A Deep-Learning-Based Health Indicator Constructor Using Kullback–Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures

This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete struct...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 10; p. 3687
Main Authors: Nguyen, Tuan-Khai, Ahmad, Zahoor, Kim, Jong-Myon
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 12.05.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen’s useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback–Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen’s work.
AbstractList This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen’s useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback–Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen’s work.
This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen's useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback-Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen's work.This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen's useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback-Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen's work.
Audience Academic
Author Nguyen, Tuan-Khai
Ahmad, Zahoor
Kim, Jong-Myon
AuthorAffiliation Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Korea; khaint@mail.ulsan.ac.kr (T.-K.N.); zahooruou@mail.ulsan.ac.kr (Z.A.)
AuthorAffiliation_xml – name: Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Korea; khaint@mail.ulsan.ac.kr (T.-K.N.); zahooruou@mail.ulsan.ac.kr (Z.A.)
Author_xml – sequence: 1
  givenname: Tuan-Khai
  orcidid: 0000-0001-8999-6745
  surname: Nguyen
  fullname: Nguyen, Tuan-Khai
– sequence: 2
  givenname: Zahoor
  orcidid: 0000-0002-3571-8907
  surname: Ahmad
  fullname: Ahmad, Zahoor
– sequence: 3
  givenname: Jong-Myon
  orcidid: 0000-0002-5185-1062
  surname: Kim
  fullname: Kim, Jong-Myon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35632097$$D View this record in MEDLINE/PubMed
BookMark eNplksFu1DAQQCNURNuFAz-AInGBQ1rH9trOBWnZAl2xEgjo2XKc8a6XrL3YTiVu_AMSH8iX4HTbqi3KwSP7zRuPM8fFgfMOiuJ5jU4IadBpxLhGhAn-qDiqKaaVwBgd3IkPi-MYNwhhQoh4UhySKSMYNfyo-DMrzwB21RJUcNatqrcqQleeg-rTuly4zmqVfCjn3sUUBj3GFzGD5ceh71ulv__99XsJtu0hlGf2EsIKnIbSZO5zgJyeRjitofwCW2XHGlkAZujLpTVQejO6dYAE5derCkOA-LR4bFQf4dn1Oiku3r_7Nj-vlp8-LOazZaWnSKSqo4Ir3WojKBKEcMRagyhtVCcoIx1rEUVtDXpqaEc1YKM7hBFnUKsx1mRSLPbezquN3AW7VeGn9MrKqw0fVlKFZHUPUk1ZjVrEiWooRR20jDa5FtMc2obwaXa92bt2Q7uFToNLQfX3pPdPnF3Llb-UTU2ZYCQLXl0Lgv8xQExya6OGvlcO_BAlZrzGPP9OlNGXD9CNH4LLTzVSiIiG55tOipM9tVK5AeuMz3V1_jrYWp1nyNi8P-Oizq2JWuSEF3dbuL37zbxk4HQP6OBjDGCktkkl68eObC9rJMeJlLcTmTNeP8i4kf7P_gOYU-Hf
CitedBy_id crossref_primary_10_1016_j_ymssp_2025_112591
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_1016_j_ress_2024_110188
crossref_primary_10_1177_14759217251346390
crossref_primary_10_1016_j_ress_2024_110442
crossref_primary_10_1016_j_bspc_2023_105741
crossref_primary_10_1016_j_compositesb_2024_111863
crossref_primary_10_3390_machines11121080
crossref_primary_10_1109_TASE_2024_3519164
crossref_primary_10_3390_s24010256
crossref_primary_10_1088_1361_6501_acb808
crossref_primary_10_1016_j_ymssp_2023_110239
crossref_primary_10_3390_a16040178
crossref_primary_10_1109_ACCESS_2025_3604754
crossref_primary_10_1109_ACCESS_2024_3435694
Cites_doi 10.1109/TII.2016.2535368
10.1109/PECON.2008.4762695
10.1109/TASE.2013.2250282
10.1145/3449639.3459395
10.1007/s10845-014-0933-4
10.1016/j.cemconres.2012.05.003
10.1109/TIE.2017.2767551
10.1016/j.ress.2020.107241
10.1109/TII.2018.2868687
10.1016/j.istruc.2021.08.089
10.3390/s21227761
10.1109/TIE.2022.3156148
10.1016/j.conbuildmat.2010.05.004
10.1109/ACCESS.2020.3022770
10.2478/ncr-2018-0012
10.1007/978-3-319-29052-2_31
10.1016/j.cemconres.2013.02.002
10.1109/ACCESS.2019.2919224
10.1109/TIE.2013.2270212
10.1016/j.conbuildmat.2021.124386
10.1016/j.engfracmech.2015.07.058
10.1007/s00170-018-2874-0
10.1016/j.conbuildmat.2016.01.005
10.1016/j.conbuildmat.2020.120927
10.1214/aoms/1177729694
10.1109/ICCIC.2015.7435755
10.3390/ma12172804
10.1016/j.conbuildmat.2020.121831
10.1016/j.ress.2019.106682
10.3390/s19183879
10.1177/14759217211013324
10.1109/TIE.2014.2345330
10.1155/2018/6563537
10.1016/j.procs.2019.06.096
10.1016/j.mechrescom.2011.03.007
10.1016/j.isatra.2020.03.017
10.1007/BF02472738
10.1016/j.engfracmech.2018.05.016
10.3390/s18113740
10.3182/20120829-3-MX-2028.00246
10.1016/j.aej.2017.01.020
10.1016/j.isatra.2019.03.017
10.1109/TIE.2011.2167893
10.3390/app11094113
10.1016/j.ymssp.2016.07.039
10.1016/j.ress.2022.108482
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22103687
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
MEDLINE - Academic



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a5610b073a9440deb6490446c7eb9375
PMC9146863
A781610818
35632097
10_3390_s22103687
Genre Journal Article
GrantInformation_xml – fundername: University of Ulsan
  grantid: 2022
– fundername: 2022 Research Fund of University of Ulsan
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-d487acbcf840833706bf0449ad8463d6b040b1ec5f4d4ce2fcd02076e1a2fcdc3
IEDL.DBID PIMPY
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804307400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:01 EDT 2025
Tue Nov 04 01:38:26 EST 2025
Thu Sep 04 16:10:48 EDT 2025
Tue Oct 07 07:44:15 EDT 2025
Tue Nov 04 18:29:24 EST 2025
Wed Sep 03 05:52:00 EDT 2025
Sat Nov 29 07:15:41 EST 2025
Tue Nov 18 19:58:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Kullback–Leibler divergence
health indicator
remaining useful life
stacked autoencoder
acoustic emission
deep neural network
concrete structures
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-d487acbcf840833706bf0449ad8463d6b040b1ec5f4d4ce2fcd02076e1a2fcdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8999-6745
0000-0002-3571-8907
0000-0002-5185-1062
OpenAccessLink https://www.proquest.com/publiccontent/docview/2670389707?pq-origsite=%requestingapplication%
PMID 35632097
PQID 2670389707
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_a5610b073a9440deb6490446c7eb9375
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9146863
proquest_miscellaneous_2671272200
proquest_journals_2670389707
gale_infotracacademiconefile_A781610818
pubmed_primary_35632097
crossref_citationtrail_10_3390_s22103687
crossref_primary_10_3390_s22103687
PublicationCentury 2000
PublicationDate 20220512
PublicationDateYYYYMMDD 2022-05-12
PublicationDate_xml – month: 5
  year: 2022
  text: 20220512
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Liao (ref_49) 2014; 61
ref_12
Mosallam (ref_45) 2016; 27
Ohno (ref_4) 2010; 24
ref_18
Suaris (ref_17) 1987; 20
ref_16
Nasser (ref_29) 2022; 21
Xargay (ref_31) 2021; 274
Aggelis (ref_24) 2011; 38
Leite (ref_40) 2015; 62
Kullback (ref_51) 1951; 22
Wolf (ref_5) 2015; 146
Mohan (ref_21) 2018; 57
Wen (ref_36) 2021; 205
ref_28
Cuadrado (ref_35) 2022; 224
Li (ref_34) 2022; 69
Ohtsu (ref_7) 2007; 25
Nguyen (ref_33) 2021; 113
Wang (ref_22) 2018; 154
Elforjani (ref_26) 2018; 65
Karimipour (ref_10) 2021; 34
Moradian (ref_25) 2017; 179
ref_32
Ahmad (ref_20) 2020; 8
Zhang (ref_19) 2018; 2018
ref_38
ref_37
Wang (ref_9) 2016; 108
Yu (ref_39) 2012; 59
Han (ref_6) 2019; 210
Sagar (ref_8) 2012; 42
Xia (ref_13) 2019; 15
Thieullen (ref_44) 2012; 45
Aye (ref_14) 2017; 84
ref_47
Bektas (ref_48) 2019; 101
Song (ref_30) 2021; 302
ref_43
ref_41
Wang (ref_11) 2016; 12
ref_1
Aggelis (ref_2) 2013; 48
Liu (ref_42) 2013; 10
Zhang (ref_15) 2020; 195
Flansbjer (ref_3) 2018; 59
Moctezuma (ref_27) 2019; 7
Bian (ref_23) 2021; 267
Han (ref_46) 2019; 93
References_xml – volume: 12
  start-page: 924
  year: 2016
  ident: ref_11
  article-title: A Two-Stage Data-Driven-Based Prognostic Approach for Bearing Degradation Problem
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2535368
– ident: ref_38
  doi: 10.1109/PECON.2008.4762695
– ident: ref_32
– volume: 10
  start-page: 652
  year: 2013
  ident: ref_42
  article-title: A Data-Level Fusion Model for Developing Composite Health Indices for Degradation Modeling and Prognostic Analysis
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2013.2250282
– ident: ref_16
  doi: 10.1145/3449639.3459395
– volume: 27
  start-page: 1037
  year: 2016
  ident: ref_45
  article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0933-4
– volume: 42
  start-page: 1094
  year: 2012
  ident: ref_8
  article-title: An experimental study on cracking evolution in concrete and cement mortar by the b-value analysis of acoustic emission technique
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2012.05.003
– volume: 65
  start-page: 5864
  year: 2018
  ident: ref_26
  article-title: Prognosis of Bearing Acoustic Emission Signals Using Supervised Machine Learning
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2767551
– volume: 205
  start-page: 107241
  year: 2021
  ident: ref_36
  article-title: A generalized remaining useful life prediction method for complex systems based on composite health indicator
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107241
– volume: 15
  start-page: 3703
  year: 2019
  ident: ref_13
  article-title: A Two-Stage Approach for the Remaining Useful Life Prediction of Bearings Using Deep Neural Networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2868687
– volume: 34
  start-page: 1525
  year: 2021
  ident: ref_10
  article-title: Effect of EBR- and EBROG-GFRP laminate on the structural performance of corroded reinforced concrete columns subjected to a hysteresis load
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.08.089
– ident: ref_28
  doi: 10.3390/s21227761
– volume: 69
  start-page: 10615
  year: 2022
  ident: ref_34
  article-title: Health Indicator Construction Method of Bearings Based on Wasserstein Dual-Domain Adversarial Networks Under Normal Data Only
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2022.3156148
– volume: 24
  start-page: 2339
  year: 2010
  ident: ref_4
  article-title: Crack classification in concrete based on acoustic emission
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.05.004
– volume: 8
  start-page: 165512
  year: 2020
  ident: ref_20
  article-title: Discriminant feature extraction for centrifugal pump fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022770
– volume: 59
  start-page: 13
  year: 2018
  ident: ref_3
  article-title: Meso Mechanical Study of Cracking Process in Concrete Subjected to Tensile Loading
  publication-title: Nord. Concr. Res.
  doi: 10.2478/ncr-2018-0012
– volume: 179
  start-page: 357
  year: 2017
  ident: ref_25
  article-title: Hit-based acoustic emission monitoring of rock fractures: Challenges and solutions
  publication-title: Springer Proc. Phys.
  doi: 10.1007/978-3-319-29052-2_31
– volume: 48
  start-page: 1
  year: 2013
  ident: ref_2
  article-title: Investigation of different fracture modes in cement-based materials by acoustic emission
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2013.02.002
– volume: 7
  start-page: 71119
  year: 2019
  ident: ref_27
  article-title: Performance analysis of acoustic emission hit detection methods using time features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919224
– volume: 61
  start-page: 2464
  year: 2014
  ident: ref_49
  article-title: Discovering Prognostic Features Using Genetic Programming in Remaining Useful Life Prediction
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2270212
– volume: 302
  start-page: 124386
  year: 2021
  ident: ref_30
  article-title: Fatigue characteristics of concrete subjected to indirect cyclic tensile loading: Insights from deformation behavior, acoustic emissions and ultrasonic wave propagation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124386
– volume: 146
  start-page: 161
  year: 2015
  ident: ref_5
  article-title: Detection of crack propagation in concrete with embedded ultrasonic sensors
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.07.058
– volume: 101
  start-page: 87
  year: 2019
  ident: ref_48
  article-title: A neural network filtering approach for similarity-based remaining useful life estimation
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-2874-0
– volume: 108
  start-page: 56
  year: 2016
  ident: ref_9
  article-title: Influence of service loading and the resulting micro-cracks on chloride resistance of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.01.005
– volume: 267
  start-page: 120927
  year: 2021
  ident: ref_23
  article-title: Damage mechanism of ultra-high performance fibre reinforced concrete at different stages of direct tensile test based on acoustic emission analysis
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120927
– volume: 25
  start-page: 21
  year: 2007
  ident: ref_7
  article-title: Acoustic Emission Techniques Standardized for Concrete Structures
  publication-title: J. Acoust. Emiss.
– volume: 22
  start-page: 79
  year: 1951
  ident: ref_51
  article-title: On Information and Sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– ident: ref_37
  doi: 10.1109/ICCIC.2015.7435755
– ident: ref_1
  doi: 10.3390/ma12172804
– volume: 274
  start-page: 121831
  year: 2021
  ident: ref_31
  article-title: Acoustic emission and damage evolution in steel fiber-reinforced concrete beams under cyclic loading
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121831
– volume: 195
  start-page: 106682
  year: 2020
  ident: ref_15
  article-title: Remaining useful lifetime prediction via deep domain adaptation
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106682
– ident: ref_47
– ident: ref_18
  doi: 10.3390/s19183879
– volume: 21
  start-page: 1266
  year: 2022
  ident: ref_29
  article-title: Acoustic emission source characterisation of chloride-induced corrosion damage in reinforced concrete
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217211013324
– volume: 62
  start-page: 1855
  year: 2015
  ident: ref_40
  article-title: Detection of Localized Bearing Faults in Induction Machines by Spectral Kurtosis and Envelope Analysis of Stator Current
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2345330
– volume: 2018
  start-page: 6563537
  year: 2018
  ident: ref_19
  article-title: Crack Detection of Reinforced Concrete Structures Based on BOFDA and FBG Sensors
  publication-title: Shock Vib.
  doi: 10.1155/2018/6563537
– volume: 154
  start-page: 610
  year: 2018
  ident: ref_22
  article-title: Research on Crack Detection Algorithm of the Concrete Bridge Based on Image Processing
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.06.096
– volume: 38
  start-page: 153
  year: 2011
  ident: ref_24
  article-title: Classification of cracking mode in concrete by acoustic emission parameters
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2011.03.007
– ident: ref_50
– volume: 113
  start-page: 81
  year: 2021
  ident: ref_33
  article-title: An automated health indicator construction methodology for prognostics based on multi-criteria optimization
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.03.017
– volume: 20
  start-page: 214
  year: 1987
  ident: ref_17
  article-title: Detection of crack growth in concrete from ultrasonic intensity measurements
  publication-title: Mater. Struct.
  doi: 10.1007/BF02472738
– volume: 210
  start-page: 189
  year: 2019
  ident: ref_6
  article-title: Acoustic emission data analyses based on crumb rubber concrete beam bending tests
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.05.016
– ident: ref_41
  doi: 10.3390/s18113740
– volume: 45
  start-page: 19
  year: 2012
  ident: ref_44
  article-title: A Survey of Health Indicators and Data-Driven Prognosis in Semiconductor Manufacturing Process
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20120829-3-MX-2028.00246
– volume: 57
  start-page: 787
  year: 2018
  ident: ref_21
  article-title: Crack detection using image processing: A critical review and analysis
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2017.01.020
– volume: 93
  start-page: 341
  year: 2019
  ident: ref_46
  article-title: Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.03.017
– volume: 59
  start-page: 2363
  year: 2012
  ident: ref_39
  article-title: Local and Nonlocal Preserving Projection for Bearing Defect Classification and Performance Assessment
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2167893
– ident: ref_43
– ident: ref_12
  doi: 10.3390/app11094113
– volume: 84
  start-page: 485
  year: 2017
  ident: ref_14
  article-title: An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.07.039
– volume: 224
  start-page: 108482
  year: 2022
  ident: ref_35
  article-title: Health indicator for machine condition monitoring built in the latent space of a deep autoencoder
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108482
SSID ssj0023338
Score 2.473941
Snippet This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning....
This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3687
SubjectTerms acoustic emission
Acoustic emission testing
Concrete
concrete structures
Construction
Deep Learning
deep neural network
health indicator
Investigations
Kullback–Leibler divergence
Neural networks
Neural Networks, Computer
Planning
Prognosis
remaining useful life
Reproducibility of Results
Research Design
Sensors
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcUHmHFmQQElyiJnbWjo9bSgViVVU8pN4sP8uKJVvtgzP_Aak_sL-kM042ygokLtyixEkcz4xnvnj8DSGv6trawpU8r70y-LcK5sFYmBxdMy8js7VPPLMTeXpan5-rs0GpL8wJa-mB24E7NOjgLSiiUVVV-GBFpXAR0slgwbUm9tJCqg2Y6qAWB-TV8ghxAPWHSwbIhgvMmxt4n0TS_-dUPPBF23mSA8dzskfudhEjHbc9vUduheY-uTPgEXxArsb0OITLvCNLvciPwDd52m4xoh8aXIsBbE2xOmfii4XjlCtAPwICtcZ9v_71exKmdhYW9BgzNRJFJ4WAlp4tcCkHk6MpxIr0U_jR1pSAB4S4ntHJNAY6j_hsCEBXgX5Ob1gDjH9Ivp68-_L2fd4VXMgdxGmr3AN6Mc66CKiv5lwWwkYYa2U8RCncCwsWb8vgRrHylQssOg_RphShNHjs-COy08yb8IRQcHyWV15I5WxlPIRF0iuQZBWUtXxUZ-TNRhDadWzkWBRjpgGVoMx0L7OMvOybXrYUHH9rdITS7Bsga3Y6AbqkO13S_9KljLxGXdBo29AZZ7otCvBJyJKlx7KGABlJADNysFEX3Rn9UjMhka5QFtCbF_1lMFdcgzFNmK9Tm5JJBnNTRh632tX3mY8EZ4WCu-WW3m191PaVZvotUYIr3EEn-NP_MQr75DbDPR5IUcsOyA5oTXhGdt3P1XS5eJ7s7AY1US8j
  priority: 102
  providerName: Directory of Open Access Journals
Title A Deep-Learning-Based Health Indicator Constructor Using Kullback–Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures
URI https://www.ncbi.nlm.nih.gov/pubmed/35632097
https://www.proquest.com/docview/2670389707
https://www.proquest.com/docview/2671272200
https://pubmed.ncbi.nlm.nih.gov/PMC9146863
https://doaj.org/article/a5610b073a9440deb6490446c7eb9375
Volume 22
WOSCitedRecordID wos000804307400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48H4ElsogJLhETeM0Tk6oZbtiRbeqFpDKKfIrS7XdtPTBEfEfkPiB_BJmnDS0AnHiEkWNm9jt5Jtv7PE3AM-TRKlAd7ifmFTSbBXiYB5In1wz7-ShSozTmR2K0SiZTNJxtT16VaVVbjHRAXWp9kx52wjCbTPXNGPeDmNBynAiEK8Wn32qIUVrrVVBjQNokvBW0IDm-OR0_LEOwDjGY6W6EMdQv70KMd7hMWXT7fgkJ93_J0DveKj97Mkdd3R88_8O5BbcqGgp65V2dBuu2OIOXN8RK7wLP3rsyNqFXymynvt9dICGlfuY2ElBCz4YwDMqAepEafHcJSSwtxjmKqkvfn77PrRTNbNLdkTpIE4HlCFrZuMlrRdRBjZDQsrO7GVZuAJvYPPNjA2nuWXznO6NLHdt2Tv3hM3Sru7Bh-PB-9dv_Kqqg6-RDK59gyGS1ErnGFomnIsgVnkQRak0SIW4iRXCiupY3c0jE2kb5togpRWx7Ug61_w-NIp5YR8CQ--qeGRikWoVSUO_o0mRD0Y2VYp3Ew9ebv_XTFeS51R5Y5Zh6EMmkNUm4MGzuumi1Pn4W6M-GUfdgKS53Qfz5XlWvemZJEaqEDllijZorIqjlFbNtbAKuWDXgxdkWhkBCHZGy2ofBA6JpLiynkiQhZPSoAeHWwvKKmRZZb8NxoOn9WXEBFrokYWdb1ybTihCBEAPHpTGWveZd2MeBil-W-yZ8d6g9q8U009OdzylbXoxf_Tvbj2GayFtESGF2_AQGmgP9glc1V_W09WyBQdiItwxaUGzPxiNz1puHgSPp18HreqV_QVi8VDP
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4YCiwIBBerzq7jxwGhlFA1ahpF0ErlZPblEhHs4CQgbvwHJH4GP4pfwoztmEQgbj1ws-L1Zm1_O_ONd_YbgEdRpJSn28KNTCzpaxXawdSTLrlm0U65ikypMzsIh8Po-DgebcCP5V4YSqtc2sTSUJtc0zfybR6EpAUXeuHz6UeXqkbR6uqyhEYFi3375TOGbLNn_R6-38ec7748fLHn1lUFXI1kZO4apOhSK51iaBMJEXqBSj3fj6VBVyxMoBDWqm11J_WNry1PtUFKFQa2LelYC-z3DGz6CHavBZuj_sHoTRPiCYz4Kv0iIWJve8YxohIB5euteL2yOMCfLmDFB67nZ644vN1L_9ujugwXa2rNutVcuAIbNrsKF1YEF6_B9y7rWTt1a1XZE3cHnbhh1V4s1s9o0WqeF4zKmJbCunhcJlWwfQzVldTvf379NrBjNbEF61FKS6llypD5s1FBa16URc6QVLNX9kNVfAM7sOliwgbj1LI8pb6Rqc8te13-w6Kws-twdCoP5ga0sjyzt4AhQ1DCN0EYa-VLQ-_NxMhpfRsrJTqRA0-XyEl0LdtO1UMmCYZvBLKkAZkDD5um00qr5G-Ndgh-TQOSFy9_yIuTpLZWiSRWrdD6y9j3PWNV4Me08q9Dq5DPdhx4QuBNyAjiYLSs93LgLZGcWNINI4wkSC3Rga0lRpPaOs6S3wB14EFzGu0aLVbJzOaLsk2bhxyNuAM3q-nQjFl0AsG9GK8O1ybK2k2tn8nG70rt9Ji2Ggbi9r-HdR_O7R0eDJJBf7h_B85z2vJCir18C1qIDXsXzupP8_GsuFcbAAZvT3si_QKY9Z5y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tXYTgwP9PYAGDQHCJmtppnBwQaulWVK2qagFpbyH-yVKxJCXtgrjxDkg8DI_DkzCTpKEViNseuEWN49rOeOabeOYbgEdhqJSnO8INTZTQ1yrUg6mXuGSaRSflKjQlz-xETqfh4WE024Ef61wYCqtc68RSUZtc0zfyNg8kccFJT7bTOixiNhg-X3x0qYIUnbSuy2lUIjK2Xz6j-7Z8Nhrgu37M-XD_9YuXbl1hwNUITFauQbieaKVTdHNCIaQXqNTz_SgxaJaFCRSKuOpY3U1942vLU20QXsnAdhK61gL7PQO7UqDT04Ld_v50dtC4ewK9v4rLSIjIay85elcioNi9DQtYFgr40xxs2MPtWM0N4ze89D8v22W4WENu1qv2yBXYsdlVuLBBxHgNvvfYwNqFW7PNHrl9NO6GVTlabJTRYdYqLxiVNy0Jd_G6DLZgY5yuSvT7n1-_TexcHduCDSjUpeQ4ZegRsFlBZ2EUXc4QbLMD-6EqyoEdWFwsNpmnluUp9Y0IfmXZq_IfTgq7vA5vTmVhbkAryzN7CxgiByV8E8hIKz8x9A5NhFjXt5FSohs68HQtRbGu6dypqshxjG4dCVzcCJwDD5umi4rD5G-N-iSKTQOiHS9_yIujuNZicUJoW6FVSCLf94xVgR9RRICWViHO7TrwhAQ5JuWIg9FJneOBUyKasbgnQ_QwiEXRgb21vMa11lzGv4XVgQfNbdR3dIiVZDY_Kdt0uOSo3B24WW2NZsyiGwjuRfi03No0W5PavpPN35Wc6hGlIAbi9r-HdR_O4e6JJ6Pp-A6c55QJQ0S-fA9aKBr2LpzVn1bzZXGv1gUM3p72PvoFfSCnDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep-Learning-Based+Health+Indicator+Constructor+Using+Kullback-Leibler+Divergence+for+Predicting+the+Remaining+Useful+Life+of+Concrete+Structures&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nguyen%2C+Tuan-Khai&rft.au=Ahmad%2C+Zahoor&rft.au=Kim%2C+Jong-Myon&rft.date=2022-05-12&rft.eissn=1424-8220&rft.volume=22&rft.issue=10&rft_id=info:doi/10.3390%2Fs22103687&rft_id=info%3Apmid%2F35632097&rft.externalDocID=35632097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon