GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment
Background The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alph...
Uložené v:
| Vydané v: | Breast cancer research : BCR Ročník 19; číslo 1; s. 129 - 14 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
06.12.2017
BMC |
| Predmet: | |
| ISSN: | 1465-542X, 1465-5411, 1465-542X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells.
Methods
We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1.
Results
We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (
n
= 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation.
Conclusions
These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies. |
|---|---|
| AbstractList | Abstract Background The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. Methods We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. Results We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. Conclusions These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies. The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells.BACKGROUNDThe G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells.We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1.METHODSWe analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1.We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation.RESULTSWe first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation.These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies.CONCLUSIONSThese findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies. The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies. Background The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. Methods We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. Results We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors ( n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. Conclusions These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies. |
| ArticleNumber | 129 |
| Author | Clarke, Robert B. De Francesco, Ernestina M. Maggiolini, Marcello Lisanti, Michael P. Sims, Andrew H. Sotgia, Federica |
| Author_xml | – sequence: 1 givenname: Ernestina M. surname: De Francesco fullname: De Francesco, Ernestina M. email: ernestina.defrancesco@manchester.ac.uk organization: Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester – sequence: 2 givenname: Andrew H. surname: Sims fullname: Sims, Andrew H. organization: Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine – sequence: 3 givenname: Marcello surname: Maggiolini fullname: Maggiolini, Marcello organization: Department of Pharmacy, Health and Nutritional Sciences, University of Calabria – sequence: 4 givenname: Federica surname: Sotgia fullname: Sotgia, Federica organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford – sequence: 5 givenname: Michael P. surname: Lisanti fullname: Lisanti, Michael P. organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford – sequence: 6 givenname: Robert B. surname: Clarke fullname: Clarke, Robert B. email: robert.clarke@manchester.ac.uk organization: Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29212519$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1DAUjVARfcAHsEFZsgm1HTuON0iompmOVAmEALGzHOcm41FiD7ZTNPwVP8I34Zm0qGXRla_t87DvuefZiXUWsuw1Ru8wrqvLgEvE6gJhXiBByoI9y84wrVjBKPl-8qA-zc5D2KIErFn9IjslgmDCsDjLfq0-LT7nI7RGRQh53ECubG-c9samUkfjbMiNbScNbd7s8_VqiRPMu6nfHOHX62WB__y-_LZYLfOdipufap8Ix7vGgwoxj9PofD4a7R3YW-OdHcHGl9nzTg0BXt2tF9nX5eLL1XVx83G1vvpwU2iG6li0FeloA9A0vFW8IpqlLVIaKOZYCyoo5YKglna8E4JRhUpcobarEGpQ1eHyIlvPuq1TW7nzZlR-L50y8njgfC-Vj0YPICliFSMCEMNAlQDRlFXqLBWEd8ApTVrvZ63d1KSm6fQNr4ZHoo9vrNnI3t1KxrGoeJkE3t4JePdjghDlaIKGYVAW3BQkFpyiZIkP737z0OufyX14CcBnQOprCB46qU1Uh8SStRkkRvIwJnIeE5nSl4cxkSwx8X_Me_GnOGTmhIS1PXi5dZO3KbknSH8BRMzPkA |
| CitedBy_id | crossref_primary_10_1038_s41388_022_02506_4 crossref_primary_10_3390_life12121992 crossref_primary_10_1016_j_yexcr_2020_112192 crossref_primary_10_3390_ijms20061263 crossref_primary_10_1007_s00210_024_03592_9 crossref_primary_10_1038_s41420_023_01654_0 crossref_primary_10_1002_app_47235 crossref_primary_10_3389_fcell_2020_608412 crossref_primary_10_1186_s12967_025_06730_w crossref_primary_10_3390_cancers14030539 crossref_primary_10_3390_cells12202460 crossref_primary_10_3389_fendo_2020_600404 crossref_primary_10_3390_ijms19072011 crossref_primary_10_3390_genes14122225 crossref_primary_10_1002_iub_2307 crossref_primary_10_1007_s12032_022_01765_1 crossref_primary_10_3390_biomedicines9121921 crossref_primary_10_1007_s13402_018_0388_2 crossref_primary_10_1007_s13353_019_00529_4 crossref_primary_10_1016_j_fitote_2024_106319 crossref_primary_10_1016_j_gendis_2025_101716 crossref_primary_10_1038_s41388_023_02619_4 crossref_primary_10_1038_s41598_024_68620_3 crossref_primary_10_1097_MCO_0000000000000577 crossref_primary_10_1002_mc_23668 crossref_primary_10_1210_endrev_bnac017 crossref_primary_10_3390_cells10030672 crossref_primary_10_1016_j_freeradbiomed_2020_12_452 crossref_primary_10_1016_j_psyneuen_2024_107070 crossref_primary_10_1016_j_cbi_2024_111096 crossref_primary_10_1007_s13205_021_02692_0 crossref_primary_10_1016_j_compbiomed_2021_104636 crossref_primary_10_1016_j_apsb_2020_04_005 crossref_primary_10_1111_jcmm_15499 crossref_primary_10_1080_14728222_2020_1751819 crossref_primary_10_1016_j_bbapap_2022_140768 crossref_primary_10_3390_molecules23092334 crossref_primary_10_1002_jcb_29938 crossref_primary_10_3390_cancers11101511 crossref_primary_10_1111_cpr_12822 crossref_primary_10_1126_sciadv_adk3074 crossref_primary_10_1016_j_lfs_2024_122972 crossref_primary_10_2147_DMSO_S315362 crossref_primary_10_3389_fonc_2022_1055589 crossref_primary_10_3389_fonc_2023_1333839 crossref_primary_10_1177_10732748211033751 crossref_primary_10_1080_10717544_2021_1895908 crossref_primary_10_3390_cells9030622 crossref_primary_10_1016_j_semcancer_2019_07_028 crossref_primary_10_1016_j_pharmthera_2019_04_004 crossref_primary_10_1016_j_jsbmb_2019_105384 crossref_primary_10_1002_adbi_202000152 crossref_primary_10_1016_j_jbo_2023_100495 crossref_primary_10_1210_endrev_bnad005 crossref_primary_10_1016_j_jsbmb_2019_04_012 crossref_primary_10_1093_carcin_bgz071 crossref_primary_10_1186_s13046_020_01667_y crossref_primary_10_1007_s43032_020_00443_9 crossref_primary_10_1016_j_pharmthera_2025_108822 |
| Cites_doi | 10.1159/000354402 10.18632/oncotarget.10348 10.1016/j.ccr.2012.02.022 10.1016/S0304-3835(03)00159-9 10.2741/3173 10.1016/j.bcp.2011.02.016 10.1038/onc.2012.97 10.2174/187152506777698344 10.1158/1078-0432.CCR-06-0860 10.3389/fendo.2015.00030 10.1038/nrc.2016.73 10.1016/j.cellsig.2012.03.012 10.1530/ERC-14-0245 10.1038/nrc1387 10.1016/0960-0760(90)90426-L 10.6061/clinics/2012(01)06 10.1074/jbc.M203781200 10.1210/er.2003-0027 10.1186/bcr3581 10.1158/0008-5472.CAN-13-3590 10.1016/j.bbrc.2006.02.043 10.1074/jbc.M110.172247 10.1038/nature10983 10.1124/jpet.106.104158 10.1002/mc.22518 10.1208/s12248-016-9881-6 10.1210/en.2008-0117 10.1016/j.molonc.2012.07.002 10.1007/s10911-008-9099-z 10.18632/oncotarget.5779 10.1189/jlb.0310182 10.1038/onc.2012.196 10.1158/0008-5472.CAN-04-4453 10.1002/(SICI)1097-0215(20000101)85:1<117::AID-IJC21>3.0.CO;2-X 10.1128/MCB.02236-05 10.1128/MCB.16.9.4604 10.1016/j.jsbmb.2011.08.011 10.1007/s10549-011-1901-8 10.1016/j.semcdb.2009.10.002 10.1210/me.2009-0120 10.1038/aps.2009.8 10.1186/bcr3458 10.1038/sj.onc.1210168 10.1113/expphysiol.2006.033498 10.1016/j.ygyno.2009.05.015 10.1016/j.jsbmb.2017.02.019 10.1055/s-2004-814149 10.1016/j.brainres.2011.10.046 10.1016/j.cell.2005.02.034 10.1152/physiol.00045.2008 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2017 |
| Copyright_xml | – notice: The Author(s). 2017 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1186/s13058-017-0923-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1465-542X |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_4056529e051e4a9e9b360924927fe744 PMC5719673 29212519 10_1186_s13058_017_0923_5 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Breast Cancer Now funderid: http://dx.doi.org/10.13039/100009794 – fundername: Associazione Italiana per la Ricerca sul Cancro funderid: http://dx.doi.org/10.13039/501100005010 – fundername: ; |
| GroupedDBID | --- 04C 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 7X7 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABUWG ACGFO ACGFS ACJQM ACMJI ACPRK ADBBV ADFRT ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BMSDO BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS EIHBH EJD F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO ICW IHR INH INR ITC KQ8 O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PUEGO RBZ ROL RPM RSV SBL SOJ TR2 U2A UKHRP WOQ AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM AHSBF |
| ID | FETCH-LOGICAL-c508t-d62f4beebb7da762c5f4b0ace4171c949447920d4f7f9954a03160df600b06f13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417540800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1465-542X 1465-5411 |
| IngestDate | Tue Oct 14 19:02:54 EDT 2025 Tue Nov 04 01:48:33 EST 2025 Thu Sep 04 19:49:50 EDT 2025 Mon Jul 21 05:56:13 EDT 2025 Sat Nov 29 03:59:36 EST 2025 Tue Nov 18 21:53:06 EST 2025 Sat Sep 06 07:25:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | CAFs Tumor microenvironment VEGF GPCRs GPER Tumor angiogenesis HIF-1α Breast cancer IGF1 Growth factor receptors |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-d62f4beebb7da762c5f4b0ace4171c949447920d4f7f9954a03160df600b06f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s13058-017-0923-5 |
| PMID | 29212519 |
| PQID | 1974009211 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4056529e051e4a9e9b360924927fe744 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5719673 proquest_miscellaneous_1974009211 pubmed_primary_29212519 crossref_citationtrail_10_1186_s13058_017_0923_5 crossref_primary_10_1186_s13058_017_0923_5 springer_journals_10_1186_s13058_017_0923_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-06 |
| PublicationDateYYYYMMDD | 2017-12-06 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Breast cancer research : BCR |
| PublicationTitleAbbrev | Breast Cancer Res |
| PublicationTitleAlternate | Breast Cancer Res |
| PublicationYear | 2017 |
| Publisher | BioMed Central BMC |
| Publisher_xml | – name: BioMed Central – name: BMC |
| References | MG Slomiany (923_CR41) 2006; 318 C Curtis (923_CR29) 2012; 486 NM Chau (923_CR12) 2005; 65 P Mishra (923_CR5) 2011; 89 AR Sartori-Cintra (923_CR43) 2012; 67 EM Bridges (923_CR7) 2011; 81 S Moleirinho (923_CR30) 2013; 32 AG Recchia (923_CR17) 2011; 286 JP Peyrat (923_CR36) 1990; 37 R Lappano (923_CR19) 2016; 18 L Albanito (923_CR28) 2008; 149 GL Semenza (923_CR50) 2009; 24 R Strammiello (923_CR34) 2003; 35 R Lappano (923_CR49) 2017 R Fukuda (923_CR32) 2002; 277 S Avino (923_CR26) 2016; 7 A Orimo (923_CR6) 2005; 121 P Marco De (923_CR46) 2014; 21 X Li (923_CR16) 2013; 6 M Shimoda (923_CR3) 2009; 21 HO Smith (923_CR23) 2013; 7 EM Francesco De (923_CR18) 2013; 15 P Marco De (923_CR37) 2015; 6 HO Smith (923_CR22) 2009; 114 A Belfiore (923_CR11) 2008; 13 N Ferrara (923_CR8) 2004; 25 P Marco De (923_CR27) 2013; 32 GL Semenza (923_CR51) 2006; 91 EM Francesco De (923_CR48) 2014; 74 X Zheng (923_CR52) 2006; 26 D LeRoith (923_CR10) 2003; 195 MN Pollak (923_CR35) 2004; 4 DC Rigiracciolo (923_CR44) 2015; 27 P Nyberg (923_CR4) 2008; 13 MG Slomiany (923_CR13) 2006; 342 KM Sutton (923_CR33) 2007; 26 V Bartella (923_CR38) 2012; 24 Z Mo (923_CR25) 2013; 15 A Pisano (923_CR47) 2017; 5 A Vivacqua (923_CR45) 2009; 23 R Kalluri (923_CR2) 2016; 16 HO Smith (923_CR21) 2007; 196 J Yu (923_CR42) 2012; 1430 H Douglas (923_CR1) 2012; 21 L Kang (923_CR39) 2011; 127 L Bermont (923_CR15) 2000; 85 EJ Filardo (923_CR20) 2006; 12 BB Silva da (923_CR31) 2009; 30 J Zhou (923_CR40) 2006; 4 A Vivacqua (923_CR24) 2012; 133 XD Tang (923_CR14) 2009; 30 JA Forsythe (923_CR9) 1996; 16 |
| References_xml | – volume: 6 start-page: 169 year: 2013 ident: 923_CR16 publication-title: J Nutrigenet Nutrigenomics doi: 10.1159/000354402 – volume: 7 start-page: 52710 year: 2016 ident: 923_CR26 publication-title: Oncotarget doi: 10.18632/oncotarget.10348 – volume: 21 start-page: 309 year: 2012 ident: 923_CR1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.02.022 – volume: 195 start-page: 27 year: 2003 ident: 923_CR10 publication-title: Cancer Lett doi: 10.1016/S0304-3835(03)00159-9 – volume: 13 start-page: 6537 year: 2008 ident: 923_CR4 publication-title: Front Biosci doi: 10.2741/3173 – volume: 81 start-page: 1183 year: 2011 ident: 923_CR7 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2011.02.016 – volume: 32 start-page: 678 year: 2013 ident: 923_CR27 publication-title: Oncogene doi: 10.1038/onc.2012.97 – volume: 4 start-page: 189 year: 2006 ident: 923_CR40 publication-title: Cardiovasc Hematol Agents Med Chem doi: 10.2174/187152506777698344 – volume: 12 start-page: 6359 year: 2006 ident: 923_CR20 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-0860 – volume: 6 start-page: 30 year: 2015 ident: 923_CR37 publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2015.00030 – volume: 16 start-page: 582 year: 2016 ident: 923_CR2 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2016.73 – volume: 24 start-page: 1515 year: 2012 ident: 923_CR38 publication-title: Cell Signal doi: 10.1016/j.cellsig.2012.03.012 – volume: 21 start-page: 739 year: 2014 ident: 923_CR46 publication-title: Endocr Relat Cancer doi: 10.1530/ERC-14-0245 – volume: 4 start-page: 505 year: 2004 ident: 923_CR35 publication-title: Nat Rev Cancer doi: 10.1038/nrc1387 – volume: 37 start-page: 823 year: 1990 ident: 923_CR36 publication-title: J Steroid Biochem Mol Biol doi: 10.1016/0960-0760(90)90426-L – volume: 67 start-page: 35 year: 2012 ident: 923_CR43 publication-title: Clinics (Sao Paulo) doi: 10.6061/clinics/2012(01)06 – volume: 277 start-page: 38205 year: 2002 ident: 923_CR32 publication-title: J Biol Chem doi: 10.1074/jbc.M203781200 – volume: 25 start-page: 581 year: 2004 ident: 923_CR8 publication-title: Endocr Rev doi: 10.1210/er.2003-0027 – volume: 30 start-page: 285 year: 2009 ident: 923_CR31 publication-title: Eur J Gynaecol Oncol – volume: 15 start-page: R114 year: 2013 ident: 923_CR25 publication-title: Breast Cancer Res doi: 10.1186/bcr3581 – volume: 74 start-page: 4053 year: 2014 ident: 923_CR48 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-3590 – volume: 342 start-page: 851 year: 2006 ident: 923_CR13 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2006.02.043 – volume: 286 start-page: 10773 year: 2011 ident: 923_CR17 publication-title: J Biol Chem doi: 10.1074/jbc.M110.172247 – volume: 486 start-page: 346 year: 2012 ident: 923_CR29 publication-title: Nature doi: 10.1038/nature10983 – volume: 318 start-page: 666 year: 2006 ident: 923_CR41 publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.106.104158 – volume: 5 start-page: 580 year: 2017 ident: 923_CR47 publication-title: Mol Carcinog doi: 10.1002/mc.22518 – volume: 18 start-page: 305 year: 2016 ident: 923_CR19 publication-title: AAPS J doi: 10.1208/s12248-016-9881-6 – volume: 149 start-page: 799 year: 2008 ident: 923_CR28 publication-title: Endocrinology doi: 10.1210/en.2008-0117 – volume: 7 start-page: 41 year: 2013 ident: 923_CR23 publication-title: Mol Oncol doi: 10.1016/j.molonc.2012.07.002 – volume: 13 start-page: 381 year: 2008 ident: 923_CR11 publication-title: J Mammary Gland Biol Neoplasia doi: 10.1007/s10911-008-9099-z – volume: 27 start-page: 34158 issue: 6 year: 2015 ident: 923_CR44 publication-title: Oncotarget doi: 10.18632/oncotarget.5779 – volume: 89 start-page: 31 year: 2011 ident: 923_CR5 publication-title: J Leukoc Biol doi: 10.1189/jlb.0310182 – volume: 32 start-page: 1821 year: 2013 ident: 923_CR30 publication-title: Oncogene doi: 10.1038/onc.2012.196 – volume: 65 start-page: 4918 year: 2005 ident: 923_CR12 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-4453 – volume: 85 start-page: 117 year: 2000 ident: 923_CR15 publication-title: Int J Cancer doi: 10.1002/(SICI)1097-0215(20000101)85:1<117::AID-IJC21>3.0.CO;2-X – volume: 26 start-page: 4628 year: 2006 ident: 923_CR52 publication-title: Mol Cell Biol doi: 10.1128/MCB.02236-05 – volume: 16 start-page: 4604 year: 1996 ident: 923_CR9 publication-title: Mol Cell Biol doi: 10.1128/MCB.16.9.4604 – volume: 127 start-page: 262 year: 2011 ident: 923_CR39 publication-title: J Steroid Biochem Mol Biol doi: 10.1016/j.jsbmb.2011.08.011 – volume: 133 start-page: 1025 year: 2012 ident: 923_CR24 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-011-1901-8 – volume: 21 start-page: 19 year: 2009 ident: 923_CR3 publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2009.10.002 – volume: 23 start-page: 1815 year: 2009 ident: 923_CR45 publication-title: Mol Endocrinol doi: 10.1210/me.2009-0120 – volume: 30 start-page: 605 year: 2009 ident: 923_CR14 publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2009.8 – volume: 15 start-page: R64 year: 2013 ident: 923_CR18 publication-title: Breast Cancer Res doi: 10.1186/bcr3458 – volume: 26 start-page: 3920 year: 2007 ident: 923_CR33 publication-title: Oncogene doi: 10.1038/sj.onc.1210168 – volume: 91 start-page: 803 year: 2006 ident: 923_CR51 publication-title: Exp Physiol doi: 10.1113/expphysiol.2006.033498 – volume: 196 start-page: 386 year: 2007 ident: 923_CR21 publication-title: Am J Obstet Gynecol – volume: 114 start-page: 465 year: 2009 ident: 923_CR22 publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2009.05.015 – year: 2017 ident: 923_CR49 publication-title: J Steroid Biochem Mol Biol doi: 10.1016/j.jsbmb.2017.02.019 – volume: 35 start-page: 675 year: 2003 ident: 923_CR34 publication-title: Horm Metab Res doi: 10.1055/s-2004-814149 – volume: 1430 start-page: 18 year: 2012 ident: 923_CR42 publication-title: Brain Res doi: 10.1016/j.brainres.2011.10.046 – volume: 121 start-page: 335 year: 2005 ident: 923_CR6 publication-title: Cell doi: 10.1016/j.cell.2005.02.034 – volume: 24 start-page: 97 year: 2009 ident: 923_CR50 publication-title: Physiology (Bethesda) doi: 10.1152/physiol.00045.2008 |
| SSID | ssj0017858 |
| Score | 2.4954426 |
| Snippet | Background
The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts... The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are... Abstract Background The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 129 |
| SubjectTerms | Biomedical and Life Sciences Biomedicine Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology CAFs Cancer Research Cell Line, Tumor Female Fluorescent Antibody Technique Gene Expression Profiling GPER HIF-1α Humans Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism IGF1 Insulin-Like Growth Factor I - genetics Insulin-Like Growth Factor I - metabolism Neovascularization, Pathologic - genetics Neovascularization, Pathologic - metabolism Oncology Receptors, Estrogen - metabolism Receptors, G-Protein-Coupled - metabolism Research Article Signal Transduction - drug effects Surgical Oncology Tumor Microenvironment Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor Receptor-2 - metabolism VEGF |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hCiEuCFp-QgsyEuIAsjZOHDs5FrTZ9kBVIUC9Wbbj0JXYLNpki5a36ovwTIyd7KpbClw4JraVn_k8mcnMfAPw0qVWC-ty6rtNUdSSOTXSaGoSK9MaB2RVhWYT8uQkPzsrTq-0-vI5YT09cP_iRmhQiCwpHILHcV24wqQi9k5DImsneWACRatn7UwN8QOZZ_kQw2S5GLWoqTOftCUprk1ptvUVCmT9N1mYvydKXouWho9QeR_uDdYjOezv-gHccs0u7B026DnPVuQVCfmc4Uf5Ltx5P4TN9-DH5HT8gYQiEbQsCdp8RDdfpnPrS_9IX9rQEvTOUc4VMStyPCkZGVr4hOlHxyVlPy9Hn8eTkvguxt_1CheEMePz2jvSLWfzBZn5BL8r1XMP4VM5_vjuiA5NF6hFW62jlUhqbpwzRlYaNaXN8DDW1nEmmS14wbkskrjitaw9l5xGrSDiqkbDycSiZukj2GnmjXsCJOE4XDPj66V4arROmdOsFggPx21RRRCvhaDswEjuG2N8VcEzyYXq5aZQbsrLTWURvN4s-dbTcfxt8lsv2c1Ez6QdTiC-1IAv9S98RfBijQuFO8-HU3Tj5stWMXTFPGUVYxE87nGyuVSCp31NcARyC0Fb97I90kzPA7t3JlEpyjSCN2usqUGttH9-1Kf_41H34W7it4hP1hEHsNMtlu4Z3LYX3bRdPA8b7BfKDie1 priority: 102 providerName: Directory of Open Access Journals |
| Title | GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment |
| URI | https://link.springer.com/article/10.1186/s13058-017-0923-5 https://www.ncbi.nlm.nih.gov/pubmed/29212519 https://www.proquest.com/docview/1974009211 https://pubmed.ncbi.nlm.nih.gov/PMC5719673 https://doaj.org/article/4056529e051e4a9e9b360924927fe744 |
| Volume | 19 |
| WOSCitedRecordID | wos000417540800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: RBZ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Standard customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: RSV dateStart: 19991201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xuwhx4bHLIzwqIyEOoGjjxImT4y5quz1sVRVYlZNlO85SiSaoSUHlX_FH-E2MnbSisCDBJZJfSuJ8M57JvACem0jLRJvUt9WmfOSSqa-4kr4KNY8KHOB57opN8PE4nc2ySRfHXW-83TcmScepHVmnyXGN3Da2jlfcD1Aq8eM9OMDTLrXUOH1zsTUd8DROO_Pllct2DiCXp_8q4fJ3H8lfDKXu_Bnc_q8nvwO3OnGTnLT4uAvXTHkIRyclqtqLNXlBnAOo-7N-CDfOOzv7EXwdTvpT4qJKUBQlKCQSWV7OK21jBUkbC1ETVOcRGDlRazIaDijpav646WejgU-_fzu-6A8HxJY9_iLXuMCNKesI35BmtaiWZGE9An8Kt7sH7wb9t6_P_K5Kg69RuGv8PAkLpoxRiucSWauOsRlIbRjlVGcsY4xnYZCzghc2-ZxENpIEeYGSlgqSgkb3Yb-sSvMQSMhwuKDKBlixSEkZUSNpkSCeDNNZ7kGw-XRCdynMbSWNj8KpMmki2q0WuNXCbrWIPXi5XfKpzd_xt8mnFg_biTb1tuuolpeio2SBEm4Sh5lBbmaYzEymoiSwWmzIC8MZ8-DZBk0CSdXaX2RpqlUtKOpuNscVpR48aNG1vVWI3TaI2AO-g7udZ9kdKecfXDrwmCMX5ZEHrzboEx0fqv_8qo_-afZjuBla-Fo3nuQJ7DfLlXkK1_XnZl4ve7DHZ9xd0x4cnPbHk2nP_dvA1mR0PnnfcxT6A5FZMwg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQcCFR8sjPI2EOFBFjRMnTo4FbXZXtKuqlKo3y3acshKboE0WtPwr_gi_ibGTXbFQkOAYe6wkzjfjmcwL4IWJtEy0SX3bbcpHKZn6iivpq1DzqMQJXhSu2QSfTNKzs-yoz-NuVtHuK5ekk9SOrdNkr0FpG9vAK-4HqJX48WW4wvDAsnF8x-9O164DnsZp7768cNnGAeTq9F-kXP4eI_mLo9SdP_mt_3ry23CzVzfJfoePO3DJVNuws1-hqT1bkpfEBYC6P-vbcO2w97PvwNfh0eCYuKwSVEUJKolEVufTWttcQdLlQjQEzXkERkHUkoyHOSV9zx9HPhrnPv3-be90MMyJbXv8RS5xgZtTNhC-Je1iVs_JzEYE_pRudxfe54OTNyO_79Lga1TuWr9IwpIpY5TihUTRqmO8DKQ2jHKqM5YxxrMwKFjJS1t8TqIYSYKiRE1LBUlJo3uwVdWVeQAkZDhdUmUTrFikpIyokbRMEE-G6azwIFh9OqH7Eua2k8ZH4UyZNBHdVgvcamG3WsQevFov-dTV7_gb8WuLhzWhLb3tBur5ueg5WaCGm8RhZlCaGSYzk6koCawVG_LScMY8eL5Ck0BWtf4XWZl60QiKtputcUWpB_c7dK1vFeKwTSL2gG_gbuNZNmeq6QdXDjzmKEV55MHuCn2il0PNn1_14T9RP4Pro5PDA3Ewnrx9BDdCC2Ub0hM-hq12vjBP4Kr-3E6b-VPHiz8AWiQv2A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BglZceOyyEJ5GQhxAUePEiZPjAk23AqqKx2pvlu04SyWarJoUVP4Vf4TfxNhJKwoLEuIYe6zEzjeTmcwL4LGJtEy0SX3bbcpHKZn6iivpq1DzqMQJXhSu2QSfTNKTk2za9zlt1tHua5dkl9NgqzRV7eCsKDsWT5NBg5I3tkFY3A9QQ_Hji3CJ2Z5B1lx_d7xxI_A0TntX5rnLtj5Grmb_eYrm7_GSvzhN3bcov_bfu7gOV3s1lBx2uLkBF0y1B_uHFZrg8xV5QlxgqPvjvge7b3r_-z58HU2Hb4nLNkEVlaDySGR1Oqu1zSEkXY5EQ9DMR8AURK3IeJRT0vcCcuRH49yn378NjoejnNh2yF_kChe4OWUD5FvSLuf1gsxtpOBPaXg34UM-fP_iyO-7N_galb7WL5KwZMoYpXghUeTqGC8DqQ2jnOqMZYzxLAwKVvLSFqWTKF6SoChRA1NBUtLoAHaqujK3gYQMp0uqbOIVi5SUETWSlgnizDCdFR4E69codF_a3HbY-CSciZMmojtqgUct7FGL2IOnmyVnXV2PvxE_t9jYENqS3G6gXpyKnsMFar5JHGYGpZxhMjOZipLAWrchLw1nzINHa2QJZGHrl5GVqZeNoGjT2dpXlHpwq0Pa5lYhDtvkYg_4Fga3nmV7ppp9dGXCY47SlUcePFsjUfTyqfnzVu_8E_VD2J2-zMXr8eTVXbgSWiTbSJ_kHuy0i6W5D5f153bWLB44tvwB0Ok4wA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPER+mediates+the+angiocrine+actions+induced+by+IGF1+through+the+HIF-1%CE%B1%2FVEGF+pathway+in+the+breast+tumor+microenvironment&rft.jtitle=Breast+cancer+research+%3A+BCR&rft.au=De+Francesco%2C+Ernestina+M&rft.au=Sims%2C+Andrew+H&rft.au=Maggiolini%2C+Marcello&rft.au=Sotgia%2C+Federica&rft.date=2017-12-06&rft.issn=1465-542X&rft.eissn=1465-542X&rft.volume=19&rft.issue=1&rft.spage=129&rft_id=info:doi/10.1186%2Fs13058-017-0923-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-542X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-542X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-542X&client=summon |