Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing

The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in genetics Ročník 12; s. 673286
Hlavní autoři: Duan, Li, Ouyang, Kan, Xu, Xiao, Xu, Limei, Wen, Caining, Zhou, Xiaoying, Qin, Zhuan, Xu, Zhiyi, Sun, Wei, Liang, Yujie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 12.05.2021
Témata:
ISSN:1664-8021, 1664-8021
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery.
AbstractList The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery.
The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery.The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery.
Author Sun, Wei
Liang, Yujie
Xu, Xiao
Ouyang, Kan
Wen, Caining
Qin, Zhuan
Xu, Zhiyi
Zhou, Xiaoying
Duan, Li
Xu, Limei
AuthorAffiliation 1 Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital , Shenzhen , China
2 Shenzhen Institute of Geriatrics , Shenzhen , China
3 Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital , Shenzhen , China
4 Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health , Shenzhen , China
AuthorAffiliation_xml – name: 4 Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health , Shenzhen , China
– name: 1 Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital , Shenzhen , China
– name: 2 Shenzhen Institute of Geriatrics , Shenzhen , China
– name: 3 Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital , Shenzhen , China
Author_xml – sequence: 1
  givenname: Li
  surname: Duan
  fullname: Duan, Li
– sequence: 2
  givenname: Kan
  surname: Ouyang
  fullname: Ouyang, Kan
– sequence: 3
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
– sequence: 4
  givenname: Limei
  surname: Xu
  fullname: Xu, Limei
– sequence: 5
  givenname: Caining
  surname: Wen
  fullname: Wen, Caining
– sequence: 6
  givenname: Xiaoying
  surname: Zhou
  fullname: Zhou, Xiaoying
– sequence: 7
  givenname: Zhuan
  surname: Qin
  fullname: Qin, Zhuan
– sequence: 8
  givenname: Zhiyi
  surname: Xu
  fullname: Xu, Zhiyi
– sequence: 9
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
– sequence: 10
  givenname: Yujie
  surname: Liang
  fullname: Liang, Yujie
BookMark eNp1kV1LHDEUhkOx1M8f4N1c9mbXfE6SG0G2ahdEi63XIZM5WSOzyTaZFfz3zboraMEDh4Rz8j554T1EezFFQOiU4CljSp_5BUSYUkzJtJWMqvYLOiBtyyeqjvbe3ffRSSlPuBbXjDH-De0zjgXXVB4geWtjWtk8BjdA8wOG8Az5pUm-md3Pf_-6P5vZohufcnMNMS2huezDGOLiGH31dihwsjuP0MPV5Z_Zz8nN3fV8dnEzcQKrcQJM2d5z1gPWyvWWeKdFD1ZpwrqOybZ2ddViKST1ljDceWmV8kILhjFhR2i-5fbJPplVDkubX0yywbwOUl6YnXnTtQ4kkfUzp3jXg_YKhBfSAUhNqaus8y1rte6W0DuIY7bDB-jHTQyPZpGejSJc16qA7ztATn_XUEazDMXBMNgIaV0MFUwQrCjf-Jbbpy6nUjJ448Jox5A25DAYgs0mRfOaotmkaLYpViX5T_lm8HPNP8vcoJY
CitedBy_id crossref_primary_10_1016_j_envres_2023_116333
crossref_primary_10_3390_w15071377
crossref_primary_10_1016_j_ajps_2025_101041
crossref_primary_10_3389_fcimb_2024_1408569
crossref_primary_10_1016_j_lfs_2023_122003
crossref_primary_10_3390_molecules29092073
crossref_primary_10_2147_BTT_S326422
crossref_primary_10_1089_crispr_2023_0078
crossref_primary_10_1038_s41380_023_02208_7
crossref_primary_10_3389_fphar_2022_1035769
crossref_primary_10_1016_j_envres_2023_117263
crossref_primary_10_1002_mco2_70337
crossref_primary_10_1016_j_addr_2025_115639
crossref_primary_10_1021_acsbiomaterials_5c00004
crossref_primary_10_1002_smsc_202400192
crossref_primary_10_1016_j_ejcb_2023_151299
crossref_primary_10_1002_wnan_1938
crossref_primary_10_1016_j_biomaterials_2022_121876
crossref_primary_10_1007_s13167_023_00324_6
crossref_primary_10_3390_plants14162459
crossref_primary_10_1016_j_nano_2025_102821
crossref_primary_10_5409_wjcp_v13_i3_98468
crossref_primary_10_1007_s11886_024_02096_5
crossref_primary_10_1016_j_isci_2025_112319
crossref_primary_10_1039_D3BM00529A
crossref_primary_10_3390_biom12091239
crossref_primary_10_3390_pharmaceutics15020351
crossref_primary_10_1016_j_pmpp_2025_102782
crossref_primary_10_1186_s40779_023_00468_6
crossref_primary_10_32604_or_2023_044473
crossref_primary_10_1590_s1678_9946202466048
crossref_primary_10_1007_s12672_023_00680_9
crossref_primary_10_1007_s13311_022_01285_w
crossref_primary_10_3390_ijms241914836
crossref_primary_10_1016_j_indcrop_2025_121461
crossref_primary_10_26599_NTM_2023_9130018
crossref_primary_10_1007_s11356_023_26482_8
crossref_primary_10_1016_j_jconrel_2024_06_023
crossref_primary_10_1016_j_plana_2022_100001
crossref_primary_10_1016_j_addr_2025_115647
crossref_primary_10_1515_jcim_2024_0338
crossref_primary_10_1097_COH_0000000000000846
crossref_primary_10_1089_crispr_2022_0051
crossref_primary_10_1016_j_jconrel_2022_02_005
crossref_primary_10_1002_anbr_202200082
crossref_primary_10_1208_s12249_025_03159_8
crossref_primary_10_1089_aid_2022_0148
crossref_primary_10_1007_s12033_025_01482_w
crossref_primary_10_1007_s13205_024_04186_1
crossref_primary_10_1016_j_envexpbot_2023_105414
crossref_primary_10_3390_pharmaceutics16040563
crossref_primary_10_1016_j_omtn_2025_102634
crossref_primary_10_1007_s12033_024_01070_4
crossref_primary_10_3390_bioengineering10050512
crossref_primary_10_3389_fchem_2023_1259435
crossref_primary_10_1007_s42452_024_06405_z
crossref_primary_10_1186_s12943_022_01550_8
crossref_primary_10_3390_cancers17162628
crossref_primary_10_1016_j_biocel_2022_106262
crossref_primary_10_1016_j_ijbiomac_2024_134097
crossref_primary_10_1039_D2BM01489K
crossref_primary_10_1089_crispr_2022_0084
crossref_primary_10_1007_s11033_025_10674_1
crossref_primary_10_3389_fgeed_2024_1509924
crossref_primary_10_1007_s12032_025_02928_6
crossref_primary_10_3389_fbioe_2022_1031049
crossref_primary_10_1007_s13237_024_00481_7
crossref_primary_10_1007_s12032_022_01930_6
crossref_primary_10_1016_j_gene_2024_148865
crossref_primary_10_3390_biologics3040014
crossref_primary_10_3390_ijms242216241
crossref_primary_10_1016_j_tibtech_2022_09_007
crossref_primary_10_1515_ntrev_2024_0134
crossref_primary_10_1080_17425247_2023_2185220
crossref_primary_10_3390_ijms26094420
crossref_primary_10_1016_j_drudis_2022_103375
crossref_primary_10_1016_j_lfs_2022_121204
crossref_primary_10_3389_fcimb_2025_1627668
crossref_primary_10_1002_advs_202207512
crossref_primary_10_3389_fpls_2023_1111875
crossref_primary_10_1016_j_bbagen_2023_130385
crossref_primary_10_1039_D5BM00711A
crossref_primary_10_1016_j_bioactmat_2023_05_014
crossref_primary_10_1016_j_mimet_2023_106876
crossref_primary_10_3390_pharmaceutics13101670
crossref_primary_10_3390_pharmaceutics14091840
crossref_primary_10_3390_pharmaceutics14091842
crossref_primary_10_1016_j_ajps_2025_101068
crossref_primary_10_1088_2043_6262_ad6e5c
crossref_primary_10_2217_fmb_2022_0222
crossref_primary_10_1007_s13237_024_00496_0
crossref_primary_10_3390_ma15010179
crossref_primary_10_1016_j_archoralbio_2025_106391
crossref_primary_10_1016_j_ijbiomac_2025_146574
crossref_primary_10_1007_s11356_024_32101_x
crossref_primary_10_1016_j_matdes_2022_111415
crossref_primary_10_3390_ijms24054778
crossref_primary_10_1021_acs_molpharmaceut_5c00062
crossref_primary_10_1093_nar_gkae800
crossref_primary_10_1208_s12249_025_03157_w
crossref_primary_10_1016_j_ymgme_2022_106968
crossref_primary_10_1007_s11033_024_09653_9
crossref_primary_10_1016_j_bbrc_2024_151084
crossref_primary_10_3389_fgeed_2022_846624
crossref_primary_10_1016_j_addr_2021_114068
crossref_primary_10_1208_s12249_022_02303_y
crossref_primary_10_3389_fmicb_2022_953218
crossref_primary_10_1186_s12935_025_03900_0
crossref_primary_10_1002_cbic_202100359
crossref_primary_10_2174_0122115366319848241022092805
crossref_primary_10_1007_s11051_025_06290_6
crossref_primary_10_1016_j_apmt_2024_102449
crossref_primary_10_3390_dna4040030
crossref_primary_10_1016_j_arcmed_2024_103124
crossref_primary_10_1002_wnan_70030
crossref_primary_10_1016_j_abst_2024_06_003
crossref_primary_10_1002_advs_202300502
crossref_primary_10_1186_s12929_022_00850_x
crossref_primary_10_1155_2021_1285087
crossref_primary_10_1002_smll_202409353
crossref_primary_10_17816_dv676901
crossref_primary_10_1007_s12672_025_03234_3
crossref_primary_10_3390_ph17010041
crossref_primary_10_1002_adtp_202400412
crossref_primary_10_1007_s13346_023_01320_z
crossref_primary_10_1002_smll_202504361
crossref_primary_10_1016_j_jddst_2024_105338
crossref_primary_10_3389_fpls_2022_843575
crossref_primary_10_1097_JS9_0000000000002518
crossref_primary_10_1016_j_jddst_2024_105457
crossref_primary_10_3389_fnano_2025_1545413
crossref_primary_10_3390_ijms23031685
crossref_primary_10_1038_s41380_023_02377_5
crossref_primary_10_1016_j_jddst_2023_104694
crossref_primary_10_1208_s12249_024_02834_6
crossref_primary_10_3389_fonc_2023_1194350
crossref_primary_10_3390_ijms252011009
crossref_primary_10_3389_fgeed_2022_1030285
crossref_primary_10_1007_s12033_023_00932_7
crossref_primary_10_1016_j_addr_2025_115619
crossref_primary_10_1038_s41419_021_04240_3
crossref_primary_10_3390_pharmaceutics16091197
crossref_primary_10_1002_btm2_10492
crossref_primary_10_1002_cbic_202300867
crossref_primary_10_1016_j_ejpb_2024_114222
crossref_primary_10_2147_IJN_S520967
crossref_primary_10_1016_j_addr_2021_114087
crossref_primary_10_1002_mco2_767
crossref_primary_10_3389_fimmu_2023_1133297
crossref_primary_10_3389_fpls_2023_1133036
crossref_primary_10_4167_jbv_2024_54_1_012
crossref_primary_10_3390_ph14111171
crossref_primary_10_1016_j_lfs_2024_123120
crossref_primary_10_3389_fpls_2022_979742
crossref_primary_10_3389_fbioe_2022_873369
crossref_primary_10_1016_j_jconrel_2024_05_023
crossref_primary_10_1016_j_ymthe_2021_09_002
crossref_primary_10_3390_v14010004
crossref_primary_10_3389_fonc_2024_1383062
crossref_primary_10_31083_j_fbl2708241
crossref_primary_10_1016_j_heliyon_2024_e24606
crossref_primary_10_2174_0115733947290474240315062214
crossref_primary_10_1016_j_ccr_2023_215172
crossref_primary_10_2174_0115665232342293241120033251
crossref_primary_10_3390_cimb47050330
crossref_primary_10_1038_s41698_025_01054_w
crossref_primary_10_1016_j_colsurfb_2025_114965
crossref_primary_10_1007_s00210_025_04038_6
crossref_primary_10_1016_j_jddst_2022_103737
crossref_primary_10_1038_s41467_023_42948_2
crossref_primary_10_3390_ijms24087603
crossref_primary_10_3389_fncel_2025_1578138
crossref_primary_10_3390_ijms231911482
crossref_primary_10_3389_fchem_2022_957572
crossref_primary_10_1002_biot_202300077
crossref_primary_10_1161_CIRCRESAHA_122_320496
crossref_primary_10_1186_s12964_024_01713_8
crossref_primary_10_3390_biotech12020037
crossref_primary_10_1002_jex2_111
crossref_primary_10_1002_advs_202306432
crossref_primary_10_1016_j_jconrel_2024_11_008
crossref_primary_10_1016_j_scitotenv_2023_169097
Cites_doi 10.1002/wnan.1609
10.1080/1061186X.2020.1870231
10.1038/s41551-018-0252-8
10.1016/j.biomaterials.2020.120221
10.1186/s13075-020-02290-0
10.2174/0929867327666201118161232
10.1021/acs.nanolett.8b02689
10.1002/advs.201700611
10.1021/acsami.0c10458
10.1038/nbt.3081
10.1038/s41467-018-05425-9
10.1073/pnas.1904697116
10.1016/j.lfs.2019.116636
10.1038/nmeth.3993
10.1038/mt.2008.76
10.1002/anie.201506030
10.3402/nano.v1i0.4889
10.4155/tde.15.27
10.3390/biom10060839
10.1002/advs.201801423
10.1021/acsnano.7b07874
10.1002/smll.201902686
10.1021/acsnano.6b07600
10.1038/s41467-020-14957-y
10.1016/j.actbio.2019.04.020
10.1016/j.biomaterials.2012.11.064
10.1016/j.devcel.2020.11.007
10.1038/s41563-019-0385-5
10.1016/j.jconrel.2017.09.013
10.1038/s41551-019-0485-1
10.1038/s41551-017-0137-2
10.1021/acs.biomac.8b00511
10.3760/cma.j.issn.1007-3418.2019.08.005
10.7150/thno.52570
10.3390/v11010028
10.21769/BioProtoc.2586
10.1038/nmeth.2857
10.1038/nbt.3471
10.1038/nbt.3389
10.1038/s41467-020-17029-3
10.1021/acsami.7b08163
10.1038/s41467-018-04791-8
10.1002/anie.201005662
10.1016/j.biomaterials.2020.120539
10.1038/cr.2013.45
10.1016/j.celrep.2018.02.014
10.1039/d0bm00427h
10.1039/D0NR07622H
10.1002/anie.201708689
10.1016/j.tibtech.2013.04.004
10.1002/anie.201610209
10.1016/j.ymthe.2018.10.002
10.1039/C9CC00010K
10.1039/d0tb01925a
ContentType Journal Article
Copyright Copyright © 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang.
Copyright © 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang. 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang
Copyright_xml – notice: Copyright © 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang.
– notice: Copyright © 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang. 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fgene.2021.673286
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_b6ce71743dc84bde9f8e5f57cee7922c
PMC8149999
10_3389_fgene_2021_673286
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81772394; 81972116
– fundername: Shenzhen Key Medical Discipline Construction Fund
  grantid: SZXK042; SZXK049
– fundername: Key Realm R&D Program of Guangdong Province
  grantid: 2019B030335001
– fundername: Samming Project of Medicine in Shenzhen
  grantid: SZSM201612079
– fundername: Shenzhen Science and Technology Projects
  grantid: JCYJ20170817172023838; JCYJ20170306092215436; JCYJ20170413161649437
– fundername: Key Program of Natural Science Foundation of Guangdong Province
  grantid: 2018B0303110003
– fundername: Guangdong Provincial High-level Clinical Key Specialties
  grantid: SZGSP013; SZGSP007
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M672829
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c508t-e38adf43de098cda1fc95dea8913bb376b37493607572fa130bf7a88f59530013
IEDL.DBID DOA
ISICitedReferencesCount 218
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654233300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-8021
IngestDate Fri Oct 03 12:49:06 EDT 2025
Thu Aug 21 13:55:01 EDT 2025
Fri Sep 05 06:14:29 EDT 2025
Tue Nov 18 21:38:14 EST 2025
Sat Nov 29 03:02:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-e38adf43de098cda1fc95dea8913bb376b37493607572fa130bf7a88f59530013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Luan Wen, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), China; Changzhi Zhao, Huazhong Agricultural University, China
Edited by: Linyuan Ma, University of Michigan, United States
This article was submitted to Genomic Assay Technology, a section of the journal Frontiers in Genetics
OpenAccessLink https://doaj.org/article/b6ce71743dc84bde9f8e5f57cee7922c
PMID 34054927
PQID 2535108241
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b6ce71743dc84bde9f8e5f57cee7922c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8149999
proquest_miscellaneous_2535108241
crossref_citationtrail_10_3389_fgene_2021_673286
crossref_primary_10_3389_fgene_2021_673286
PublicationCentury 2000
PublicationDate 2021-05-12
PublicationDateYYYYMMDD 2021-05-12
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-12
  day: 12
PublicationDecade 2020
PublicationTitle Frontiers in genetics
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Liang (ref20); 11
Duan (ref9)
Duan (ref10) 2021; 13
Mout (ref29) 2017; 7
Woo (ref41) 2015; 33
Liu (ref24) 2018; 19
Shahbazi (ref31) 2019; 18
Usman (ref37) 2018; 9
Sun (ref35); 6
Yip (ref48) 2020; 10
Duan (ref8); 22
Chin (ref7) 2019; 90
Lee (ref17) 2018; 2
Chen (ref5) 2019; 15
Luo (ref26) 2018; 12
Wei (ref40) 2020; 11
Yang (ref44) 2011; 50
Yang (ref45) 2020; 4
Levy (ref18) 2010; 1
Chen (ref4) 2020; 12
Yin (ref46) 2016; 34
Shi (ref33) 2020; 256
Xu (ref42) 2021; 269
Ye (ref54) 2020; 8
Mout (ref28) 2017; 11
Campbell (ref1) 2019; 27
Qiao (ref30) 2019; 55
Zhang (ref49) 2017; 9
Guo (ref13) 2019; 116
Lin (ref23) 2018; 5
Xu (ref43) 2019; 11
Zincarelli (ref51) 2008; 16
Wang (ref38) 2019; 27
Miller (ref27) 2017; 56
Yin (ref47) 2013; 34
Zhang (ref50) 2020; 55
Lee (ref16) 2017; 1
Liang (ref21) 2020; 12
Chew (ref6) 2016; 13
Zuris (ref52) 2015; 33
Gee (ref53) 2020; 11
Shen (ref32) 2014; 11
Gaj (ref12) 2013; 31
Liu (ref25) 2019; 6
Wang (ref39) 2018; 57
Tao (ref36) 2021; 9
Sun (ref34); 54
Kim (ref15) 2017; 266
Chang (ref2) 2013; 23
Chaverra-Rodriguez (ref3) 2018; 9
Li (ref19) 2019; 19
Finn (ref11) 2018; 22
Liang (ref22)
Gupta (ref14) 2019; 232
References_xml – volume: 12
  start-page: e1609
  year: 2020
  ident: ref4
  article-title: Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1609
– start-page: 1
  ident: ref22
  article-title: Non-surgical osteoarthritis therapy, intra-articular drug delivery towards clinical applications
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2020.1870231
– volume: 2
  start-page: 497
  year: 2018
  ident: ref17
  article-title: Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0252-8
– volume: 256
  start-page: 120221
  year: 2020
  ident: ref33
  article-title: MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120221
– volume: 22
  start-page: 194
  ident: ref8
  article-title: Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-020-02290-0
– ident: ref9
  article-title: Exosome-mediated drug delivery for cell-free therapy of osteoarthritis
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867327666201118161232
– volume: 19
  start-page: 19
  year: 2019
  ident: ref19
  article-title: In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02689
– volume: 5
  start-page: 1700611
  year: 2018
  ident: ref23
  article-title: Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700611
– volume: 12
  start-page: 36938
  year: 2020
  ident: ref21
  article-title: Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10458
– volume: 33
  start-page: 73
  year: 2015
  ident: ref52
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3081
– volume: 9
  start-page: 3008
  year: 2018
  ident: ref3
  article-title: Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05425-9
– volume: 116
  start-page: 18295
  year: 2019
  ident: ref13
  article-title: Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1904697116
– volume: 232
  start-page: 116636
  year: 2019
  ident: ref14
  article-title: CRISPR-Cas9 system: a new-fangled dawn in gene editing
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.116636
– volume: 13
  start-page: 868
  year: 2016
  ident: ref6
  article-title: A multifunctional AAV-CRISPR-Cas9 and its host response
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3993
– volume: 16
  start-page: 1073
  year: 2008
  ident: ref51
  article-title: Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.76
– volume: 54
  start-page: 12029
  ident: ref34
  article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201506030
– volume: 1
  start-page: 1
  year: 2010
  ident: ref18
  article-title: Gold nanoparticles delivery in mammalian live cells: a critical review
  publication-title: Nanotechnol. Rev.
  doi: 10.3402/nano.v1i0.4889
– volume: 6
  start-page: 765
  ident: ref35
  article-title: Rolling circle replication for engineering drug delivery carriers
  publication-title: Ther. Deliv.
  doi: 10.4155/tde.15.27
– volume: 10
  start-page: 839
  year: 2020
  ident: ref48
  article-title: Recent advances in CRISPR/Cas9 delivery strategies
  publication-title: Biomol. Ther.
  doi: 10.3390/biom10060839
– volume: 6
  start-page: 1801423
  year: 2019
  ident: ref25
  article-title: Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801423
– volume: 12
  start-page: 994
  year: 2018
  ident: ref26
  article-title: Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07874
– volume: 15
  start-page: e1902686
  year: 2019
  ident: ref5
  article-title: Friend or foe? Evidence indicates endogenous exosomes can deliver functional gRNA and Cas9 protein
  publication-title: Small
  doi: 10.1002/smll.201902686
– volume: 11
  start-page: 2452
  year: 2017
  ident: ref28
  article-title: Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07600
– volume: 11
  start-page: 1334
  year: 2020
  ident: ref53
  article-title: Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14957-y
– volume: 90
  start-page: 60
  year: 2019
  ident: ref7
  article-title: Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.04.020
– volume: 34
  start-page: 2340
  year: 2013
  ident: ref47
  article-title: Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.11.064
– volume: 55
  start-page: 784.e789
  year: 2020
  ident: ref50
  article-title: Programmable extracellular vesicles for macromolecule delivery and genome modifications
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.11.007
– volume: 18
  start-page: 1124
  year: 2019
  ident: ref31
  article-title: Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0385-5
– volume: 266
  start-page: 8
  year: 2017
  ident: ref15
  article-title: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.09.013
– volume: 4
  start-page: 69
  year: 2020
  ident: ref45
  article-title: Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0485-1
– volume: 1
  start-page: 889
  year: 2017
  ident: ref16
  article-title: Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0137-2
– volume: 19
  start-page: 2957
  year: 2018
  ident: ref24
  article-title: A dual-targeting delivery system for effective genome editing and in situ detecting related protein expression in edited cells
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00511
– volume: 27
  start-page: 610
  year: 2019
  ident: ref38
  article-title: Exosome-mediated CRISPR/Cas9 system targets to cut the intercellular transmission function of hepatitis B virus genome
  publication-title: Zhonghua Gan Zang Bing Za Zhi
  doi: 10.3760/cma.j.issn.1007-3418.2019.08.005
– volume: 11
  start-page: 3183
  ident: ref20
  article-title: Engineering exosomes for targeted drug delivery
  publication-title: Theranostics
  doi: 10.7150/thno.52570
– volume: 11
  start-page: 28
  year: 2019
  ident: ref43
  article-title: Viral delivery systems for CRISPR
  publication-title: Viruses
  doi: 10.3390/v11010028
– volume: 7
  start-page: e2586
  year: 2017
  ident: ref29
  article-title: Cytosolic and nuclear delivery of CRISPR/Cas9-ribonucleoprotein for gene editing using arginine functionalized gold nanoparticles
  publication-title: Bio Protoc.
  doi: 10.21769/BioProtoc.2586
– volume: 11
  start-page: 399
  year: 2014
  ident: ref32
  article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2857
– volume: 34
  start-page: 328
  year: 2016
  ident: ref46
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3471
– volume: 33
  start-page: 1162
  year: 2015
  ident: ref41
  article-title: DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3389
– volume: 11
  start-page: 3232
  year: 2020
  ident: ref40
  article-title: Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17029-3
– volume: 9
  start-page: 25481
  year: 2017
  ident: ref49
  article-title: Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08163
– volume: 9
  start-page: 2359
  year: 2018
  ident: ref37
  article-title: Efficient RNA drug delivery using red blood cell extracellular vesicles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04791-8
– volume: 50
  start-page: 477
  year: 2011
  ident: ref44
  article-title: Drug delivery using nanoparticle-stabilized nanocapsules
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201005662
– volume: 269
  start-page: 120539
  year: 2021
  ident: ref42
  article-title: Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120539
– volume: 23
  start-page: 465
  year: 2013
  ident: ref2
  article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.45
– volume: 22
  start-page: 2227
  year: 2018
  ident: ref11
  article-title: A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.014
– volume: 8
  start-page: 2966
  year: 2020
  ident: ref54
  article-title: An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells
  publication-title: Biomater. Sci.
  doi: 10.1039/d0bm00427h
– volume: 13
  start-page: 1387
  year: 2021
  ident: ref10
  article-title: Exosome-mediated delivery of gene vectors for gene therapy
  publication-title: Nanoscale
  doi: 10.1039/D0NR07622H
– volume: 57
  start-page: 1491
  year: 2018
  ident: ref39
  article-title: Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201708689
– volume: 31
  start-page: 397
  year: 2013
  ident: ref12
  article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2013.04.004
– volume: 56
  start-page: 1059
  year: 2017
  ident: ref27
  article-title: Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201610209
– volume: 27
  start-page: 151
  year: 2019
  ident: ref1
  article-title: Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.10.002
– volume: 55
  start-page: 4707
  year: 2019
  ident: ref30
  article-title: Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan-coated red fluorescent protein
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00010K
– volume: 9
  start-page: 94
  year: 2021
  ident: ref36
  article-title: Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing
  publication-title: J. Mater. Chem. B
  doi: 10.1039/d0tb01925a
SSID ssj0000493334
Score 2.6417341
SecondaryResourceType review_article
Snippet The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 673286
SubjectTerms CRISPR/Cas9
delivery
exosome
Genetics
modification
nanocarriers
Title Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
URI https://www.proquest.com/docview/2535108241
https://pubmed.ncbi.nlm.nih.gov/PMC8149999
https://doaj.org/article/b6ce71743dc84bde9f8e5f57cee7922c
Volume 12
WOSCitedRecordID wos000654233300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3RCqReKj6K2EKrIHFCSjdxPmwf6bJbkGBVLSDtzXLssVhUsqi7ReqF385MvF1tLnDpITnYjmK_ScZv5NEbgDchKzF3wqaV801aog2p9rVLyfM1dZDC6dBVLfkkp1M1n-vLnVJfnBMW5YEjcMOmdiiZNnunysajDgqrUEly7lIL4dj7EuvZCaZ-RN5bFEUZjzEpCtPDQPZgWUyRn9UsUFP3NqJOr79HMvspkjt7zuQxHG7IYvIuTvIJPMD2KTyK5SNvn4Ek10gxb-xN3uMV51jcJsuQjGYfv1zOhiO70gmx0uQC2-VPTMZ-wVnOR_BtMv46-pBuCiGkjvjTOsVCWR8IAsy0ct7mwenKo-UjxqYhF0EXLbim7V-KYGlbaoK0SoVKVwWTvOew3y5bfAGJDHVhK61KnyExJWnrRstMUZMuUXg9gOwOFeM2KuFcrOLKULTAQJoOSMNAmgjkAN5uH_kVJTL-Nficod4OZHXrroFsbjaAmf_ZfACv7wxl6G_gIw7b4vJmZURVkJNRREsGIHsW7L2x39Muvne62irn8E8f38cUX8IBr5rzDHLxCvbX1zd4Ag_d7_VidX0Ke3KuTrtPlu6f_4z_Au-B8sg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+Delivery+of+CRISPR%2FCas9+for+Genome+Editing&rft.jtitle=Frontiers+in+genetics&rft.au=Duan%2C+Li&rft.au=Ouyang%2C+Kan&rft.au=Xu%2C+Xiao&rft.au=Xu%2C+Limei&rft.date=2021-05-12&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=12&rft.spage=673286&rft_id=info:doi/10.3389%2Ffgene.2021.673286&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon