 108360 year: 2022 ident: ref_85 article-title: Skeleton-based relational reasoning for group activity analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108360 – ident: ref_67 – volume: 26 start-page: 4648 year: 2017 ident: ref_66 article-title: Action recognition using 3D histograms of texture and a multi-class boosting classifier publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2718189 – ident: ref_222 doi: 10.1016/S0338-9898(05)80195-7 – volume: 76 start-page: 137 year: 2018 ident: ref_79 article-title: DSRF: A flexible trajectory descriptor for articulated human action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.034 – volume: 16 start-page: 3100 year: 2019 ident: ref_134 article-title: Encoding pose features to images with data augmentation for 3-D action recognition publication-title: IEEE Trans. Ind. Inform. – ident: ref_220 – ident: ref_163 – ident: ref_182 – ident: ref_209 doi: 10.18653/v1/2021.findings-acl.370 – volume: 72 start-page: 494 year: 2017 ident: ref_51 article-title: Hand action detection from ego-centric depth sequences with error-correcting Hough transform publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.009 – ident: ref_225 – ident: ref_43 doi: 10.1109/CVPRW.2013.76 – volume: 18 start-page: 1527 year: 2006 ident: ref_166 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: ref_112 – ident: ref_232 doi: 10.1109/AVSS.2010.63 – ident: ref_116 doi: 10.1109/CVPR.2016.484 – ident: ref_199 – ident: ref_119 doi: 10.1109/WACV51458.2022.00090 – ident: ref_214 – ident: ref_123 doi: 10.1109/CVPR46437.2021.00193 – ident: ref_208 – ident: ref_115 doi: 10.1109/CVPR.2017.137 – ident: ref_179 doi: 10.1109/CVPR42600.2020.01047 – ident: ref_124 doi: 10.1609/aaai.v35i2.16235 – volume: 123 start-page: 104465 year: 2022 ident: ref_94 article-title: Handcrafted localized phase features for human action recognition publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2022.104465 – ident: ref_135 doi: 10.1109/CVPRW.2017.203 – ident: ref_196 doi: 10.18653/v1/W18-5446 – volume: 39 start-page: 1028 year: 2016 ident: ref_50 article-title: Super normal vector for human activity recognition with depth cameras publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2565479 – ident: ref_165 – volume: 5 start-page: 22590 year: 2017 ident: ref_65 article-title: Multi-temporal depth motion maps-based local binary patterns for 3-D human action recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2759058 – ident: ref_245 – ident: ref_70 doi: 10.1109/ICPR.2014.602 – ident: ref_236 doi: 10.1109/CVPR.2008.4587756 – volume: 85 start-page: 1 year: 2019 ident: ref_61 article-title: Asymmetric 3d convolutional neural networks for action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.07.028 – ident: ref_136 – volume: 8 start-page: 2238 year: 2013 ident: ref_106 article-title: Human Action Recognition Using APJ3D and Random Forests publication-title: J. Softw. doi: 10.4304/jsw.8.9.2238-2245 – volume: 61 start-page: 295 year: 2017 ident: ref_49 article-title: Robust human activity recognition from depth video using spatiotemporal multi-fused features publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.08.003 – ident: ref_90 – volume: 42 start-page: 2684 year: 2019 ident: ref_231 article-title: Ntu rgb+ d 120: A large-scale benchmark for 3d human activity understanding publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2916873 – volume: 48 start-page: 70 year: 2014 ident: ref_10 article-title: Human activity recognition from 3d data: A review publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.04.011 – ident: ref_23 – ident: ref_207 – ident: ref_58 – ident: ref_216 doi: 10.1109/CVPR.2009.5206557 – ident: ref_38 doi: 10.1109/CVPR.2014.223 – ident: ref_31 doi: 10.1609/aaai.v32i1.12328 – ident: ref_233 doi: 10.1109/CVPR.2015.7298698 – ident: ref_138 doi: 10.1109/ICCV.2015.460 – ident: ref_175 doi: 10.1109/CVPR52688.2022.01932 – volume: 41 start-page: 786 year: 2014 ident: ref_83 article-title: Evolutionary joint selection to improve human action recognition with RGB-D devices publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.009 – volume: 25 start-page: 77 year: 2014 ident: ref_15 article-title: STAP: Spatial-temporal attention-aware pooling for action recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2014.2333151 – volume: 8 start-page: 191 year: 2014 ident: ref_17 article-title: Instantaneous threat detection based on a semantic representation of activities, zones and trajectories publication-title: Signal Image Video Process. doi: 10.1007/s11760-014-0672-1 – ident: ref_80 doi: 10.1109/CVPR52688.2022.00298 – ident: ref_14 doi: 10.1007/978-3-319-08991-1_58 – volume: 46 start-page: 158 year: 2015 ident: ref_104 article-title: Learning spatio-temporal representations for action recognition: A genetic programming approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2399172 – volume: 313 start-page: 504 year: 2006 ident: ref_151 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: ref_201 – volume: 34 start-page: 1995 year: 2013 ident: ref_5 article-title: A survey of human motion analysis using depth imagery publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.02.006 – volume: 79 start-page: 3543 year: 2020 ident: ref_57 article-title: Human activity recognition in egocentric video using HOG, GiST and color features publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6034-1 – ident: ref_213 doi: 10.1109/CVPR42600.2020.00877 – ident: ref_24 – volume: 4 start-page: 141 year: 2006 ident: ref_238 article-title: Performance metrics and evaluation issues for continuous activity recognition publication-title: Perform. Metrics Intell. Syst. – ident: ref_218 – ident: ref_18 doi: 10.1109/ICCV.2013.441 – volume: 175 start-page: 747 year: 2016 ident: ref_73 article-title: Depth context: A new descriptor for human activity recognition by using sole depth sequences publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.005 – ident: ref_92 doi: 10.1109/CVPR.2015.7298708 – volume: 123 start-page: 350 year: 2017 ident: ref_93 article-title: Max-margin heterogeneous information machine for RGB-D action recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-016-0982-6 – volume: 60 start-page: 86 year: 2016 ident: ref_4 article-title: RGB-D-based action recognition datasets: A survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.05.019 – ident: ref_152 doi: 10.1007/978-3-319-10605-2_1 – ident: ref_191 doi: 10.1109/CVPR52688.2022.01942 – ident: ref_99 doi: 10.1109/ICCV.2011.6126443 – ident: ref_102 – ident: ref_219 doi: 10.1109/CONFLUENCE.2016.7508177 – volume: 104 start-page: 249 year: 2006 ident: ref_46 article-title: Free viewpoint action recognition using motion history volumes publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2006.07.013 – ident: ref_121 doi: 10.1109/WACVW54805.2022.00021 – volume: 86 start-page: 2278 year: 1998 ident: ref_206 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_45 doi: 10.1109/ICCVW.2009.5457583 – volume: Volume 3 start-page: 32 year: 2004 ident: ref_230 article-title: Recognizing human actions: A local SVM approach publication-title: Proceedings of the 17th International Conference on Pattern Recognition 2004, ICPR 2004 doi: 10.1109/ICPR.2004.1334462 – ident: ref_64 doi: 10.1109/BigMM.2015.82 – volume: 46 start-page: 498 year: 2015 ident: ref_27 article-title: Action recognition from depth maps using deep convolutional neural networks publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2015.2504550 – ident: ref_181 doi: 10.1109/AVSS.2018.8639122 – ident: ref_3 doi: 10.1007/978-3-319-16181-5_3 – ident: ref_185 doi: 10.1109/CVPR.2018.00054 – ident: ref_72 doi: 10.1109/CVPR.2013.365 – ident: ref_252 – volume: 20 start-page: 1932 year: 2017 ident: ref_74 article-title: Robust 3D action recognition through sampling local appearances and global distributions publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2786868 – volume: 6 start-page: 1 year: 2017 ident: ref_53 article-title: RFID systems in healthcare settings and activity of daily living in smart homes: A review publication-title: E-Health Telecommun. Syst. Netw. doi: 10.4236/etsn.2017.61001 – ident: ref_68 doi: 10.1109/ICRA.2011.5980382 – ident: ref_36 doi: 10.1007/978-3-319-16178-5_38 |
| SSID | ssj0023338 |
| Score | 2.6502273 |
| SecondaryResourceType | review_article |
| Snippet | Human action recognition systems use data collected from a wide range of sensors to accurately identify and interpret human actions. One of the most... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2182 |
| SubjectTerms | Algorithms Artificial intelligence Augmented Reality Automation Biometrics Cameras Computer Security Computer vision Datasets Deep learning Forecasts and trends Hand hand-crafted human action recognition Human Activities Human acts Human behavior Humans Identification Learning strategies Machine learning Machine vision Neural networks Pattern Recognition, Automated Performance evaluation Research methodology Review Sensors Surveillance survey Surveys Taxonomy Trends Virtual reality |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDehBRmEBIdGdTLe2Oa2RVQcoCBoUW-WXysqoexqH1X598w42WgjkLhwjX0Yj2c838Qznxl7Re2JTaNC6UIMJUboVPrK-TJ6X4MKQYZ8Y_r9ozo91RcX5svOU19UE9bRA3eKO5IygoSZw1MzSAER8bUMRpvKOaJTy617QpltMtWnWoCZV8cjBJjUH63o1ydxlY-iTybp__Mo3olF4zrJncBzcpfd6REjn3aS3mM3Unuf3d7hEXzAPuVf8XyaexT4121N0Lx9y6f8zF3nxoXyGANW5N82y6v065CfLyjXXx1y10b-eUEwfNNmetWH7Pzk_dm7D2X_TkIZEF6tyxTRMWsvamdQz2ECPkaMyiLWEbxPrhIhqkkyYJKEfDOpfJjMtDYORAIHj9heO2_TE8a9NMIjKAPtQToXXOPjrApeeKMRq4iCvdnqz4aeRJzesvhpMZkgVdtB1QV7OUxddMwZf5t0TJswTCCy6_wBTcD2JmD_ZQIFe01baMklUZjg-s4CXBKRW9kpoiRodAOqYAfbXba9r65srZRpNEJNHH4xDKOX0dWJa9N8Q3O0IOo-QIkfd0YxyEwU_kIpXTA1MpfRosYj7eWPzOSNySbiQfH0f2hhn92q0fCporyaHLC99XKTnrGb4Wp9uVo-z-7xG5lQE6s priority: 102 providerName: Directory of Open Access Journals |
| Title | Human Action Recognition: A Taxonomy-Based Survey, Updates, and Opportunities |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36850778 https://www.proquest.com/docview/2779680957 https://www.proquest.com/docview/2780763532 https://pubmed.ncbi.nlm.nih.gov/PMC9963970 https://doaj.org/article/44d343fa990c403d8754c9891aa00879 |
| Volume | 23 |
| WOSCitedRecordID | wos000942101700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5QAH3o-FEhmEBIeu6l1v1jYXlKBUIJEQlRalp5VfoZWq3ZBNKrjw25lxNmlWIC5cfLB9GGtmPA-PvyHkFX5PzHNhY22djcFC-9gk2sTOmJQLazMbXky_fhKjkZxM1LhJuNVNWeX6TgwXtass5sgPUiFULsEhEO9m32PsGoWvq00LjetkF9tmo5yLyVXAxSH-WqEJcQjtD2pMgCJiecsGBaj-Py_kLYvUrpbcMj-Hd_6X8LvkduN40t5KUu6Ra768T25twRE-IMOQ0ae98NWBHq1Li6ryLe3RY_0j_H-I-2D3HP2ynF_6n_v0ZIYpg3qf6tLRzzP05pdlQGl9SE4OB8fvP8RNu4XYgpe2iL0D_U4NS7UCdtkuN86BcWcuddwYrxNmneh6xZXPeHjgFMZ2p1IqzZnnmj8iO2VV-ieEmkwxA74dl4ZnWludGzdNrGFGSXB5WETerBlQ2AaLHFtiXBQQkyCvig2vIvJys3W2AuD426Y-cnGzATGzw0Q1_1Y0KlhkmeMZn2qwvzZj3EGkllklVaI1AvOpiLxGGShQs4EYq5sPCnAkxMgqeuBs8VzmXERkb83qolH5urjic0RebJZBWfEFRpe-WuIeyRABkAPFj1dStaEZOwEwIWREREveWodqr5TnZwEQHGJWcCvZ03-T9YzcTEEnsOQ86e6RncV86Z-TG_ZycV7PO0Fzwig7ZLc_GI2POiFBAePw1wDmxh-H49PfesMpig |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQ58C4YCiwIBIda3XgdrxcJoRSoWjUNqKQoN7OvQCXkhDwK_VP8RmY2dpoIxK0HrvbKmvV-O4-dnW8AnlJ5YpZJG2vrbIwW2semoU3sjEmEtDa1IWP6qS07nbzXUx9W4FddC0PXKmudGBS1G1g6I99KpFRZjg6BfD38HlPXKMqu1i00ZrDY96c_MGQbv9p7i-v7LEl23nXf7MZVV4HYojMyib1DGCeGJ1qhVLYpjHNow7hLnDDG6wa3Tja9EsqnIuTxpLHNfp4rLbgXWuB3L8BF1OOSgj3ZOwvwBMZ7M_YiIRTfGtOBKzGkL9m80BrgTwOwYAGXb2cumLuda__bj7oOVyvHmrVmO-EGrPjyJlxZoFu8BQchY8FaoZSDHdZXpwblS9ZiXf0z1HfE22jXHfs4HZ340012NKQjkfEm06Vj74cUrUzLwEJ7G47OZT7rsFoOSn8XmEkVN-i7ityIVGurM-P6DWu4UTm6dDyCF_WCF7biWqeWH98KjLkIG8UcGxE8mQ8dzghG_jZom1AzH0Cc4OHBYPSlqFRMkaZOpKKv0b-wKRcOI9HUqlw1tCbiQRXBc8JcQZoLhbG6KsDAKREHWNFCZ1JkeSZkBBs1tIpKpY2LM1xF8Hj-GpURZZh06QdTGpNzYjgUKPGdGYrnMlOnAy5lHoFcwvfSpJbflMdfA-E5xuToNvN7_xbrEVze7R60i_ZeZ_8-rCW4H-l6faO5AauT0dQ_gEv2ZHI8Hj0Mu5bB5_NG_2-oqoCh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIBIda2XgdrxcJoZQSEbUNUWlROZl9BSohJ-RR6F_j1zHj2CYRiFsPXOOVNRt_O4-dmW8AnlB7YpJIG2rrbIgW2oempU3ojImEtDa2Rcb0w67s99OjIzVYg59VLwyVVVY6sVDUbmTpjrwZSamSFB0C2RyWZRGD7e6r8beQJkhRprUap7GAyI4__Y7h2_Rlbxu_9dMo6r45eP02LCcMhBYdk1noHUI6MjzSCiW0bWGcQ3vGXeSEMV63uHWy7ZVQPhZFTk8a2x6mqdKCe6EFvvccrKNLHkcNWB_09gYf63BPYPS34DISQvHmlK5fiS99xQIWgwL-NAdL9nC1VnPJ-HWv_M9_21W4XLrcrLM4I9dgzefX4dISEeMN2CtyGaxTNHmw_aqoapS_YB12oH8UnR_hFlp8x97PJyf-dJMdjumyZLrJdO7YuzHFMfO84Ke9CYdnsp9b0MhHub8DzMSKG_RqRWpErLXViXHDljXcqBSdPR7A8-rjZ7ZkYadhIF8zjMYIJ1mNkwAe10vHC-qRvy3aIgTVC4gtvPhhNPmclconi2MnYjHU6HnYmAuHMWpsVapaWhMloQrgGeEvI52GwlhdtmbglogdLOugmymSNBEygI0KZlmp7KbZb4wF8Kh-jGqKck8696M5rUk5cR8KlPj2AtG1zDQDgUuZBiBXsL6yqdUn-fGXggodo3V0qPndf4v1EC4g6LPdXn_nHlyM8GhS3X2rvQGN2WTu78N5ezI7nk4elEeYwaezhv8vOEeK8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Action+Recognition%3A+A+Taxonomy-Based+Survey%2C+Updates%2C+and+Opportunities&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Morshed%2C+Md+Golam&rft.au=Sultana%2C+Tangina&rft.au=Alam%2C+Aftab&rft.au=Lee%2C+Young-Koo&rft.date=2023-02-15&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft_id=info:doi/10.3390%2Fs23042182&rft.externalDocID=PMC9963970 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |