A Deep-Learning-Based Health Indicator Constructor Using Kullback–Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures
This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete struct...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 10; p. 3687 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
12.05.2022
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen’s useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback–Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen’s work. |
|---|---|
| AbstractList | This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen’s useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback–Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen’s work. This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen's useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback-Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen's work.This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen's useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback-Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen's work. |
| Audience | Academic |
| Author | Nguyen, Tuan-Khai Ahmad, Zahoor Kim, Jong-Myon |
| AuthorAffiliation | Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Korea; khaint@mail.ulsan.ac.kr (T.-K.N.); zahooruou@mail.ulsan.ac.kr (Z.A.) |
| AuthorAffiliation_xml | – name: Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Korea; khaint@mail.ulsan.ac.kr (T.-K.N.); zahooruou@mail.ulsan.ac.kr (Z.A.) |
| Author_xml | – sequence: 1 givenname: Tuan-Khai orcidid: 0000-0001-8999-6745 surname: Nguyen fullname: Nguyen, Tuan-Khai – sequence: 2 givenname: Zahoor orcidid: 0000-0002-3571-8907 surname: Ahmad fullname: Ahmad, Zahoor – sequence: 3 givenname: Jong-Myon orcidid: 0000-0002-5185-1062 surname: Kim fullname: Kim, Jong-Myon |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35632097$$D View this record in MEDLINE/PubMed |
| BookMark | eNplksFu1DAQQCNURNuFAz-AInGBQ1rH9trOBWnZAl2xEgjo2XKc8a6XrL3YTiVu_AMSH8iX4HTbqi3KwSP7zRuPM8fFgfMOiuJ5jU4IadBpxLhGhAn-qDiqKaaVwBgd3IkPi-MYNwhhQoh4UhySKSMYNfyo-DMrzwB21RJUcNatqrcqQleeg-rTuly4zmqVfCjn3sUUBj3GFzGD5ceh71ulv__99XsJtu0hlGf2EsIKnIbSZO5zgJyeRjitofwCW2XHGlkAZujLpTVQejO6dYAE5derCkOA-LR4bFQf4dn1Oiku3r_7Nj-vlp8-LOazZaWnSKSqo4Ir3WojKBKEcMRagyhtVCcoIx1rEUVtDXpqaEc1YKM7hBFnUKsx1mRSLPbezquN3AW7VeGn9MrKqw0fVlKFZHUPUk1ZjVrEiWooRR20jDa5FtMc2obwaXa92bt2Q7uFToNLQfX3pPdPnF3Llb-UTU2ZYCQLXl0Lgv8xQExya6OGvlcO_BAlZrzGPP9OlNGXD9CNH4LLTzVSiIiG55tOipM9tVK5AeuMz3V1_jrYWp1nyNi8P-Oizq2JWuSEF3dbuL37zbxk4HQP6OBjDGCktkkl68eObC9rJMeJlLcTmTNeP8i4kf7P_gOYU-Hf |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2025_112591 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_1016_j_ress_2024_110188 crossref_primary_10_1177_14759217251346390 crossref_primary_10_1016_j_ress_2024_110442 crossref_primary_10_1016_j_bspc_2023_105741 crossref_primary_10_1016_j_compositesb_2024_111863 crossref_primary_10_3390_machines11121080 crossref_primary_10_1109_TASE_2024_3519164 crossref_primary_10_3390_s24010256 crossref_primary_10_1088_1361_6501_acb808 crossref_primary_10_1016_j_ymssp_2023_110239 crossref_primary_10_3390_a16040178 crossref_primary_10_1109_ACCESS_2025_3604754 crossref_primary_10_1109_ACCESS_2024_3435694 |
| Cites_doi | 10.1109/TII.2016.2535368 10.1109/PECON.2008.4762695 10.1109/TASE.2013.2250282 10.1145/3449639.3459395 10.1007/s10845-014-0933-4 10.1016/j.cemconres.2012.05.003 10.1109/TIE.2017.2767551 10.1016/j.ress.2020.107241 10.1109/TII.2018.2868687 10.1016/j.istruc.2021.08.089 10.3390/s21227761 10.1109/TIE.2022.3156148 10.1016/j.conbuildmat.2010.05.004 10.1109/ACCESS.2020.3022770 10.2478/ncr-2018-0012 10.1007/978-3-319-29052-2_31 10.1016/j.cemconres.2013.02.002 10.1109/ACCESS.2019.2919224 10.1109/TIE.2013.2270212 10.1016/j.conbuildmat.2021.124386 10.1016/j.engfracmech.2015.07.058 10.1007/s00170-018-2874-0 10.1016/j.conbuildmat.2016.01.005 10.1016/j.conbuildmat.2020.120927 10.1214/aoms/1177729694 10.1109/ICCIC.2015.7435755 10.3390/ma12172804 10.1016/j.conbuildmat.2020.121831 10.1016/j.ress.2019.106682 10.3390/s19183879 10.1177/14759217211013324 10.1109/TIE.2014.2345330 10.1155/2018/6563537 10.1016/j.procs.2019.06.096 10.1016/j.mechrescom.2011.03.007 10.1016/j.isatra.2020.03.017 10.1007/BF02472738 10.1016/j.engfracmech.2018.05.016 10.3390/s18113740 10.3182/20120829-3-MX-2028.00246 10.1016/j.aej.2017.01.020 10.1016/j.isatra.2019.03.017 10.1109/TIE.2011.2167893 10.3390/app11094113 10.1016/j.ymssp.2016.07.039 10.1016/j.ress.2022.108482 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22103687 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_a5610b073a9440deb6490446c7eb9375 PMC9146863 A781610818 35632097 10_3390_s22103687 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: University of Ulsan grantid: 2022 – fundername: 2022 Research Fund of University of Ulsan |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c508t-d487acbcf840833706bf0449ad8463d6b040b1ec5f4d4ce2fcd02076e1a2fcdc3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804307400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:01 EDT 2025 Tue Nov 04 01:38:26 EST 2025 Thu Sep 04 16:10:48 EDT 2025 Tue Oct 07 07:44:15 EDT 2025 Tue Nov 04 18:29:24 EST 2025 Wed Sep 03 05:52:00 EDT 2025 Sat Nov 29 07:15:41 EST 2025 Tue Nov 18 19:58:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Kullback–Leibler divergence health indicator remaining useful life stacked autoencoder acoustic emission deep neural network concrete structures |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-d487acbcf840833706bf0449ad8463d6b040b1ec5f4d4ce2fcd02076e1a2fcdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8999-6745 0000-0002-3571-8907 0000-0002-5185-1062 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2670389707?pq-origsite=%requestingapplication% |
| PMID | 35632097 |
| PQID | 2670389707 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a5610b073a9440deb6490446c7eb9375 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9146863 proquest_miscellaneous_2671272200 proquest_journals_2670389707 gale_infotracacademiconefile_A781610818 pubmed_primary_35632097 crossref_citationtrail_10_3390_s22103687 crossref_primary_10_3390_s22103687 |
| PublicationCentury | 2000 |
| PublicationDate | 20220512 |
| PublicationDateYYYYMMDD | 2022-05-12 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220512 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Liao (ref_49) 2014; 61 ref_12 Mosallam (ref_45) 2016; 27 Ohno (ref_4) 2010; 24 ref_18 Suaris (ref_17) 1987; 20 ref_16 Nasser (ref_29) 2022; 21 Xargay (ref_31) 2021; 274 Aggelis (ref_24) 2011; 38 Leite (ref_40) 2015; 62 Kullback (ref_51) 1951; 22 Wolf (ref_5) 2015; 146 Mohan (ref_21) 2018; 57 Wen (ref_36) 2021; 205 ref_28 Cuadrado (ref_35) 2022; 224 Li (ref_34) 2022; 69 Ohtsu (ref_7) 2007; 25 Nguyen (ref_33) 2021; 113 Wang (ref_22) 2018; 154 Elforjani (ref_26) 2018; 65 Karimipour (ref_10) 2021; 34 Moradian (ref_25) 2017; 179 ref_32 Ahmad (ref_20) 2020; 8 Zhang (ref_19) 2018; 2018 ref_38 ref_37 Wang (ref_9) 2016; 108 Yu (ref_39) 2012; 59 Han (ref_6) 2019; 210 Sagar (ref_8) 2012; 42 Xia (ref_13) 2019; 15 Thieullen (ref_44) 2012; 45 Aye (ref_14) 2017; 84 ref_47 Bektas (ref_48) 2019; 101 Song (ref_30) 2021; 302 ref_43 ref_41 Wang (ref_11) 2016; 12 ref_1 Aggelis (ref_2) 2013; 48 Liu (ref_42) 2013; 10 Zhang (ref_15) 2020; 195 Flansbjer (ref_3) 2018; 59 Moctezuma (ref_27) 2019; 7 Bian (ref_23) 2021; 267 Han (ref_46) 2019; 93 |
| References_xml | – volume: 12 start-page: 924 year: 2016 ident: ref_11 article-title: A Two-Stage Data-Driven-Based Prognostic Approach for Bearing Degradation Problem publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2535368 – ident: ref_38 doi: 10.1109/PECON.2008.4762695 – ident: ref_32 – volume: 10 start-page: 652 year: 2013 ident: ref_42 article-title: A Data-Level Fusion Model for Developing Composite Health Indices for Degradation Modeling and Prognostic Analysis publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2013.2250282 – ident: ref_16 doi: 10.1145/3449639.3459395 – volume: 27 start-page: 1037 year: 2016 ident: ref_45 article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction publication-title: J. Intell. Manuf. doi: 10.1007/s10845-014-0933-4 – volume: 42 start-page: 1094 year: 2012 ident: ref_8 article-title: An experimental study on cracking evolution in concrete and cement mortar by the b-value analysis of acoustic emission technique publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2012.05.003 – volume: 65 start-page: 5864 year: 2018 ident: ref_26 article-title: Prognosis of Bearing Acoustic Emission Signals Using Supervised Machine Learning publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2767551 – volume: 205 start-page: 107241 year: 2021 ident: ref_36 article-title: A generalized remaining useful life prediction method for complex systems based on composite health indicator publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107241 – volume: 15 start-page: 3703 year: 2019 ident: ref_13 article-title: A Two-Stage Approach for the Remaining Useful Life Prediction of Bearings Using Deep Neural Networks publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2868687 – volume: 34 start-page: 1525 year: 2021 ident: ref_10 article-title: Effect of EBR- and EBROG-GFRP laminate on the structural performance of corroded reinforced concrete columns subjected to a hysteresis load publication-title: Structures doi: 10.1016/j.istruc.2021.08.089 – ident: ref_28 doi: 10.3390/s21227761 – volume: 69 start-page: 10615 year: 2022 ident: ref_34 article-title: Health Indicator Construction Method of Bearings Based on Wasserstein Dual-Domain Adversarial Networks Under Normal Data Only publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2022.3156148 – volume: 24 start-page: 2339 year: 2010 ident: ref_4 article-title: Crack classification in concrete based on acoustic emission publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.05.004 – volume: 8 start-page: 165512 year: 2020 ident: ref_20 article-title: Discriminant feature extraction for centrifugal pump fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022770 – volume: 59 start-page: 13 year: 2018 ident: ref_3 article-title: Meso Mechanical Study of Cracking Process in Concrete Subjected to Tensile Loading publication-title: Nord. Concr. Res. doi: 10.2478/ncr-2018-0012 – volume: 179 start-page: 357 year: 2017 ident: ref_25 article-title: Hit-based acoustic emission monitoring of rock fractures: Challenges and solutions publication-title: Springer Proc. Phys. doi: 10.1007/978-3-319-29052-2_31 – volume: 48 start-page: 1 year: 2013 ident: ref_2 article-title: Investigation of different fracture modes in cement-based materials by acoustic emission publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2013.02.002 – volume: 7 start-page: 71119 year: 2019 ident: ref_27 article-title: Performance analysis of acoustic emission hit detection methods using time features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919224 – volume: 61 start-page: 2464 year: 2014 ident: ref_49 article-title: Discovering Prognostic Features Using Genetic Programming in Remaining Useful Life Prediction publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2270212 – volume: 302 start-page: 124386 year: 2021 ident: ref_30 article-title: Fatigue characteristics of concrete subjected to indirect cyclic tensile loading: Insights from deformation behavior, acoustic emissions and ultrasonic wave propagation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124386 – volume: 146 start-page: 161 year: 2015 ident: ref_5 article-title: Detection of crack propagation in concrete with embedded ultrasonic sensors publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.07.058 – volume: 101 start-page: 87 year: 2019 ident: ref_48 article-title: A neural network filtering approach for similarity-based remaining useful life estimation publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2874-0 – volume: 108 start-page: 56 year: 2016 ident: ref_9 article-title: Influence of service loading and the resulting micro-cracks on chloride resistance of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.01.005 – volume: 267 start-page: 120927 year: 2021 ident: ref_23 article-title: Damage mechanism of ultra-high performance fibre reinforced concrete at different stages of direct tensile test based on acoustic emission analysis publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120927 – volume: 25 start-page: 21 year: 2007 ident: ref_7 article-title: Acoustic Emission Techniques Standardized for Concrete Structures publication-title: J. Acoust. Emiss. – volume: 22 start-page: 79 year: 1951 ident: ref_51 article-title: On Information and Sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – ident: ref_37 doi: 10.1109/ICCIC.2015.7435755 – ident: ref_1 doi: 10.3390/ma12172804 – volume: 274 start-page: 121831 year: 2021 ident: ref_31 article-title: Acoustic emission and damage evolution in steel fiber-reinforced concrete beams under cyclic loading publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121831 – volume: 195 start-page: 106682 year: 2020 ident: ref_15 article-title: Remaining useful lifetime prediction via deep domain adaptation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106682 – ident: ref_47 – ident: ref_18 doi: 10.3390/s19183879 – volume: 21 start-page: 1266 year: 2022 ident: ref_29 article-title: Acoustic emission source characterisation of chloride-induced corrosion damage in reinforced concrete publication-title: Struct. Health Monit. doi: 10.1177/14759217211013324 – volume: 62 start-page: 1855 year: 2015 ident: ref_40 article-title: Detection of Localized Bearing Faults in Induction Machines by Spectral Kurtosis and Envelope Analysis of Stator Current publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2345330 – volume: 2018 start-page: 6563537 year: 2018 ident: ref_19 article-title: Crack Detection of Reinforced Concrete Structures Based on BOFDA and FBG Sensors publication-title: Shock Vib. doi: 10.1155/2018/6563537 – volume: 154 start-page: 610 year: 2018 ident: ref_22 article-title: Research on Crack Detection Algorithm of the Concrete Bridge Based on Image Processing publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.06.096 – volume: 38 start-page: 153 year: 2011 ident: ref_24 article-title: Classification of cracking mode in concrete by acoustic emission parameters publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2011.03.007 – ident: ref_50 – volume: 113 start-page: 81 year: 2021 ident: ref_33 article-title: An automated health indicator construction methodology for prognostics based on multi-criteria optimization publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.03.017 – volume: 20 start-page: 214 year: 1987 ident: ref_17 article-title: Detection of crack growth in concrete from ultrasonic intensity measurements publication-title: Mater. Struct. doi: 10.1007/BF02472738 – volume: 210 start-page: 189 year: 2019 ident: ref_6 article-title: Acoustic emission data analyses based on crumb rubber concrete beam bending tests publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.05.016 – ident: ref_41 doi: 10.3390/s18113740 – volume: 45 start-page: 19 year: 2012 ident: ref_44 article-title: A Survey of Health Indicators and Data-Driven Prognosis in Semiconductor Manufacturing Process publication-title: IFAC Proc. Vol. doi: 10.3182/20120829-3-MX-2028.00246 – volume: 57 start-page: 787 year: 2018 ident: ref_21 article-title: Crack detection using image processing: A critical review and analysis publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.01.020 – volume: 93 start-page: 341 year: 2019 ident: ref_46 article-title: Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.03.017 – volume: 59 start-page: 2363 year: 2012 ident: ref_39 article-title: Local and Nonlocal Preserving Projection for Bearing Defect Classification and Performance Assessment publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2167893 – ident: ref_43 – ident: ref_12 doi: 10.3390/app11094113 – volume: 84 start-page: 485 year: 2017 ident: ref_14 article-title: An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.07.039 – volume: 224 start-page: 108482 year: 2022 ident: ref_35 article-title: Health indicator for machine condition monitoring built in the latent space of a deep autoencoder publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108482 |
| SSID | ssj0023338 |
| Score | 2.473941 |
| Snippet | This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning.... This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3687 |
| SubjectTerms | acoustic emission Acoustic emission testing Concrete concrete structures Construction Deep Learning deep neural network health indicator Investigations Kullback–Leibler divergence Neural networks Neural Networks, Computer Planning Prognosis remaining useful life Reproducibility of Results Research Design Sensors |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcUHmHFmQQElyiJnbWjo9bSgViVVU8pN4sP8uKJVvtgzP_Aak_sL-kM042ygokLtyixEkcz4xnvnj8DSGv6trawpU8r70y-LcK5sFYmBxdMy8js7VPPLMTeXpan5-rs0GpL8wJa-mB24E7NOjgLSiiUVVV-GBFpXAR0slgwbUm9tJCqg2Y6qAWB-TV8ghxAPWHSwbIhgvMmxt4n0TS_-dUPPBF23mSA8dzskfudhEjHbc9vUduheY-uTPgEXxArsb0OITLvCNLvciPwDd52m4xoh8aXIsBbE2xOmfii4XjlCtAPwICtcZ9v_71exKmdhYW9BgzNRJFJ4WAlp4tcCkHk6MpxIr0U_jR1pSAB4S4ntHJNAY6j_hsCEBXgX5Ob1gDjH9Ivp68-_L2fd4VXMgdxGmr3AN6Mc66CKiv5lwWwkYYa2U8RCncCwsWb8vgRrHylQssOg_RphShNHjs-COy08yb8IRQcHyWV15I5WxlPIRF0iuQZBWUtXxUZ-TNRhDadWzkWBRjpgGVoMx0L7OMvOybXrYUHH9rdITS7Bsga3Y6AbqkO13S_9KljLxGXdBo29AZZ7otCvBJyJKlx7KGABlJADNysFEX3Rn9UjMhka5QFtCbF_1lMFdcgzFNmK9Tm5JJBnNTRh632tX3mY8EZ4WCu-WW3m191PaVZvotUYIr3EEn-NP_MQr75DbDPR5IUcsOyA5oTXhGdt3P1XS5eJ7s7AY1US8j priority: 102 providerName: Directory of Open Access Journals |
| Title | A Deep-Learning-Based Health Indicator Constructor Using Kullback–Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35632097 https://www.proquest.com/docview/2670389707 https://www.proquest.com/docview/2671272200 https://pubmed.ncbi.nlm.nih.gov/PMC9146863 https://doaj.org/article/a5610b073a9440deb6490446c7eb9375 |
| Volume | 22 |
| WOSCitedRecordID | wos000804307400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48H4ElsogJLhETeM0Tk6oZbtiRbeqFpDKKfIrS7XdtPTBEfEfkPiB_BJmnDS0AnHiEkWNm9jt5Jtv7PE3AM-TRKlAd7ifmFTSbBXiYB5In1wz7-ShSozTmR2K0SiZTNJxtT16VaVVbjHRAXWp9kx52wjCbTPXNGPeDmNBynAiEK8Wn32qIUVrrVVBjQNokvBW0IDm-OR0_LEOwDjGY6W6EMdQv70KMd7hMWXT7fgkJ93_J0DveKj97Mkdd3R88_8O5BbcqGgp65V2dBuu2OIOXN8RK7wLP3rsyNqFXymynvt9dICGlfuY2ElBCz4YwDMqAepEafHcJSSwtxjmKqkvfn77PrRTNbNLdkTpIE4HlCFrZuMlrRdRBjZDQsrO7GVZuAJvYPPNjA2nuWXznO6NLHdt2Tv3hM3Sru7Bh-PB-9dv_Kqqg6-RDK59gyGS1ErnGFomnIsgVnkQRak0SIW4iRXCiupY3c0jE2kb5togpRWx7Ug61_w-NIp5YR8CQ--qeGRikWoVSUO_o0mRD0Y2VYp3Ew9ebv_XTFeS51R5Y5Zh6EMmkNUm4MGzuumi1Pn4W6M-GUfdgKS53Qfz5XlWvemZJEaqEDllijZorIqjlFbNtbAKuWDXgxdkWhkBCHZGy2ofBA6JpLiynkiQhZPSoAeHWwvKKmRZZb8NxoOn9WXEBFrokYWdb1ybTihCBEAPHpTGWveZd2MeBil-W-yZ8d6g9q8U009OdzylbXoxf_Tvbj2GayFtESGF2_AQGmgP9glc1V_W09WyBQdiItwxaUGzPxiNz1puHgSPp18HreqV_QVi8VDP |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4YCiwIBBerzq7jxwGhlFA1ahpF0ErlZPblEhHs4CQgbvwHJH4GP4pfwoztmEQgbj1ws-L1Zm1_O_ONd_YbgEdRpJSn28KNTCzpaxXawdSTLrlm0U65ikypMzsIh8Po-DgebcCP5V4YSqtc2sTSUJtc0zfybR6EpAUXeuHz6UeXqkbR6uqyhEYFi3375TOGbLNn_R6-38ec7748fLHn1lUFXI1kZO4apOhSK51iaBMJEXqBSj3fj6VBVyxMoBDWqm11J_WNry1PtUFKFQa2LelYC-z3DGz6CHavBZuj_sHoTRPiCYz4Kv0iIWJve8YxohIB5euteL2yOMCfLmDFB67nZ644vN1L_9ujugwXa2rNutVcuAIbNrsKF1YEF6_B9y7rWTt1a1XZE3cHnbhh1V4s1s9o0WqeF4zKmJbCunhcJlWwfQzVldTvf379NrBjNbEF61FKS6llypD5s1FBa16URc6QVLNX9kNVfAM7sOliwgbj1LI8pb6Rqc8te13-w6Kws-twdCoP5ga0sjyzt4AhQ1DCN0EYa-VLQ-_NxMhpfRsrJTqRA0-XyEl0LdtO1UMmCYZvBLKkAZkDD5um00qr5G-Ndgh-TQOSFy9_yIuTpLZWiSRWrdD6y9j3PWNV4Me08q9Dq5DPdhx4QuBNyAjiYLSs93LgLZGcWNINI4wkSC3Rga0lRpPaOs6S3wB14EFzGu0aLVbJzOaLsk2bhxyNuAM3q-nQjFl0AsG9GK8O1ybK2k2tn8nG70rt9Ji2Ggbi9r-HdR_O7R0eDJJBf7h_B85z2vJCir18C1qIDXsXzupP8_GsuFcbAAZvT3si_QKY9Z5y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tXYTgwP9PYAGDQHCJmtppnBwQaulWVK2qagFpbyH-yVKxJCXtgrjxDkg8DI_DkzCTpKEViNseuEWN49rOeOabeOYbgEdhqJSnO8INTZTQ1yrUg6mXuGSaRSflKjQlz-xETqfh4WE024Ef61wYCqtc68RSUZtc0zfyNg8kccFJT7bTOixiNhg-X3x0qYIUnbSuy2lUIjK2Xz6j-7Z8Nhrgu37M-XD_9YuXbl1hwNUITFauQbieaKVTdHNCIaQXqNTz_SgxaJaFCRSKuOpY3U1942vLU20QXsnAdhK61gL7PQO7UqDT04Ld_v50dtC4ewK9v4rLSIjIay85elcioNi9DQtYFgr40xxs2MPtWM0N4ze89D8v22W4WENu1qv2yBXYsdlVuLBBxHgNvvfYwNqFW7PNHrl9NO6GVTlabJTRYdYqLxiVNy0Jd_G6DLZgY5yuSvT7n1-_TexcHduCDSjUpeQ4ZegRsFlBZ2EUXc4QbLMD-6EqyoEdWFwsNpmnluUp9Y0IfmXZq_IfTgq7vA5vTmVhbkAryzN7CxgiByV8E8hIKz8x9A5NhFjXt5FSohs68HQtRbGu6dypqshxjG4dCVzcCJwDD5umi4rD5G-N-iSKTQOiHS9_yIujuNZicUJoW6FVSCLf94xVgR9RRICWViHO7TrwhAQ5JuWIg9FJneOBUyKasbgnQ_QwiEXRgb21vMa11lzGv4XVgQfNbdR3dIiVZDY_Kdt0uOSo3B24WW2NZsyiGwjuRfi03No0W5PavpPN35Wc6hGlIAbi9r-HdR_O4e6JJ6Pp-A6c55QJQ0S-fA9aKBr2LpzVn1bzZXGv1gUM3p72PvoFfSCnDA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep-Learning-Based+Health+Indicator+Constructor+Using+Kullback-Leibler+Divergence+for+Predicting+the+Remaining+Useful+Life+of+Concrete+Structures&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nguyen%2C+Tuan-Khai&rft.au=Ahmad%2C+Zahoor&rft.au=Kim%2C+Jong-Myon&rft.date=2022-05-12&rft.eissn=1424-8220&rft.volume=22&rft.issue=10&rft_id=info:doi/10.3390%2Fs22103687&rft_id=info%3Apmid%2F35632097&rft.externalDocID=35632097 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |