Fall Detection Algorithm Based on Inertial Sensor and Hierarchical Decision

With the aging of the human body and the reduction in its physiological capacities, falls have become a huge threat to individuals’ physical and mental health, leading to serious bodily damage to the elderly and financial pressure on their families. As a result, it is vital to design a fall detectio...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 1; p. 107
Main Authors: Zheng, Liang, Zhao, Jie, Dong, Fangjie, Huang, Zhiyong, Zhong, Daidi
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 22.12.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the aging of the human body and the reduction in its physiological capacities, falls have become a huge threat to individuals’ physical and mental health, leading to serious bodily damage to the elderly and financial pressure on their families. As a result, it is vital to design a fall detection algorithm that monitors the state of human activity. This work designs a human fall detection algorithm based on hierarchical decision making. First, this work proposes a dimensionality reduction approach based on feature importance analysis (FIA), which optimizes the feature space via feature importance. This procedure reduces the dimension of features greatly and reduces the time spent by the model in the training phase. Second, this work proposes a hierarchical decision-making algorithm with an XGBoost model. The algorithm is divided into three levels. The first level uses the threshold approach to make a preliminary assessment of the data and only transfers the fall type data to the next level. The second level is an XGBoost-based classification algorithm to analyze again the type of data which remained from the first level. The third level employs a comparison method to determine the direction of the falling. Finally, the fall detection algorithm proposed in this paper has an accuracy of 98.19%, a sensitivity of 97.50%, and a specificity of 98.63%. The classification accuracy of the fall direction reaches 93.44%, and the algorithm can efficiently determine the fall direction.
AbstractList With the aging of the human body and the reduction in its physiological capacities, falls have become a huge threat to individuals’ physical and mental health, leading to serious bodily damage to the elderly and financial pressure on their families. As a result, it is vital to design a fall detection algorithm that monitors the state of human activity. This work designs a human fall detection algorithm based on hierarchical decision making. First, this work proposes a dimensionality reduction approach based on feature importance analysis (FIA), which optimizes the feature space via feature importance. This procedure reduces the dimension of features greatly and reduces the time spent by the model in the training phase. Second, this work proposes a hierarchical decision-making algorithm with an XGBoost model. The algorithm is divided into three levels. The first level uses the threshold approach to make a preliminary assessment of the data and only transfers the fall type data to the next level. The second level is an XGBoost-based classification algorithm to analyze again the type of data which remained from the first level. The third level employs a comparison method to determine the direction of the falling. Finally, the fall detection algorithm proposed in this paper has an accuracy of 98.19%, a sensitivity of 97.50%, and a specificity of 98.63%. The classification accuracy of the fall direction reaches 93.44%, and the algorithm can efficiently determine the fall direction.
With the aging of the human body and the reduction in its physiological capacities, falls have become a huge threat to individuals' physical and mental health, leading to serious bodily damage to the elderly and financial pressure on their families. As a result, it is vital to design a fall detection algorithm that monitors the state of human activity. This work designs a human fall detection algorithm based on hierarchical decision making. First, this work proposes a dimensionality reduction approach based on feature importance analysis (FIA), which optimizes the feature space via feature importance. This procedure reduces the dimension of features greatly and reduces the time spent by the model in the training phase. Second, this work proposes a hierarchical decision-making algorithm with an XGBoost model. The algorithm is divided into three levels. The first level uses the threshold approach to make a preliminary assessment of the data and only transfers the fall type data to the next level. The second level is an XGBoost-based classification algorithm to analyze again the type of data which remained from the first level. The third level employs a comparison method to determine the direction of the falling. Finally, the fall detection algorithm proposed in this paper has an accuracy of 98.19%, a sensitivity of 97.50%, and a specificity of 98.63%. The classification accuracy of the fall direction reaches 93.44%, and the algorithm can efficiently determine the fall direction.With the aging of the human body and the reduction in its physiological capacities, falls have become a huge threat to individuals' physical and mental health, leading to serious bodily damage to the elderly and financial pressure on their families. As a result, it is vital to design a fall detection algorithm that monitors the state of human activity. This work designs a human fall detection algorithm based on hierarchical decision making. First, this work proposes a dimensionality reduction approach based on feature importance analysis (FIA), which optimizes the feature space via feature importance. This procedure reduces the dimension of features greatly and reduces the time spent by the model in the training phase. Second, this work proposes a hierarchical decision-making algorithm with an XGBoost model. The algorithm is divided into three levels. The first level uses the threshold approach to make a preliminary assessment of the data and only transfers the fall type data to the next level. The second level is an XGBoost-based classification algorithm to analyze again the type of data which remained from the first level. The third level employs a comparison method to determine the direction of the falling. Finally, the fall detection algorithm proposed in this paper has an accuracy of 98.19%, a sensitivity of 97.50%, and a specificity of 98.63%. The classification accuracy of the fall direction reaches 93.44%, and the algorithm can efficiently determine the fall direction.
Audience Academic
Author Huang, Zhiyong
Zheng, Liang
Zhao, Jie
Dong, Fangjie
Zhong, Daidi
AuthorAffiliation 1 Bioengineering College, Chongqing University, Chongqing 400044, China
2 The 15th Research Institute of China Electronics Technology Group Corporation, Beijing 100083, China
4 School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
3 Wuhan Branch of Beijing Zunguan Technology Co., Ltd., Wuhan 430079, China
AuthorAffiliation_xml – name: 1 Bioengineering College, Chongqing University, Chongqing 400044, China
– name: 4 School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
– name: 2 The 15th Research Institute of China Electronics Technology Group Corporation, Beijing 100083, China
– name: 3 Wuhan Branch of Beijing Zunguan Technology Co., Ltd., Wuhan 430079, China
Author_xml – sequence: 1
  givenname: Liang
  surname: Zheng
  fullname: Zheng, Liang
– sequence: 2
  givenname: Jie
  surname: Zhao
  fullname: Zhao, Jie
– sequence: 3
  givenname: Fangjie
  surname: Dong
  fullname: Dong, Fangjie
– sequence: 4
  givenname: Zhiyong
  orcidid: 0000-0001-6368-1008
  surname: Huang
  fullname: Huang, Zhiyong
– sequence: 5
  givenname: Daidi
  surname: Zhong
  fullname: Zhong, Daidi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36616703$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhi1URD_gwB9AK3GBQ1qv7bW9F6TQUhpRiQNwtma9s4kjr13sDRL_vk5SorZCc7A1fuadGc-ckqMQAxLytqbnnLf0IjNO62LqBTmpBRMzzRg9enQ_Jqc5ryllnHP9ihxzKWupKD8h367B--oKJ7STi6Ga-2VMblqN1WfI2FfFtQiYJge--oEhx1RB6KsbhwmSXTkL22jrcgl-TV4O4DO-eTjPyK_rLz8vb2a3378uLue3M9tQPc2wpYyBartWDNwChWagukMueq2tkL3oumGgHbV1wykwjZw3ogXJlK07BpafkcVet4-wNnfJjZD-mgjO7BwxLQ2Uiq1H03aKlf5bVXIKBazTrO-laGUjNWKDRevTXutu043YWwxTAv9E9OlLcCuzjH9Mq5mQVBSBDw8CKf7eYJ7M6LJF7yFg3GTDlKxbzdUOff8MXcdNCuWrdhSjvKlVoc731BJKAy4MseS1xXocnS2DH1zxz5WQDReMyxLw7nELh9r_DbkAH_eATTHnhMMBqanZLpA5LFBhL56x1k2wXY1ShfP_ibgHUoHESA
CitedBy_id crossref_primary_10_3390_su15053982
crossref_primary_10_3390_su152215695
crossref_primary_10_3390_healthcare13101204
Cites_doi 10.23919/ChiCC.2019.8865732
10.1109/EMBC.2014.6943521
10.3390/s17010198
10.3390/s121216920
10.1056/NEJMcp020719
10.1109/JSEN.2020.2970452
10.1007/s11042-022-12113-w
10.1016/j.procs.2018.04.110
10.1098/rsta.2015.0202
10.3390/s19040774
10.1016/j.measurement.2019.04.002
10.1016/j.ifacol.2016.07.335
10.1109/JSEN.2018.2829815
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23010107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9b722209790247a2b82dd6496568ee5e
PMC9824604
A746534236
36616703
10_3390_s23010107
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: The National Key Research and Development Program of China
  grantid: 2021YFC2009200
– fundername: The National Key Research and Development Program of China
  grantid: 2021YFC2009200; 2020YFC2007200
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-e9022a79b94f3ca0a5f08be34d88c46d4bbff0b0c1530a28e33549a627c1b2ac3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000909121200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:41:24 EDT 2025
Tue Nov 04 02:06:42 EST 2025
Fri Sep 05 07:45:56 EDT 2025
Tue Oct 07 07:19:17 EDT 2025
Tue Nov 04 18:17:26 EST 2025
Wed Feb 19 02:25:21 EST 2025
Tue Nov 18 21:55:49 EST 2025
Sat Nov 29 07:15:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords XGBoost
fall detection
feature dimensionality reduction
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-e9022a79b94f3ca0a5f08be34d88c46d4bbff0b0c1530a28e33549a627c1b2ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6368-1008
OpenAccessLink https://doaj.org/article/9b722209790247a2b82dd6496568ee5e
PMID 36616703
PQID 2761203517
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9b722209790247a2b82dd6496568ee5e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9824604
proquest_miscellaneous_2761983704
proquest_journals_2761203517
gale_infotracacademiconefile_A746534236
pubmed_primary_36616703
crossref_primary_10_3390_s23010107
crossref_citationtrail_10_3390_s23010107
PublicationCentury 2000
PublicationDate 20221222
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 20221222
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_4) 2019; 21
Mansoor (ref_8) 2022; 81
Tong (ref_2) 2021; 35
Kalache (ref_1) 2009; 5
Mao (ref_3) 2018; 24
Yang (ref_25) 2017; 26
Wu (ref_11) 2020; 1650
ref_17
Ngu (ref_13) 2018; 4
Wang (ref_14) 2020; 20
Tinetti (ref_26) 2003; 348
Jia (ref_19) 2022; 1
Wu (ref_18) 2019; 140
Liu (ref_5) 2021; 7
Gao (ref_23) 2021; 33
Yacchirema (ref_12) 2018; 130
Lazzaretti (ref_10) 2018; 18
Maurya (ref_21) 2016; 49
ref_22
Jolliffe (ref_20) 2016; 374
Cahoolessur (ref_15) 2020; 36
Angela (ref_16) 2017; 17
Tao (ref_9) 2012; 12
Zhou (ref_24) 2021; 24
ref_7
ref_6
References_xml – volume: 24
  start-page: 890
  year: 2021
  ident: ref_24
  article-title: Advances in Postprandial Hypotension and the Impact of Diabetes Mellitus on Its Pathogenesis and Treatment
  publication-title: Chin. Gen. Pract.
– ident: ref_7
  doi: 10.23919/ChiCC.2019.8865732
– volume: 1650
  start-page: 022037
  year: 2020
  ident: ref_11
  article-title: Fall Detection Monitoring System Based on MEMS Sensor
  publication-title: J. Phys.
– ident: ref_17
  doi: 10.1109/EMBC.2014.6943521
– volume: 17
  start-page: 198
  year: 2017
  ident: ref_16
  article-title: SisFall: A Fall and Movement Dataset
  publication-title: Sensors
  doi: 10.3390/s17010198
– volume: 12
  start-page: 16920
  year: 2012
  ident: ref_9
  article-title: Privacy-preserved behavior analysis and fall detection by an infrared ceiling sensor network
  publication-title: Sensors
  doi: 10.3390/s121216920
– volume: 348
  start-page: 42
  year: 2003
  ident: ref_26
  article-title: Preventing falls in elderly persons
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp020719
– volume: 20
  start-page: 5442
  year: 2020
  ident: ref_14
  article-title: Pre-impact fall detection based on multi-source CNN ensemble
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2970452
– volume: 81
  start-page: 15491
  year: 2022
  ident: ref_8
  article-title: A machine learning approach for non-invasive fall detection using Kinect
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12113-w
– volume: 24
  start-page: 865
  year: 2018
  ident: ref_3
  article-title: Research progress on the fear of fall intervention for the elderly at home and abroad
  publication-title: Chin. J. Mod. Nurs.
– volume: 7
  start-page: 1
  year: 2021
  ident: ref_5
  article-title: Preimpact fall detection for elderly based on fractional domain
  publication-title: Math. Probl. Eng.
– volume: 130
  start-page: 603
  year: 2018
  ident: ref_12
  article-title: Fall detection system for elderly people using IoT and big data
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.04.110
– volume: 36
  start-page: 8
  year: 2020
  ident: ref_15
  article-title: Fall detection system using XGBoost and IoT
  publication-title: R D J.
– volume: 21
  start-page: 61
  year: 2019
  ident: ref_4
  article-title: The current status and prevention of falls in community-dwelling older people
  publication-title: Chin. Manip. Rehabil. Med.
– volume: 33
  start-page: 377
  year: 2021
  ident: ref_23
  article-title: Efficacy of acarbose in the treatment of postprandial hypotension in elderly patients with prediabetes
  publication-title: Mod. Pract. Med.
– volume: 374
  start-page: 20150202
  year: 2016
  ident: ref_20
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2015.0202
– volume: 1
  start-page: 1
  year: 2022
  ident: ref_19
  article-title: Feature dimensionality reduction: A review
  publication-title: Complex Intell. Syst.
– ident: ref_6
  doi: 10.3390/s19040774
– volume: 35
  start-page: 15
  year: 2021
  ident: ref_2
  article-title: Research on the Latest Dynamics and Trends of Population in China—An Analysis Combined with the Seventh National Census Data
  publication-title: J. China Inst. Ind. Relat.
– volume: 26
  start-page: 632
  year: 2017
  ident: ref_25
  article-title: The relationship between type 2 diabetes mellitus and orthostatic hypotension
  publication-title: Henan Med. Res.
– volume: 140
  start-page: 283
  year: 2019
  ident: ref_18
  article-title: Wearable-sensor-based pre-impact fall detection system with a hierarchical classifier
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.002
– volume: 49
  start-page: 1014
  year: 2016
  ident: ref_21
  article-title: Identification of linear dynamic systems using dynamic iterative principal component analysis
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.335
– ident: ref_22
– volume: 5
  start-page: 1
  year: 2009
  ident: ref_1
  article-title: Active ageing: A policy framework
  publication-title: Adv. Gerontol.
– volume: 18
  start-page: 5082
  year: 2018
  ident: ref_10
  article-title: A movement decomposition and machine learning-based fall detection system using wrist wearable device
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2829815
– volume: 4
  start-page: 87
  year: 2018
  ident: ref_13
  article-title: Smartwatch-based IoT fall detection application
  publication-title: Open J. Internet Things
SSID ssj0023338
Score 2.400303
Snippet With the aging of the human body and the reduction in its physiological capacities, falls have become a huge threat to individuals’ physical and mental health,...
With the aging of the human body and the reduction in its physiological capacities, falls have become a huge threat to individuals' physical and mental health,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 107
SubjectTerms Accuracy
Aged
Aging
Algorithms
Analysis
Behavior
Classification
Datasets
Decision making
fall detection
feature dimensionality reduction
Global positioning systems
GPS
Humans
Machine learning
Methods
Monitoring, Ambulatory - methods
Neural networks
Older people
Sensors
Support vector machines
Wearable computers
XGBoost
SummonAdditionalLinks – databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CwQN7GNdBYKCAkOAlWuq4tvOEukE1hDQhAVLfLF-3SiXZ2ozfv3OSNGs1xAuvsRPZOXdfvg_gvYil89FjmRqZz7jzLDNqLDJhpLBhFNHWY0s2IU9P1WxWfu8X3Fb9scq1T2wdta8drZEfMqy3GW17yU8XlxmxRtHuak-hcRfuEW026bmc3RRcBdZfHZpQgaX94QrTbdRAYo7diEEtVP9th7wRkbZPS26En-nD_x34I9jrE8900mnKY7gTqiewuwFH-BS-Tc1ikX4OTXs8q0onizP8UHP-Oz3CWOdTfPS1onPY-J0fWP7Wy9RUPj2Z0yXmllOF3u44e57Br-mXn8cnWU-2kDnM0ZoslBjNjSxtyWPhTG7GMVc2FNwr5bjw3NoYc5s7dJG5YSoUBZaWRjDpRpYZV-zDTlVX4QWk3tigcu5cIT26CGWEcpE5FrjxuZc2gY_r369dj0ROhBgLjRUJSUoPkkrg3dD1ooPf-FunI5Lh0IEQs9sH9fJM9waoSysxFcpLifPk0jCrmPeC0PKFCmEcEvhAGqDJrnEwzvTXE3BKhJClJ5KQ6DD5FAkcrAWte4Nf6RspJ_B2aEZTpf0XU4X6qutTEtgQT-B5p1PDmAvMkwR63wTklrZtTWq7pZqft3DgpWJc5Pzlv4f1Ch4wurkxYhljB7DTLK_Ca7jv_jTz1fJNazfXDDcjAw
  priority: 102
  providerName: ProQuest
Title Fall Detection Algorithm Based on Inertial Sensor and Hierarchical Decision
URI https://www.ncbi.nlm.nih.gov/pubmed/36616703
https://www.proquest.com/docview/2761203517
https://www.proquest.com/docview/2761983704
https://pubmed.ncbi.nlm.nih.gov/PMC9824604
https://doaj.org/article/9b722209790247a2b82dd6496568ee5e
Volume 23
WOSCitedRecordID wos000909121200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access资源_DOAJ
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5B4QAHVN5LS7QgJLis6ngdP45Jm6gVahTxkMJp5WcbKWyqJO2R3854d7PaCCQuXHywvSt7POOZT7a_AfjAg7IuOISpgbqMWUczLQc841pw4_sBbT1UySbEdCrnczXrpPqKd8JqeuBacCfKCHRhRAmF3kRoaiR1jkeWcy69H_i4-xKhdmCqgVo5Iq-aRyhHUH-ywUAbdS_mjO14n4qk_8-tuOOL9u9JdhzP5BCeNBFjOqxH-hTu-fIZPO7wCD6HzxO9XKZnflvdqyrT4fJqhaD_-mc6QiflUqy6KOMFavzPV8Stq3WqS5eeL-Lr4yoZSvy6TrbzAr5Pxt9Oz7MmS0JmMbjaZh4FQ7VQRrGQW030IBBpfM6clJZxx4wJgRhicW8jmkqf54gJNafC9g3VNn8JB-Wq9K8hddp4SZi1uXBo21JzaQO11DPtiBMmgU876RW2oRCPmSyWBUKJKOiiFXQC79uuNzVvxt86jeIStB0i1XVVgQpQNApQ_EsBEvgYF7CIBomDsbp5V4BTitRWxVBECjmMGnkCx7s1LhpL3RRUYIwXj1NxNO_aZrSxeHCiS7-6rfuoyBLEEnhVq0Q75hwDHI7bZgJiT1n2JrXfUi6uKx5vJSnjhL35H1I4gkc0Pszo04zSYzjYrm_9W3ho77aLzboH98VcVKXswYPReDr70qsMBsvLX2Osm11czn78BvywGig
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQlY8H4YChgEKhurzngyM14glFKiRCkREkXKzszLbaTglCQF8VN8I_f61UQgdl2wtSfWTHzm3Hs9M-cAvBR5al3usEzNmYu4dSzSqisioaUwvpPjXM9Lswk5HqvJJP24Bb-aszC0rbLhxJKo3dzSN_I9hvU2o2Uv-fb0W0SuUbS62lhoVLAY-Z8_sGRbvhke4Pt9xVj__dG7QVS7CkQWk5FV5FMMW1qmJuV5YnWsu3msjE-4U8py4bgxeR6b2CIXxJopnyRYQ2nBpO0Ypm2Cz70El5HHJRV7cnJe4CVY71XqRUmSxntLTO8R8eRUuxbzSmuAPwPAWgTc3J25Fu76N_-3P-oW3KgT67BXzYTbsOWLO3B9TW7xLoz6ejYLD_yq3H5WhL3ZMXZ8dfI13MdY7kK8NCxonzk-5xOW9_NFqAsXDqZ0SLv0jKFfV55E9-DzhYzmPmwX88I_hNBp41XMrU2kQwpUWiibM8s81y520gTwunndma2V1snwY5ZhxUXIyFpkBPCibXpayYv8rdE-YaZtQIrg5YX54jirCSZLjcRUL04ljpNLzYxizglyAxDK-64PYJcQlxFvYWesro9f4JBIASzrSVLaw-RaBLDTACurCW2ZnaMqgOftbaQiWl_ShZ-fVW1SElPiATyoMNz2OcE8UGB0CUBuoHtjUJt3iulJKXeeKsZFzB_9u1vP4Org6MNhdjgcjx7DNUanVDosYmwHtleLM_8Ertjvq-ly8bScsyF8uWjs_wYciYB9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgvcjMEBAINhETR3XdhYIdSjVVIWqEiDNrIKfM5VKMrQZEL_G13GdpKEViN0s2MZOZCfH9xFfnwPwjLlUG2cwTXXERFQbEknRZxGTnCnbc7jWXSU2wadTcXiYznbg5_osjC-rXNvEylCbQvt_5F2C-Tbx216865qyiNlw9Pr0a-QVpPxO61pOo4bIxP74junb6tV4iN_6OSGjtx_fHESNwkCkMTApI5uiC5M8VSl1iZax7LtYKJtQI4SmzFClnItVrNEuxJIImySYT0lGuO4pInWCz70AuxiSU9KB3dn4_eyoTfcSzP5qLqMkSePuCoN9xL_Xrd3wgJVQwJ_uYMMfbtdqbji_0bX_-bVdh6tNyB0O6jVyA3ZsfhOubBAx3oLJSC4W4dCWVWFaHg4Wxzjw8uRLuI9e3oR4aZz7CnR8zgdM_ItlKHMTHsz98e1KTcbfXasV3YZP5zKbO9DJi9zeg9BIZUVMtU64QeMoJBPaEU0slSY2XAXwcv3pM91wsHspkEWGuZhHSdaiJICnbdfTmnjkb532PX7aDp4rvLpQLI-zxvRkqeIYBMYpx3lSLokSxBjmdQKYsLZvA3jh0Zd5i4aD0bI5mIFT8txg2YB7Dj4Mu1kAe2uQZY2pW2W_ERbAk7YZjZTfeZK5Lc7qPqmnWaIB3K3x3I45wQiRod8JgG8hfWtS2y35_KQiQk8FoSym9_89rMdwCSGfvRtPJw_gMvHHV3okImQPOuXyzD6Ei_pbOV8tHzULOITP5w3-X6Paisw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+Detection+Algorithm+Based+on+Inertial+Sensor+and+Hierarchical+Decision&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liang+Zheng&rft.au=Jie+Zhao&rft.au=Fangjie+Dong&rft.au=Zhiyong+Huang&rft.date=2022-12-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=1&rft.spage=107&rft_id=info:doi/10.3390%2Fs23010107&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9b722209790247a2b82dd6496568ee5e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon