Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications...
Saved in:
| Published in: | Frontiers in genetics Vol. 12; p. 673286 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Frontiers Media S.A
12.05.2021
|
| Subjects: | |
| ISSN: | 1664-8021, 1664-8021 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery. |
|---|---|
| AbstractList | The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery. The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery.The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery. |
| Author | Sun, Wei Liang, Yujie Xu, Xiao Ouyang, Kan Wen, Caining Qin, Zhuan Xu, Zhiyi Zhou, Xiaoying Duan, Li Xu, Limei |
| AuthorAffiliation | 1 Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital , Shenzhen , China 2 Shenzhen Institute of Geriatrics , Shenzhen , China 3 Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital , Shenzhen , China 4 Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health , Shenzhen , China |
| AuthorAffiliation_xml | – name: 4 Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health , Shenzhen , China – name: 1 Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital , Shenzhen , China – name: 2 Shenzhen Institute of Geriatrics , Shenzhen , China – name: 3 Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital , Shenzhen , China |
| Author_xml | – sequence: 1 givenname: Li surname: Duan fullname: Duan, Li – sequence: 2 givenname: Kan surname: Ouyang fullname: Ouyang, Kan – sequence: 3 givenname: Xiao surname: Xu fullname: Xu, Xiao – sequence: 4 givenname: Limei surname: Xu fullname: Xu, Limei – sequence: 5 givenname: Caining surname: Wen fullname: Wen, Caining – sequence: 6 givenname: Xiaoying surname: Zhou fullname: Zhou, Xiaoying – sequence: 7 givenname: Zhuan surname: Qin fullname: Qin, Zhuan – sequence: 8 givenname: Zhiyi surname: Xu fullname: Xu, Zhiyi – sequence: 9 givenname: Wei surname: Sun fullname: Sun, Wei – sequence: 10 givenname: Yujie surname: Liang fullname: Liang, Yujie |
| BookMark | eNp1kV1LHDEUhkOx1M8f4N1c9mbXfE6SG0G2ahdEi63XIZM5WSOzyTaZFfz3zboraMEDh4Rz8j554T1EezFFQOiU4CljSp_5BUSYUkzJtJWMqvYLOiBtyyeqjvbe3ffRSSlPuBbXjDH-De0zjgXXVB4geWtjWtk8BjdA8wOG8Az5pUm-md3Pf_-6P5vZohufcnMNMS2huezDGOLiGH31dihwsjuP0MPV5Z_Zz8nN3fV8dnEzcQKrcQJM2d5z1gPWyvWWeKdFD1ZpwrqOybZ2ddViKST1ljDceWmV8kILhjFhR2i-5fbJPplVDkubX0yywbwOUl6YnXnTtQ4kkfUzp3jXg_YKhBfSAUhNqaus8y1rte6W0DuIY7bDB-jHTQyPZpGejSJc16qA7ztATn_XUEazDMXBMNgIaV0MFUwQrCjf-Jbbpy6nUjJ448Jox5A25DAYgs0mRfOaotmkaLYpViX5T_lm8HPNP8vcoJY |
| CitedBy_id | crossref_primary_10_1016_j_envres_2023_116333 crossref_primary_10_3390_w15071377 crossref_primary_10_1016_j_ajps_2025_101041 crossref_primary_10_3389_fcimb_2024_1408569 crossref_primary_10_1016_j_lfs_2023_122003 crossref_primary_10_3390_molecules29092073 crossref_primary_10_2147_BTT_S326422 crossref_primary_10_1089_crispr_2023_0078 crossref_primary_10_1038_s41380_023_02208_7 crossref_primary_10_3389_fphar_2022_1035769 crossref_primary_10_1016_j_envres_2023_117263 crossref_primary_10_1002_mco2_70337 crossref_primary_10_1016_j_addr_2025_115639 crossref_primary_10_1021_acsbiomaterials_5c00004 crossref_primary_10_1002_smsc_202400192 crossref_primary_10_1016_j_ejcb_2023_151299 crossref_primary_10_1002_wnan_1938 crossref_primary_10_1016_j_biomaterials_2022_121876 crossref_primary_10_1007_s13167_023_00324_6 crossref_primary_10_3390_plants14162459 crossref_primary_10_1016_j_nano_2025_102821 crossref_primary_10_5409_wjcp_v13_i3_98468 crossref_primary_10_1007_s11886_024_02096_5 crossref_primary_10_1016_j_isci_2025_112319 crossref_primary_10_1039_D3BM00529A crossref_primary_10_3390_biom12091239 crossref_primary_10_3390_pharmaceutics15020351 crossref_primary_10_1016_j_pmpp_2025_102782 crossref_primary_10_1186_s40779_023_00468_6 crossref_primary_10_32604_or_2023_044473 crossref_primary_10_1590_s1678_9946202466048 crossref_primary_10_1007_s12672_023_00680_9 crossref_primary_10_1007_s13311_022_01285_w crossref_primary_10_3390_ijms241914836 crossref_primary_10_1016_j_indcrop_2025_121461 crossref_primary_10_26599_NTM_2023_9130018 crossref_primary_10_1007_s11356_023_26482_8 crossref_primary_10_1016_j_jconrel_2024_06_023 crossref_primary_10_1016_j_plana_2022_100001 crossref_primary_10_1016_j_addr_2025_115647 crossref_primary_10_1515_jcim_2024_0338 crossref_primary_10_1097_COH_0000000000000846 crossref_primary_10_1089_crispr_2022_0051 crossref_primary_10_1016_j_jconrel_2022_02_005 crossref_primary_10_1002_anbr_202200082 crossref_primary_10_1208_s12249_025_03159_8 crossref_primary_10_1089_aid_2022_0148 crossref_primary_10_1007_s12033_025_01482_w crossref_primary_10_1007_s13205_024_04186_1 crossref_primary_10_1016_j_envexpbot_2023_105414 crossref_primary_10_3390_pharmaceutics16040563 crossref_primary_10_1016_j_omtn_2025_102634 crossref_primary_10_1007_s12033_024_01070_4 crossref_primary_10_3390_bioengineering10050512 crossref_primary_10_3389_fchem_2023_1259435 crossref_primary_10_1007_s42452_024_06405_z crossref_primary_10_1186_s12943_022_01550_8 crossref_primary_10_3390_cancers17162628 crossref_primary_10_1016_j_biocel_2022_106262 crossref_primary_10_1016_j_ijbiomac_2024_134097 crossref_primary_10_1039_D2BM01489K crossref_primary_10_1089_crispr_2022_0084 crossref_primary_10_1007_s11033_025_10674_1 crossref_primary_10_3389_fgeed_2024_1509924 crossref_primary_10_1007_s12032_025_02928_6 crossref_primary_10_3389_fbioe_2022_1031049 crossref_primary_10_1007_s13237_024_00481_7 crossref_primary_10_1007_s12032_022_01930_6 crossref_primary_10_1016_j_gene_2024_148865 crossref_primary_10_3390_biologics3040014 crossref_primary_10_3390_ijms242216241 crossref_primary_10_1016_j_tibtech_2022_09_007 crossref_primary_10_1515_ntrev_2024_0134 crossref_primary_10_1080_17425247_2023_2185220 crossref_primary_10_3390_ijms26094420 crossref_primary_10_1016_j_drudis_2022_103375 crossref_primary_10_1016_j_lfs_2022_121204 crossref_primary_10_3389_fcimb_2025_1627668 crossref_primary_10_1002_advs_202207512 crossref_primary_10_3389_fpls_2023_1111875 crossref_primary_10_1016_j_bbagen_2023_130385 crossref_primary_10_1039_D5BM00711A crossref_primary_10_1016_j_bioactmat_2023_05_014 crossref_primary_10_1016_j_mimet_2023_106876 crossref_primary_10_3390_pharmaceutics13101670 crossref_primary_10_3390_pharmaceutics14091840 crossref_primary_10_3390_pharmaceutics14091842 crossref_primary_10_1016_j_ajps_2025_101068 crossref_primary_10_1088_2043_6262_ad6e5c crossref_primary_10_2217_fmb_2022_0222 crossref_primary_10_1007_s13237_024_00496_0 crossref_primary_10_3390_ma15010179 crossref_primary_10_1016_j_archoralbio_2025_106391 crossref_primary_10_1016_j_ijbiomac_2025_146574 crossref_primary_10_1007_s11356_024_32101_x crossref_primary_10_1016_j_matdes_2022_111415 crossref_primary_10_3390_ijms24054778 crossref_primary_10_1021_acs_molpharmaceut_5c00062 crossref_primary_10_1093_nar_gkae800 crossref_primary_10_1208_s12249_025_03157_w crossref_primary_10_1016_j_ymgme_2022_106968 crossref_primary_10_1007_s11033_024_09653_9 crossref_primary_10_1016_j_bbrc_2024_151084 crossref_primary_10_3389_fgeed_2022_846624 crossref_primary_10_1016_j_addr_2021_114068 crossref_primary_10_1208_s12249_022_02303_y crossref_primary_10_3389_fmicb_2022_953218 crossref_primary_10_1186_s12935_025_03900_0 crossref_primary_10_1002_cbic_202100359 crossref_primary_10_2174_0122115366319848241022092805 crossref_primary_10_1007_s11051_025_06290_6 crossref_primary_10_1016_j_apmt_2024_102449 crossref_primary_10_3390_dna4040030 crossref_primary_10_1016_j_arcmed_2024_103124 crossref_primary_10_1002_wnan_70030 crossref_primary_10_1016_j_abst_2024_06_003 crossref_primary_10_1002_advs_202300502 crossref_primary_10_1186_s12929_022_00850_x crossref_primary_10_1155_2021_1285087 crossref_primary_10_1002_smll_202409353 crossref_primary_10_17816_dv676901 crossref_primary_10_1007_s12672_025_03234_3 crossref_primary_10_3390_ph17010041 crossref_primary_10_1002_adtp_202400412 crossref_primary_10_1007_s13346_023_01320_z crossref_primary_10_1002_smll_202504361 crossref_primary_10_1016_j_jddst_2024_105338 crossref_primary_10_3389_fpls_2022_843575 crossref_primary_10_1097_JS9_0000000000002518 crossref_primary_10_1016_j_jddst_2024_105457 crossref_primary_10_3389_fnano_2025_1545413 crossref_primary_10_3390_ijms23031685 crossref_primary_10_1038_s41380_023_02377_5 crossref_primary_10_1016_j_jddst_2023_104694 crossref_primary_10_1208_s12249_024_02834_6 crossref_primary_10_3389_fonc_2023_1194350 crossref_primary_10_3390_ijms252011009 crossref_primary_10_3389_fgeed_2022_1030285 crossref_primary_10_1007_s12033_023_00932_7 crossref_primary_10_1016_j_addr_2025_115619 crossref_primary_10_1038_s41419_021_04240_3 crossref_primary_10_3390_pharmaceutics16091197 crossref_primary_10_1002_btm2_10492 crossref_primary_10_1002_cbic_202300867 crossref_primary_10_1016_j_ejpb_2024_114222 crossref_primary_10_2147_IJN_S520967 crossref_primary_10_1016_j_addr_2021_114087 crossref_primary_10_1002_mco2_767 crossref_primary_10_3389_fimmu_2023_1133297 crossref_primary_10_3389_fpls_2023_1133036 crossref_primary_10_4167_jbv_2024_54_1_012 crossref_primary_10_3390_ph14111171 crossref_primary_10_1016_j_lfs_2024_123120 crossref_primary_10_3389_fpls_2022_979742 crossref_primary_10_3389_fbioe_2022_873369 crossref_primary_10_1016_j_jconrel_2024_05_023 crossref_primary_10_1016_j_ymthe_2021_09_002 crossref_primary_10_3390_v14010004 crossref_primary_10_3389_fonc_2024_1383062 crossref_primary_10_31083_j_fbl2708241 crossref_primary_10_1016_j_heliyon_2024_e24606 crossref_primary_10_2174_0115733947290474240315062214 crossref_primary_10_1016_j_ccr_2023_215172 crossref_primary_10_2174_0115665232342293241120033251 crossref_primary_10_3390_cimb47050330 crossref_primary_10_1038_s41698_025_01054_w crossref_primary_10_1016_j_colsurfb_2025_114965 crossref_primary_10_1007_s00210_025_04038_6 crossref_primary_10_1016_j_jddst_2022_103737 crossref_primary_10_1038_s41467_023_42948_2 crossref_primary_10_3390_ijms24087603 crossref_primary_10_3389_fncel_2025_1578138 crossref_primary_10_3390_ijms231911482 crossref_primary_10_3389_fchem_2022_957572 crossref_primary_10_1002_biot_202300077 crossref_primary_10_1161_CIRCRESAHA_122_320496 crossref_primary_10_1186_s12964_024_01713_8 crossref_primary_10_3390_biotech12020037 crossref_primary_10_1002_jex2_111 crossref_primary_10_1002_advs_202306432 crossref_primary_10_1016_j_jconrel_2024_11_008 crossref_primary_10_1016_j_scitotenv_2023_169097 |
| Cites_doi | 10.1002/wnan.1609 10.1080/1061186X.2020.1870231 10.1038/s41551-018-0252-8 10.1016/j.biomaterials.2020.120221 10.1186/s13075-020-02290-0 10.2174/0929867327666201118161232 10.1021/acs.nanolett.8b02689 10.1002/advs.201700611 10.1021/acsami.0c10458 10.1038/nbt.3081 10.1038/s41467-018-05425-9 10.1073/pnas.1904697116 10.1016/j.lfs.2019.116636 10.1038/nmeth.3993 10.1038/mt.2008.76 10.1002/anie.201506030 10.3402/nano.v1i0.4889 10.4155/tde.15.27 10.3390/biom10060839 10.1002/advs.201801423 10.1021/acsnano.7b07874 10.1002/smll.201902686 10.1021/acsnano.6b07600 10.1038/s41467-020-14957-y 10.1016/j.actbio.2019.04.020 10.1016/j.biomaterials.2012.11.064 10.1016/j.devcel.2020.11.007 10.1038/s41563-019-0385-5 10.1016/j.jconrel.2017.09.013 10.1038/s41551-019-0485-1 10.1038/s41551-017-0137-2 10.1021/acs.biomac.8b00511 10.3760/cma.j.issn.1007-3418.2019.08.005 10.7150/thno.52570 10.3390/v11010028 10.21769/BioProtoc.2586 10.1038/nmeth.2857 10.1038/nbt.3471 10.1038/nbt.3389 10.1038/s41467-020-17029-3 10.1021/acsami.7b08163 10.1038/s41467-018-04791-8 10.1002/anie.201005662 10.1016/j.biomaterials.2020.120539 10.1038/cr.2013.45 10.1016/j.celrep.2018.02.014 10.1039/d0bm00427h 10.1039/D0NR07622H 10.1002/anie.201708689 10.1016/j.tibtech.2013.04.004 10.1002/anie.201610209 10.1016/j.ymthe.2018.10.002 10.1039/C9CC00010K 10.1039/d0tb01925a |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang. Copyright © 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang. 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang |
| Copyright_xml | – notice: Copyright © 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang. – notice: Copyright © 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang. 2021 Duan, Ouyang, Xu, Xu, Wen, Zhou, Qin, Xu, Sun and Liang |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fgene.2021.673286 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-8021 |
| ExternalDocumentID | oai_doaj_org_article_b6ce71743dc84bde9f8e5f57cee7922c PMC8149999 10_3389_fgene_2021_673286 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81772394; 81972116 – fundername: Shenzhen Key Medical Discipline Construction Fund grantid: SZXK042; SZXK049 – fundername: Key Realm R&D Program of Guangdong Province grantid: 2019B030335001 – fundername: Samming Project of Medicine in Shenzhen grantid: SZSM201612079 – fundername: Shenzhen Science and Technology Projects grantid: JCYJ20170817172023838; JCYJ20170306092215436; JCYJ20170413161649437 – fundername: Key Program of Natural Science Foundation of Guangdong Province grantid: 2018B0303110003 – fundername: Guangdong Provincial High-level Clinical Key Specialties grantid: SZGSP013; SZGSP007 – fundername: China Postdoctoral Science Foundation grantid: 2020M672829 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c508t-e38adf43de098cda1fc95dea8913bb376b37493607572fa130bf7a88f59530013 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 218 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654233300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-8021 |
| IngestDate | Fri Oct 03 12:49:06 EDT 2025 Thu Aug 21 13:55:01 EDT 2025 Fri Sep 05 06:14:29 EDT 2025 Tue Nov 18 21:38:14 EST 2025 Sat Nov 29 03:02:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-e38adf43de098cda1fc95dea8913bb376b37493607572fa130bf7a88f59530013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Luan Wen, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), China; Changzhi Zhao, Huazhong Agricultural University, China Edited by: Linyuan Ma, University of Michigan, United States This article was submitted to Genomic Assay Technology, a section of the journal Frontiers in Genetics |
| OpenAccessLink | https://doaj.org/article/b6ce71743dc84bde9f8e5f57cee7922c |
| PMID | 34054927 |
| PQID | 2535108241 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b6ce71743dc84bde9f8e5f57cee7922c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8149999 proquest_miscellaneous_2535108241 crossref_citationtrail_10_3389_fgene_2021_673286 crossref_primary_10_3389_fgene_2021_673286 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-12 |
| PublicationDateYYYYMMDD | 2021-05-12 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in genetics |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Liang (ref20); 11 Duan (ref9) Duan (ref10) 2021; 13 Mout (ref29) 2017; 7 Woo (ref41) 2015; 33 Liu (ref24) 2018; 19 Shahbazi (ref31) 2019; 18 Usman (ref37) 2018; 9 Sun (ref35); 6 Yip (ref48) 2020; 10 Duan (ref8); 22 Chin (ref7) 2019; 90 Lee (ref17) 2018; 2 Chen (ref5) 2019; 15 Luo (ref26) 2018; 12 Wei (ref40) 2020; 11 Yang (ref44) 2011; 50 Yang (ref45) 2020; 4 Levy (ref18) 2010; 1 Chen (ref4) 2020; 12 Yin (ref46) 2016; 34 Shi (ref33) 2020; 256 Xu (ref42) 2021; 269 Ye (ref54) 2020; 8 Mout (ref28) 2017; 11 Campbell (ref1) 2019; 27 Qiao (ref30) 2019; 55 Zhang (ref49) 2017; 9 Guo (ref13) 2019; 116 Lin (ref23) 2018; 5 Xu (ref43) 2019; 11 Zincarelli (ref51) 2008; 16 Wang (ref38) 2019; 27 Miller (ref27) 2017; 56 Yin (ref47) 2013; 34 Zhang (ref50) 2020; 55 Lee (ref16) 2017; 1 Liang (ref21) 2020; 12 Chew (ref6) 2016; 13 Zuris (ref52) 2015; 33 Gee (ref53) 2020; 11 Shen (ref32) 2014; 11 Gaj (ref12) 2013; 31 Liu (ref25) 2019; 6 Wang (ref39) 2018; 57 Tao (ref36) 2021; 9 Sun (ref34); 54 Kim (ref15) 2017; 266 Chang (ref2) 2013; 23 Chaverra-Rodriguez (ref3) 2018; 9 Li (ref19) 2019; 19 Finn (ref11) 2018; 22 Liang (ref22) Gupta (ref14) 2019; 232 |
| References_xml | – volume: 12 start-page: e1609 year: 2020 ident: ref4 article-title: Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1609 – start-page: 1 ident: ref22 article-title: Non-surgical osteoarthritis therapy, intra-articular drug delivery towards clinical applications publication-title: J. Drug Target. doi: 10.1080/1061186X.2020.1870231 – volume: 2 start-page: 497 year: 2018 ident: ref17 article-title: Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0252-8 – volume: 256 start-page: 120221 year: 2020 ident: ref33 article-title: MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120221 – volume: 22 start-page: 194 ident: ref8 article-title: Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-020-02290-0 – ident: ref9 article-title: Exosome-mediated drug delivery for cell-free therapy of osteoarthritis publication-title: Curr. Med. Chem. doi: 10.2174/0929867327666201118161232 – volume: 19 start-page: 19 year: 2019 ident: ref19 article-title: In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02689 – volume: 5 start-page: 1700611 year: 2018 ident: ref23 article-title: Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs publication-title: Adv. Sci. doi: 10.1002/advs.201700611 – volume: 12 start-page: 36938 year: 2020 ident: ref21 article-title: Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10458 – volume: 33 start-page: 73 year: 2015 ident: ref52 article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3081 – volume: 9 start-page: 3008 year: 2018 ident: ref3 article-title: Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing publication-title: Nat. Commun. doi: 10.1038/s41467-018-05425-9 – volume: 116 start-page: 18295 year: 2019 ident: ref13 article-title: Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1904697116 – volume: 232 start-page: 116636 year: 2019 ident: ref14 article-title: CRISPR-Cas9 system: a new-fangled dawn in gene editing publication-title: Life Sci. doi: 10.1016/j.lfs.2019.116636 – volume: 13 start-page: 868 year: 2016 ident: ref6 article-title: A multifunctional AAV-CRISPR-Cas9 and its host response publication-title: Nat. Methods doi: 10.1038/nmeth.3993 – volume: 16 start-page: 1073 year: 2008 ident: ref51 article-title: Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection publication-title: Mol. Ther. doi: 10.1038/mt.2008.76 – volume: 54 start-page: 12029 ident: ref34 article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201506030 – volume: 1 start-page: 1 year: 2010 ident: ref18 article-title: Gold nanoparticles delivery in mammalian live cells: a critical review publication-title: Nanotechnol. Rev. doi: 10.3402/nano.v1i0.4889 – volume: 6 start-page: 765 ident: ref35 article-title: Rolling circle replication for engineering drug delivery carriers publication-title: Ther. Deliv. doi: 10.4155/tde.15.27 – volume: 10 start-page: 839 year: 2020 ident: ref48 article-title: Recent advances in CRISPR/Cas9 delivery strategies publication-title: Biomol. Ther. doi: 10.3390/biom10060839 – volume: 6 start-page: 1801423 year: 2019 ident: ref25 article-title: Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo publication-title: Adv. Sci. doi: 10.1002/advs.201801423 – volume: 12 start-page: 994 year: 2018 ident: ref26 article-title: Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.7b07874 – volume: 15 start-page: e1902686 year: 2019 ident: ref5 article-title: Friend or foe? Evidence indicates endogenous exosomes can deliver functional gRNA and Cas9 protein publication-title: Small doi: 10.1002/smll.201902686 – volume: 11 start-page: 2452 year: 2017 ident: ref28 article-title: Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing publication-title: ACS Nano doi: 10.1021/acsnano.6b07600 – volume: 11 start-page: 1334 year: 2020 ident: ref53 article-title: Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping publication-title: Nat. Commun. doi: 10.1038/s41467-020-14957-y – volume: 90 start-page: 60 year: 2019 ident: ref7 article-title: Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.04.020 – volume: 34 start-page: 2340 year: 2013 ident: ref47 article-title: Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.11.064 – volume: 55 start-page: 784.e789 year: 2020 ident: ref50 article-title: Programmable extracellular vesicles for macromolecule delivery and genome modifications publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.11.007 – volume: 18 start-page: 1124 year: 2019 ident: ref31 article-title: Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations publication-title: Nat. Mater. doi: 10.1038/s41563-019-0385-5 – volume: 266 start-page: 8 year: 2017 ident: ref15 article-title: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.09.013 – volume: 4 start-page: 69 year: 2020 ident: ref45 article-title: Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0485-1 – volume: 1 start-page: 889 year: 2017 ident: ref16 article-title: Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0137-2 – volume: 19 start-page: 2957 year: 2018 ident: ref24 article-title: A dual-targeting delivery system for effective genome editing and in situ detecting related protein expression in edited cells publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00511 – volume: 27 start-page: 610 year: 2019 ident: ref38 article-title: Exosome-mediated CRISPR/Cas9 system targets to cut the intercellular transmission function of hepatitis B virus genome publication-title: Zhonghua Gan Zang Bing Za Zhi doi: 10.3760/cma.j.issn.1007-3418.2019.08.005 – volume: 11 start-page: 3183 ident: ref20 article-title: Engineering exosomes for targeted drug delivery publication-title: Theranostics doi: 10.7150/thno.52570 – volume: 11 start-page: 28 year: 2019 ident: ref43 article-title: Viral delivery systems for CRISPR publication-title: Viruses doi: 10.3390/v11010028 – volume: 7 start-page: e2586 year: 2017 ident: ref29 article-title: Cytosolic and nuclear delivery of CRISPR/Cas9-ribonucleoprotein for gene editing using arginine functionalized gold nanoparticles publication-title: Bio Protoc. doi: 10.21769/BioProtoc.2586 – volume: 11 start-page: 399 year: 2014 ident: ref32 article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects publication-title: Nat. Methods doi: 10.1038/nmeth.2857 – volume: 34 start-page: 328 year: 2016 ident: ref46 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3471 – volume: 33 start-page: 1162 year: 2015 ident: ref41 article-title: DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3389 – volume: 11 start-page: 3232 year: 2020 ident: ref40 article-title: Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing publication-title: Nat. Commun. doi: 10.1038/s41467-020-17029-3 – volume: 9 start-page: 25481 year: 2017 ident: ref49 article-title: Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08163 – volume: 9 start-page: 2359 year: 2018 ident: ref37 article-title: Efficient RNA drug delivery using red blood cell extracellular vesicles publication-title: Nat. Commun. doi: 10.1038/s41467-018-04791-8 – volume: 50 start-page: 477 year: 2011 ident: ref44 article-title: Drug delivery using nanoparticle-stabilized nanocapsules publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201005662 – volume: 269 start-page: 120539 year: 2021 ident: ref42 article-title: Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120539 – volume: 23 start-page: 465 year: 2013 ident: ref2 article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos publication-title: Cell Res. doi: 10.1038/cr.2013.45 – volume: 22 start-page: 2227 year: 2018 ident: ref11 article-title: A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.014 – volume: 8 start-page: 2966 year: 2020 ident: ref54 article-title: An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells publication-title: Biomater. Sci. doi: 10.1039/d0bm00427h – volume: 13 start-page: 1387 year: 2021 ident: ref10 article-title: Exosome-mediated delivery of gene vectors for gene therapy publication-title: Nanoscale doi: 10.1039/D0NR07622H – volume: 57 start-page: 1491 year: 2018 ident: ref39 article-title: Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201708689 – volume: 31 start-page: 397 year: 2013 ident: ref12 article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2013.04.004 – volume: 56 start-page: 1059 year: 2017 ident: ref27 article-title: Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201610209 – volume: 27 start-page: 151 year: 2019 ident: ref1 article-title: Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.10.002 – volume: 55 start-page: 4707 year: 2019 ident: ref30 article-title: Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan-coated red fluorescent protein publication-title: Chem. Commun. doi: 10.1039/C9CC00010K – volume: 9 start-page: 94 year: 2021 ident: ref36 article-title: Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing publication-title: J. Mater. Chem. B doi: 10.1039/d0tb01925a |
| SSID | ssj0000493334 |
| Score | 2.6417341 |
| SecondaryResourceType | review_article |
| Snippet | The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 673286 |
| SubjectTerms | CRISPR/Cas9 delivery exosome Genetics modification nanocarriers |
| Title | Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing |
| URI | https://www.proquest.com/docview/2535108241 https://pubmed.ncbi.nlm.nih.gov/PMC8149999 https://doaj.org/article/b6ce71743dc84bde9f8e5f57cee7922c |
| Volume | 12 |
| WOSCitedRecordID | wos000654233300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED4BAokXtA0QhQ1lEk9IoY0Tx_Yj68pA2hDih9Q3y3ZsUcTSibZIfdnfzl1cUPMyXvaQPMSOYn_n3H2nO90BHNmS2UIJl3Kbs7QQjKdo1yWeZS8q28tszzRdS36Ky0s5HKqrpVZflBMWywNH4Lq2dF4Qba6cLGzlVZCeBy5QuQvFmCPti6xnyZl6iLw3z_MihjHRC1PdgPKgspgsOympQE3ZMkRNvf4WyWynSC7ZnLMPsLUgi8lpXORHWPH1J9iI7SPn2yBQNaLPG0eT7_6RcizmyTgk_euLm6vrbt9MVIKsNPnh6_FvnwyqEWU578Dd2eC2f54uGiGkDvnTNPW5NFVACHxPSVeZLDjFK28oxGgtqgi8cMMlmn_BgkGzZIMwUgaueE4kbxfW6nHt9yDJLP6xRuWu8KEItjSF5RR9yWyp0HXJOtB7RUW7RZVwalbxqNFbICB1A6QmIHUEsgPHb6_8iSUy_jX5G0H9NpGqWzcPUOZ6AZh-T-Yd-PoqKI1_A4U4TO3Hs4lmPEclI5GWdEC0JNj6YnukHt03dbVlRu6f2v8fSzyATdo15Rlk7DOsTZ9m_gusu-fpaPJ0CKtiKA-bI4v3X38HL9Gt8YY |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+Delivery+of+CRISPR%2FCas9+for+Genome+Editing&rft.jtitle=Frontiers+in+genetics&rft.au=Duan%2C+Li&rft.au=Ouyang%2C+Kan&rft.au=Xu%2C+Xiao&rft.au=Xu%2C+Limei&rft.date=2021-05-12&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=12&rft_id=info:doi/10.3389%2Ffgene.2021.673286&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fgene_2021_673286 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |