A Hybrid Prognostic Method for Proton-Exchange-Membrane Fuel Cell with Decomposition Forecasting Framework Based on AEKF and LSTM

Durability and reliability are the major bottlenecks of the proton-exchange-membrane fuel cell (PEMFC) for large-scale commercial deployment. With the help of prognostic approaches, we can reduce its maintenance cost and maximize its lifetime. This paper proposes a hybrid prognostic method for PEMFC...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 23; číslo 1; s. 166
Hlavní autori: Xia, Zetao, Wang, Yining, Ma, Longhua, Zhu, Yang, Li, Yongjie, Tao, Jili, Tian, Guanzhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 24.12.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Durability and reliability are the major bottlenecks of the proton-exchange-membrane fuel cell (PEMFC) for large-scale commercial deployment. With the help of prognostic approaches, we can reduce its maintenance cost and maximize its lifetime. This paper proposes a hybrid prognostic method for PEMFCs based on a decomposition forecasting framework. Firstly, the original voltage data is decomposed into the calendar aging part and the reversible aging part based on locally weighted regression (LOESS). Then, we apply an adaptive extended Kalman filter (AEKF) and long short-term memory (LSTM) neural network to predict those two components, respectively. Three-dimensional aging factors are introduced in the physical aging model to capture the overall aging trend better. We utilize the automatic machine-learning method based on the genetic algorithm to train the LSTM model more efficiently and improve prediction accuracy. The aging voltage is derived from the sum of the two predicted voltage components, and we can further realize the remaining useful life estimation. Experimental results show that the proposed hybrid prognostic method can realize an accurate long-term voltage-degradation prediction and outperform the single model-based method or data-based method.
AbstractList Durability and reliability are the major bottlenecks of the proton-exchange-membrane fuel cell (PEMFC) for large-scale commercial deployment. With the help of prognostic approaches, we can reduce its maintenance cost and maximize its lifetime. This paper proposes a hybrid prognostic method for PEMFCs based on a decomposition forecasting framework. Firstly, the original voltage data is decomposed into the calendar aging part and the reversible aging part based on locally weighted regression (LOESS). Then, we apply an adaptive extended Kalman filter (AEKF) and long short-term memory (LSTM) neural network to predict those two components, respectively. Three-dimensional aging factors are introduced in the physical aging model to capture the overall aging trend better. We utilize the automatic machine-learning method based on the genetic algorithm to train the LSTM model more efficiently and improve prediction accuracy. The aging voltage is derived from the sum of the two predicted voltage components, and we can further realize the remaining useful life estimation. Experimental results show that the proposed hybrid prognostic method can realize an accurate long-term voltage-degradation prediction and outperform the single model-based method or data-based method.
Durability and reliability are the major bottlenecks of the proton-exchange-membrane fuel cell (PEMFC) for large-scale commercial deployment. With the help of prognostic approaches, we can reduce its maintenance cost and maximize its lifetime. This paper proposes a hybrid prognostic method for PEMFCs based on a decomposition forecasting framework. Firstly, the original voltage data is decomposed into the calendar aging part and the reversible aging part based on locally weighted regression (LOESS). Then, we apply an adaptive extended Kalman filter (AEKF) and long short-term memory (LSTM) neural network to predict those two components, respectively. Three-dimensional aging factors are introduced in the physical aging model to capture the overall aging trend better. We utilize the automatic machine-learning method based on the genetic algorithm to train the LSTM model more efficiently and improve prediction accuracy. The aging voltage is derived from the sum of the two predicted voltage components, and we can further realize the remaining useful life estimation. Experimental results show that the proposed hybrid prognostic method can realize an accurate long-term voltage-degradation prediction and outperform the single model-based method or data-based method.Durability and reliability are the major bottlenecks of the proton-exchange-membrane fuel cell (PEMFC) for large-scale commercial deployment. With the help of prognostic approaches, we can reduce its maintenance cost and maximize its lifetime. This paper proposes a hybrid prognostic method for PEMFCs based on a decomposition forecasting framework. Firstly, the original voltage data is decomposed into the calendar aging part and the reversible aging part based on locally weighted regression (LOESS). Then, we apply an adaptive extended Kalman filter (AEKF) and long short-term memory (LSTM) neural network to predict those two components, respectively. Three-dimensional aging factors are introduced in the physical aging model to capture the overall aging trend better. We utilize the automatic machine-learning method based on the genetic algorithm to train the LSTM model more efficiently and improve prediction accuracy. The aging voltage is derived from the sum of the two predicted voltage components, and we can further realize the remaining useful life estimation. Experimental results show that the proposed hybrid prognostic method can realize an accurate long-term voltage-degradation prediction and outperform the single model-based method or data-based method.
Audience Academic
Author Xia, Zetao
Tian, Guanzhong
Li, Yongjie
Tao, Jili
Wang, Yining
Ma, Longhua
Zhu, Yang
AuthorAffiliation 2 School of Information Science and Engineering, NingboTech University, Ningbo 315000, China
1 Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China
3 College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
AuthorAffiliation_xml – name: 1 Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China
– name: 2 School of Information Science and Engineering, NingboTech University, Ningbo 315000, China
– name: 3 College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Author_xml – sequence: 1
  givenname: Zetao
  orcidid: 0000-0002-4851-0224
  surname: Xia
  fullname: Xia, Zetao
– sequence: 2
  givenname: Yining
  surname: Wang
  fullname: Wang, Yining
– sequence: 3
  givenname: Longhua
  surname: Ma
  fullname: Ma, Longhua
– sequence: 4
  givenname: Yang
  surname: Zhu
  fullname: Zhu, Yang
– sequence: 5
  givenname: Yongjie
  surname: Li
  fullname: Li, Yongjie
– sequence: 6
  givenname: Jili
  surname: Tao
  fullname: Tao, Jili
– sequence: 7
  givenname: Guanzhong
  orcidid: 0000-0002-7292-4056
  surname: Tian
  fullname: Tian, Guanzhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36616764$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AlrjAIa2_4sQXpGXZpRVdgUQ5R449znpJ7K2TpfTIP8fbLau2Qj7Ymnnm9czoPc4OfPCQZa8JPmVM4rOBMkwwEeJZdkQ45XlFKT548D7MjodhhTFljFUvskMmBBGl4EfZnwk6v22iM-hbDK0Pw-g0WsC4DAbZELfRMfh89lsvlW8hX0DfROUBzTfQoSl0Hbpx4xJ9Ah36dRjc6IJH8xBBq6TlWzSPqoebEH-ij2oAg1J6MvsyR8obdPn9avEye25VN8Cr-_sk-zGfXU3P88uvny-mk8tcF7gac9Oo0lhCwFDcUNMYyQAks1hay2ghVSPAlg22kqsGsOG64NIa0UguSEGAnWQXO10T1KpeR9ereFsH5eq7QIhtrWKavoMaAy0xKRuQwLgWqhIVlbYoBCHWKNwkrQ87rfWm6cFo8GNU3SPRxxnvlnUbftWyoryoqiTw7l4ghusNDGPdu0GnbabVhs1Q01IQWbGCi4S-fYKuwib6tKo7imIhGE7U6Y5qVRrAeRvSvzodA73TyS7Wpfik5KJgnAuZCt48HGHf-z9rJOD9DtAxDEMEu0cIrre2q_e2S-zZE1a7UW2tkLpw3X8q_gIDKdjv
CitedBy_id crossref_primary_10_3390_s23104816
crossref_primary_10_1109_TTE_2023_3243788
crossref_primary_10_3390_membranes13040426
crossref_primary_10_1016_j_energy_2024_134279
crossref_primary_10_1016_j_matcom_2025_02_022
crossref_primary_10_1016_j_rser_2024_114613
crossref_primary_10_1016_j_arcontrol_2023_100909
crossref_primary_10_1016_j_ijhydene_2023_08_191
crossref_primary_10_1016_j_jpowsour_2024_234864
crossref_primary_10_1016_j_egyr_2024_11_028
crossref_primary_10_3390_en18061525
crossref_primary_10_3390_pr12061140
crossref_primary_10_1109_ACCESS_2025_3606630
Cites_doi 10.1016/j.enconman.2021.113825
10.1016/j.jpowsour.2015.11.087
10.1016/j.jpowsour.2018.06.098
10.1016/j.apenergy.2019.01.023
10.1109/TIE.2016.2519328
10.1109/TTE.2021.3075531
10.1016/j.ijhydene.2018.10.042
10.1016/j.ijhydene.2020.08.082
10.1109/ICPHM.2014.7036406
10.3390/s22114217
10.1007/s00521-020-05105-0
10.1109/TR.2015.2454499
10.3390/en14164963
10.1016/j.ijhydene.2014.05.005
10.3390/s22124549
10.1109/TIE.2018.2873105
10.1016/j.ijhydene.2018.11.100
10.1039/C8TA06717A
10.21437/Interspeech.2012-65
10.1149/2.1031412jes
10.1016/j.jpowsour.2007.12.007
10.1016/j.ijhydene.2013.10.054
10.1016/j.apenergy.2015.11.071
10.1109/BigData47090.2019.9005997
10.1016/j.rser.2016.11.009
10.1007/s00521-018-3901-7
10.1016/j.ijhydene.2019.06.108
10.36001/phmconf.2012.v4i1.2167
10.1016/j.rser.2020.109721
10.1016/j.eswa.2012.01.039
10.1109/SYSTOL.2016.7739814
10.1016/j.jpowsour.2008.06.006
10.1016/j.ress.2015.12.003
10.1016/j.apenergy.2018.09.111
10.1016/S0378-7753(01)01029-1
10.1016/j.ijhydene.2016.05.286
10.1016/j.ijhydene.2017.02.146
10.1109/IECON.2013.6699377
10.1016/j.jpowsour.2018.10.043
10.1177/0049124104268644
10.3390/s21020418
10.1109/TIE.2019.2893827
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23010166
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0e27017be9e34c6a86829f55611fda0b
PMC9824588
A746534469
36616764
10_3390_s23010166
Genre Journal Article
GrantInformation_xml – fundername: the National Key R&D plan of China
  grantid: 2018YFB1702203
– fundername: the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China
  grantid: No. ICT2022B31
– fundername: The Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China
  grantid: No. ICT2022B31
– fundername: The National Key R&D plan of China
  grantid: 2018YFB1702203
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-dba7df11ed20b2dbd93ee93f09ff3259ab6ef7b0f94abe0d4c549fd6b946151e3
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000908986600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:39 EDT 2025
Tue Nov 04 02:06:42 EST 2025
Thu Oct 02 06:14:36 EDT 2025
Tue Oct 07 07:23:50 EDT 2025
Tue Nov 04 18:17:27 EST 2025
Wed Feb 19 02:25:21 EST 2025
Sat Nov 29 07:20:35 EST 2025
Tue Nov 18 20:58:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hybrid method
remaining useful life
degradation prediction
proton-exchange-membrane fuel cell
prognostics
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-dba7df11ed20b2dbd93ee93f09ff3259ab6ef7b0f94abe0d4c549fd6b946151e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7292-4056
0000-0002-4851-0224
OpenAccessLink https://doaj.org/article/0e27017be9e34c6a86829f55611fda0b
PMID 36616764
PQID 2761206630
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0e27017be9e34c6a86829f55611fda0b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9824588
proquest_miscellaneous_2761983546
proquest_journals_2761206630
gale_infotracacademiconefile_A746534469
pubmed_primary_36616764
crossref_primary_10_3390_s23010166
crossref_citationtrail_10_3390_s23010166
PublicationCentury 2000
PublicationDate 20221224
PublicationDateYYYYMMDD 2022-12-24
PublicationDate_xml – month: 12
  year: 2022
  text: 20221224
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jouin (ref_19) 2014; 39
Deng (ref_32) 2021; 33
Hua (ref_24) 2021; 231
Li (ref_27) 2019; 67
Zhou (ref_33) 2018; 399
Pan (ref_39) 2020; 45
ref_12
ref_34
ref_11
Taieb (ref_36) 2012; 39
ref_31
Bi (ref_17) 2008; 178
Liu (ref_35) 2019; 44
ref_18
ref_15
Jouin (ref_29) 2015; 65
Silva (ref_21) 2014; 39
Rajput (ref_7) 2020; 45
Ma (ref_28) 2021; 7
Burnham (ref_40) 2004; 33
Aziz (ref_6) 2018; 6
Bressel (ref_37) 2016; 63
Wu (ref_4) 2008; 184
Yan (ref_5) 2018; 406
Jouin (ref_3) 2016; 148
Liu (ref_26) 2019; 237
ref_23
ref_44
Liu (ref_2) 2020; 123
ref_43
Ma (ref_25) 2018; 231
Zhang (ref_10) 2017; 42
ref_41
ref_1
Li (ref_20) 2019; 31
Sutharssan (ref_14) 2017; 75
ref_9
Bressel (ref_13) 2016; 164
Fowler (ref_38) 2002; 106
Liu (ref_22) 2018; 66
Morando (ref_30) 2017; 42
Chen (ref_8) 2019; 44
Wang (ref_42) 2016; 305
Dhanushkodi (ref_16) 2014; 161
References_xml – volume: 231
  start-page: 113825
  year: 2021
  ident: ref_24
  article-title: Remaining useful life prediction of PEMFC systems under dynamic operating conditions
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.113825
– volume: 305
  start-page: 80
  year: 2016
  ident: ref_42
  article-title: An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.087
– volume: 399
  start-page: 314
  year: 2018
  ident: ref_33
  article-title: Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.098
– volume: 237
  start-page: 910
  year: 2019
  ident: ref_26
  article-title: Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.023
– volume: 63
  start-page: 2569
  year: 2016
  ident: ref_37
  article-title: Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2519328
– volume: 7
  start-page: 2318
  year: 2021
  ident: ref_28
  article-title: A Hybrid Prognostic Method for PEMFC with Aging Parameter Prediction
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2021.3075531
– volume: 44
  start-page: 5470
  year: 2019
  ident: ref_35
  article-title: Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.042
– volume: 45
  start-page: 30994
  year: 2020
  ident: ref_39
  article-title: Performance degradation prediction of proton exchange membrane fuel cell using a hybrid prognostic approach
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.082
– ident: ref_31
  doi: 10.1109/ICPHM.2014.7036406
– ident: ref_34
– ident: ref_1
  doi: 10.3390/s22114217
– volume: 33
  start-page: 2035
  year: 2021
  ident: ref_32
  article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05105-0
– volume: 65
  start-page: 336
  year: 2015
  ident: ref_29
  article-title: Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2015.2454499
– ident: ref_9
  doi: 10.3390/en14164963
– volume: 39
  start-page: 11128
  year: 2014
  ident: ref_21
  article-title: Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.05.005
– ident: ref_12
  doi: 10.3390/s22124549
– volume: 66
  start-page: 6077
  year: 2018
  ident: ref_22
  article-title: Short-term prognostics of PEM fuel cells: A comparative and improvement study
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2873105
– volume: 44
  start-page: 1930
  year: 2019
  ident: ref_8
  article-title: Fuel cell health prognosis using Unscented Kalman Filter: Postal fuel cell electric vehicles case study
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.100
– volume: 6
  start-page: 17740
  year: 2018
  ident: ref_6
  article-title: Sulfonated graphene oxide-decorated block copolymer as a proton-exchange membrane: Improving the ion selectivity for all-vanadium redox flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06717A
– ident: ref_43
  doi: 10.21437/Interspeech.2012-65
– volume: 161
  start-page: F1315
  year: 2014
  ident: ref_16
  article-title: PEMFC durability: Spatially resolved Pt dissolution in a single cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1031412jes
– volume: 178
  start-page: 188
  year: 2008
  ident: ref_17
  article-title: Modeling of PEM fuel cell Pt/C catalyst degradation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.12.007
– volume: 39
  start-page: 481
  year: 2014
  ident: ref_19
  article-title: Prognostics of PEM fuel cell in a particle filtering framework
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.10.054
– volume: 164
  start-page: 220
  year: 2016
  ident: ref_13
  article-title: Extended Kalman filter for prognostic of proton exchange membrane fuel cell
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.071
– ident: ref_44
  doi: 10.1109/BigData47090.2019.9005997
– volume: 75
  start-page: 440
  year: 2017
  ident: ref_14
  article-title: A review on prognostics and health monitoring of proton exchange membrane fuel cell
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.009
– volume: 31
  start-page: 8171
  year: 2019
  ident: ref_20
  article-title: Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3901-7
– volume: 45
  start-page: 16976
  year: 2020
  ident: ref_7
  article-title: Highly stable graphene oxide composite proton exchange membrane for electro-chemical energy application
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.108
– ident: ref_15
  doi: 10.36001/phmconf.2012.v4i1.2167
– volume: 123
  start-page: 109721
  year: 2020
  ident: ref_2
  article-title: Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109721
– volume: 39
  start-page: 7067
  year: 2012
  ident: ref_36
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.039
– ident: ref_18
  doi: 10.1109/SYSTOL.2016.7739814
– volume: 184
  start-page: 104
  year: 2008
  ident: ref_4
  article-title: A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.06.006
– volume: 148
  start-page: 78
  year: 2016
  ident: ref_3
  article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.12.003
– ident: ref_41
– volume: 231
  start-page: 102
  year: 2018
  ident: ref_25
  article-title: Data-driven proton exchange membrane fuel cell degradation predication through deep learning method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.111
– volume: 106
  start-page: 274
  year: 2002
  ident: ref_38
  article-title: Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)01029-1
– volume: 42
  start-page: 1472
  year: 2017
  ident: ref_30
  article-title: Proton exchange membrane fuel cell ageing forecasting algorithm based on Echo State Network
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.286
– volume: 42
  start-page: 11868
  year: 2017
  ident: ref_10
  article-title: Load profile based empirical model for the lifetime prediction of an automotive PEM fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.146
– ident: ref_23
  doi: 10.1109/IECON.2013.6699377
– volume: 406
  start-page: 35
  year: 2018
  ident: ref_5
  article-title: A highly selective proton exchange membrane with highly ordered, vertically aligned, and subnanosized 1D channels for redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.043
– volume: 33
  start-page: 261
  year: 2004
  ident: ref_40
  article-title: Multimodel inference: Understanding AIC and BIC in model selection
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124104268644
– ident: ref_11
  doi: 10.3390/s21020418
– volume: 67
  start-page: 379
  year: 2019
  ident: ref_27
  article-title: Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2893827
SSID ssj0023338
Score 2.4721918
Snippet Durability and reliability are the major bottlenecks of the proton-exchange-membrane fuel cell (PEMFC) for large-scale commercial deployment. With the help of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 166
SubjectTerms Accuracy
Aging
Algorithms
Decomposition
degradation prediction
Forecasting
Fuel cell industry
Fuel cells
hybrid method
Investigations
Kalman filters
Loess
Machine learning
Methods
Neural networks
Power electronics
prognostics
proton-exchange-membrane fuel cell
remaining useful life
Trends
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcKAH3o9AQQYhwSVqEjtxfELbslElulUlCtpbZMc2VNomZbOL4Mg_ZybxphuBuHCNfRhrxuP5JjPfEPJaag0-kIP3i5kIOQSwcKUMgJVUx6lJkyrv8pCfj8XJST6fy1OfcGt9WeXGJ3aO2jQV5sj3E8DbSD3OoneX30KcGoV_V_0IjevkBo7NRjsX8yvAxQB_9WxCDKD9fgvhNoLVbPQGdVT9fzrkrRdpXC259fwUd_5X8Lvktg886aS3lHvkmq3vk90tOsIH5NeEHv3EDi56umywAA-20lk3YppCbItfceDw9EffLRzO7AVg7drSYm0X9NAuFhTTuvS9xUJ1Xw1GcfhnpVosr6bFphSMHsDraSgsT6YfCqpqQ48_ns0ekk_F9OzwKPQjGsIKIrtVaLQSxsWxNUmkE6ONZNZK5iLpHANkpXRmndCRk1xpGxleAR51JtOSYyhl2SOyUze1fUKoMmlqLBdVFnGuRa5ZniqlXJSbjAGqC8jbjdLKyvOX4xiNRQk4BvVbDvoNyKth62VP2vG3TQeo-WED8mx3H5rll9Jf2zKyiQCfpa20jFeZyrM8kQ5HisbOqEgH5A3aTYneAISplG9qgCMhr1Y5EchfB5BbBmRvYx6ldxNteWUbAXk5LMMFx782oL9m3e-RmJ4DiR_3ljjIzCC6ykTGAyJGNjo61HilPv_akYjLPMEm5af_FusZuZVgv0echAnfIzur5do-Jzer76vzdvmiu22_AXK6NLg
  priority: 102
  providerName: ProQuest
Title A Hybrid Prognostic Method for Proton-Exchange-Membrane Fuel Cell with Decomposition Forecasting Framework Based on AEKF and LSTM
URI https://www.ncbi.nlm.nih.gov/pubmed/36616764
https://www.proquest.com/docview/2761206630
https://www.proquest.com/docview/2761983546
https://pubmed.ncbi.nlm.nih.gov/PMC9824588
https://doaj.org/article/0e27017be9e34c6a86829f55611fda0b
Volume 23
WOSCitedRecordID wos000908986600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nq9QwEA_69KAH8dvqc4ki6KW8Nkmb5rj7bHni61L0KeupJE2KD9au7IfoRfA_d6btli0KXrzkkMwhTWaS-aUzvyHkhTIGzkABp1_IpS_AgQWTsgBWIhNGNmJV0r5DfjyX83myWKjioNQXxoR19MDdwp0EjknQGuOU46KKdRInTNVY1DGsrQ4Mnr6BVHsw1UMtDsir4xHiAOpPNuBoI0yNR7dPS9L_51F8cBeN4yQPLp7sNrnVe4x02s30Drnimrvk5gGP4D3ya0rPfmDqFS3WK4ycA1Gat7WhKTil2IuVgtPvXZqvn7svAJIbR7OdW9JTt1xSfI-lrx1GmPdhXBSrdlZ6g3HRNNvHcNEZXHuWwvA0fZtR3Vh6_v4iv08-ZOnF6Znf11bwK3DJtr41Wto6DJ1lgWHWWMWdU7wOVF1zgETaxK6WJqiV0MYFVlQAJGsbGyXQB3L8ATlqVo17RKi2UWSdkFUcCGFkYngSaa3rILExBzjmkVf7NS-rnngc618sSwAguD3lsD0eeT6Ifu3YNv4mNMONGwSQILvtALUpe7Up_6U2HnmJ216iGcNkKt1nI8AnISFWOZVIPAdYWXnkeK8ZZW_fm5JJ8AzRWws88mwYBsvE3y2wf6tdJ6PwXQ1m_LBTpGHOHNyiWMbCI3KkYqOPGo80l59b9m-VMMwufvw_VuEJucEwnSNkPhPH5Gi73rmn5Hr1bXu5WU_IVbmQbZtMyLVZOi_eTVozgzb_mUJf8SYvPv0GHhks2g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvB-BAgaB4BI1sZ04PiC0bXe11T5UiaXaW7BjByot2bIPoEf-EL-RmTy2uwJx64FrPIqcZOab-Zx5EPJSGQMYKAD9Qi59AQEsmJQFshKZMLIRy5LyHPK4L4fDZDxWR1vkV1MLg2mVDSaWQG2nGZ6R7zLg29h6nAfvTr_6ODUK_642IzQqtei5s-9A2eZvDw_g-75irNMe7Xf9eqqAn0EwsvCt0dLmYegsCwyzxirunOJ5oPKcAxnQJna5NEGuhDYusCIDCpXb2CiB3t9xuO8lchlwXCLZk-NzgseB71XdizhXwe4cwnskx_GGzytHA_zpANY84GZ25pq769z8317ULXKjDqxpq7KE22TLFXfI9bV2i3fJzxbtnmGFGj2aTTHBEETpoByhTSF2x6s4ULn9o6qG9gfuiwFX7mhn6SZ0300mFI-t6YHDRPw6243icNNMzzF9nHaaVDe6B9GBpbDcavc6VBeW9t-PBvfIhwt5B_fJdjEt3ENCtY0i64TM4kAIIxPDk0hrnQeJjTmwVo-8aZQkzer-7DgmZJICT0N9Slf65JEXK9HTqinJ34T2UNNWAthHvLwwnX1Ka1hKA8ckYLJxynGRxTqJE6ZyHJka5lYHxiOvUU9TRDvYTKbrog14JOwblrYk9ucTIlYe2WnUMa1hcJ6e66JHnq-WAcDwrxR8v-myklF4_Ag7flBp_mrPHKLHWMbCI3LDJjYeanOlOPlcNklXCcMi7Ef_3tYzcrU7GvTT_uGw95hcY1jbEjKfiR2yvZgt3RNyJfu2OJnPnpaWTsnHi7aY3228lVk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGDkJwYF8CAxgEgkvUxHYWHxDqTBtN1UWVGNBwCnbswEilHboAc-Rv8et4LxutQNzmwNV-iuz4bZ_9FkKeSa1BBwrQfj6PXAEOLIiUAbASaD8wAcvi4h7y3TAaj-PjYznZIT_rXBgMq6x1YqGozTzDO_I2A7yNpce5186rsIhJN3l9-sXFDlL40lq30yhZZGDPvgF8W77qd-GsnzOW9I4ODt2qw4CbgWOyco1Wkcl93xrmaWa0kdxayXNP5jkHYKB0aPNIe7kUSlvPiAzgVG5CLQV6ApbDdy-QXdirYC2yO-mPJu8buMcB_ZW1jDiXXnsJzj5C5XDLAhaNAv40Bxv2cDtWc8P4Jdf-5992nVytXG7aKWXkBtmxs5vkykYhxlvkR4cenmHuGp0s5hh6CKR0VDTXpuDV4yi2Wu59L_Ok3ZH9rMHIW5qs7ZQe2OmU4oU27VoM0a_i4Ci2Pc3UEgPLaVIHwdF98BsMhelOb5BQNTN0-OZodJu8PZd_cIe0ZvOZvUeoMkFgrIiy0BNCR7HmcaCUyr3YhBzwrENe1gyTZlXldmwgMk0BwSFvpQ1vOeRpQ3paliv5G9E-cl1DgBXGi4H54mNaKazUsywCba2ttFxkoYrDmMkcm6n6uVGedsgL5NkU9SAsJlNVOgdsCSuKpZ0IK_cJEUqH7NWsmVYKcpn-5kuHPGmmQbXhexWc33xd0ki8mIQV3y2loFkzB78yjELhkGhLPrY2tT0zO_lUlE-XMcP07Pv_XtZjcgkEJR32x4MH5DLDpBefuUzskdZqsbYPycXs6-pkuXhUiT0lH85bZH4B8wqfqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Prognostic+Method+for+Proton-Exchange-Membrane+Fuel+Cell+with+Decomposition+Forecasting+Framework+Based+on+AEKF+and+LSTM&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zetao+Xia&rft.au=Yining+Wang&rft.au=Longhua+Ma&rft.au=Yang+Zhu&rft.date=2022-12-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=1&rft.spage=166&rft_id=info:doi/10.3390%2Fs23010166&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0e27017be9e34c6a86829f55611fda0b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon