COMPUTER VISION SYSTEM FOR DETECTING ORCHARD TREES FROM UAV IMAGES
Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop insurance purposes. Determining tree damage could help assess orchards’ health faster and cheaper. Having accurate information on the tree’s status could also help ma...
Saved in:
| Published in: | International archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLIII-B4-2022; pp. 661 - 668 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article Conference Proceeding |
| Language: | English |
| Published: |
Gottingen
Copernicus GmbH
02.06.2022
Copernicus Publications |
| Subjects: | |
| ISSN: | 2194-9034, 1682-1750, 2194-9034 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop insurance purposes. Determining tree damage could help assess orchards’ health faster and cheaper. Having accurate information on the tree’s status could also help managers to plan necessary fieldwork and predict productivity. Traditional orchard inventory is often performed manually, and thus is time-consuming, costly, and subject to error. An alternative is computer vision algorithms that could automatically detect orchard trees based on UAV imagery. The objective of this study is to develop a method using advanced computer vision algorithms to automatically detect apple trees on UAV multispectral images. This task is challenging since apple trees are overlapping over the UAV images, and hence distinguishing different crowns could be difficult. Motivated by the latest advances in UAV imagery and deep-learning models, addressed the tree detection problem by exploring the two CNN models YOLO (You Only Look Once) and DeepForest for detecting apple trees on UAV images. We first constructed a labelled dataset by dividing the study area into equally sized patches. Then we manually annotated all apple trees seen in RGB images. The annotated dataset was then randomly divided into three subsets (training, validation, and testing), for training and testing machine learning models. The performed experiments demonstrate the efficiency and validity of the proposed approach for orchard tree inventory. In particular, the proposed framework achieved a precision of 91% and an F1-score of 87% by adopting the DeepForest model for tree detection. |
|---|---|
| AbstractList | Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop insurance purposes. Determining tree damage could help assess orchards’ health faster and cheaper. Having accurate information on the tree’s status could also help managers to plan necessary fieldwork and predict productivity. Traditional orchard inventory is often performed manually, and thus is time-consuming, costly, and subject to error. An alternative is computer vision algorithms that could automatically detect orchard trees based on UAV imagery. The objective of this study is to develop a method using advanced computer vision algorithms to automatically detect apple trees on UAV multispectral images. This task is challenging since apple trees are overlapping over the UAV images, and hence distinguishing different crowns could be difficult. Motivated by the latest advances in UAV imagery and deep-learning models, addressed the tree detection problem by exploring the two CNN models YOLO (You Only Look Once) and DeepForest for detecting apple trees on UAV images. We first constructed a labelled dataset by dividing the study area into equally sized patches. Then we manually annotated all apple trees seen in RGB images. The annotated dataset was then randomly divided into three subsets (training, validation, and testing), for training and testing machine learning models. The performed experiments demonstrate the efficiency and validity of the proposed approach for orchard tree inventory. In particular, the proposed framework achieved a precision of 91% and an F1-score of 87% by adopting the DeepForest model for tree detection. |
| Author | Bouguila, N. Jemaa, H. Bouachir, W. Leblon, B. |
| Author_xml | – sequence: 1 givenname: H. surname: Jemaa fullname: Jemaa, H. – sequence: 2 givenname: W. surname: Bouachir fullname: Bouachir, W. – sequence: 3 givenname: B. surname: Leblon fullname: Leblon, B. – sequence: 4 givenname: N. surname: Bouguila fullname: Bouguila, N. |
| BookMark | eNqVkdFq2zAUhsVoYV3bdzDsWpskS7J9mbhKKprUw3bKdiWOFXlzyOJUcgd7-7rONkrvdnV-Dj_fOfB9QGeH_uAQwpR8EjTjn7tw9AGDtz-6Xy7gryutNZ5zzAhjWEo6hXfogo1lnJGYn73K79F1CDtCCOVSCiIu0Dwv1l82tSqjB13p4j6qvlW1WkeLooxuVK3yWt8vo6LMb2flTVSXSlXRoizW0Wb2EOn1bKmqK3Tewj646z_zEm0Wqs5v8apY6ny2wlaQdMB2KxpIORPS2pRK4awAHkPCtxRo2hKb0MYSB0y6LbE0dYQnApo2HqtZnEF8ifSJu-1hZ46--wn-t-mhM9Oi998N-KGze2egdUAYaVJL7XhDpg2jIDiPRca5ZO3I-nhiHX3_-OTCYHb9kz-M7xsmExbzhEg6ttSpZX0fgnftv6uUmBcbZrJh_towkw0z5-ZFghltTGHk3L3h2G6AoesPg4du_5-0Z3iImKk |
| CitedBy_id | crossref_primary_10_3390_rs17183245 crossref_primary_10_3390_computers13120336 crossref_primary_10_3390_rs15030778 crossref_primary_10_3390_rs15143558 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.5194/isprs-archives-XLIII-B4-2022-661-2022 |
| DatabaseName | CrossRef Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts |
| EISSN | 2194-9034 |
| EndPage | 668 |
| ExternalDocumentID | oai_doaj_org_article_afea020b8c1c43a68b21a5443594462f 10_5194_isprs_archives_XLIII_B4_2022_661_2022 |
| GroupedDBID | 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AEUYN AFFHD AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TUS 7TN ABUWG AZQEC DWQXO F1W H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c508t-cd5ba84256cc8165ec5a43a74d1a18f0c71bc0ea26ed0c18e0475abf365e939a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855689800093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2194-9034 1682-1750 |
| IngestDate | Fri Oct 03 12:41:36 EDT 2025 Fri Jul 25 12:05:29 EDT 2025 Tue Nov 18 22:03:12 EST 2025 Sat Nov 29 04:07:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-cd5ba84256cc8165ec5a43a74d1a18f0c71bc0ea26ed0c18e0475abf365e939a3 |
| Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
| OpenAccessLink | https://doaj.org/article/afea020b8c1c43a68b21a5443594462f |
| PQID | 2672347061 |
| PQPubID | 2037674 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_afea020b8c1c43a68b21a5443594462f proquest_journals_2672347061 crossref_primary_10_5194_isprs_archives_XLIII_B4_2022_661_2022 crossref_citationtrail_10_5194_isprs_archives_XLIII_B4_2022_661_2022 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-02 |
| PublicationDateYYYYMMDD | 2022-06-02 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Gottingen |
| PublicationPlace_xml | – name: Gottingen |
| PublicationTitle | International archives of the photogrammetry, remote sensing and spatial information sciences. |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| SSID | ssj0001466505 |
| Score | 2.2979257 |
| Snippet | Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop insurance purposes.... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 661 |
| SubjectTerms | Algorithms Apples Color imagery Computer vision Computers Crop insurance Damage assessment Datasets Deep learning Detection Fieldwork Fruit trees Fruits Imagery Machine learning Orchards Testing Training Trees Unmanned aerial vehicles Vision systems |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZbO0b3sltHs7VDD3vValmybL90xInTGZYLiROyJyHL8giUJLXT_f4daU7CKAzG3oQtC6zv6NwkfQehTyU48VURVUSb0ic8MrCkGLSM4RXIiIlLVrpiE-FoFC2X8aRNuDXtscq9TnSKutxomyO_9kXoMx6C-fmyvSe2apTdXW1LaDxFp5apDOT8NElHk-kxy8IFuCD2HCMV4EqCrfSeI1A9n8Fx4derZls3RLUUr2T5LcsyknCQHIjQwHC5xh8Gy_H6P1LbzhYNXv7vX7xC58drfnhyMGCv0ROzfoNeLFbNg7rD3XrXvEVJbzyczMHlxYvMql08-z7L0yGG2BH30zzt5dnoFo_tve1pH-fTNJ3hwXQ8xPPuAmfD7m06O0fzQZr3vpK27ALR4K3tiC6DQtndOaF1REVgdKA4UyEvqaJR5emQFtozyhem9DSNjMfDQBUVg64xixV7h07Wm7W5QLiKPcvoZTxmIh6UXhGLIlZgLTVVTAu_g_r7uZW65SS3pTHuJMQmFiLpIJJ7iKSDSCZcWmQkQOQaHXRzGGb7m6TjXwdILLCHjy3ntnuwqX_IdglLVRkFznURaaphPkRU-FRZ-sAghpjarzroco-5bBVBI4-Av__76w_ozImdTfD4l-hkVz-YK_RM_9ytmvpjK9e_AKgp-hQ priority: 102 providerName: ProQuest |
| Title | COMPUTER VISION SYSTEM FOR DETECTING ORCHARD TREES FROM UAV IMAGES |
| URI | https://www.proquest.com/docview/2672347061 https://doaj.org/article/afea020b8c1c43a68b21a5443594462f |
| Volume | XLIII-B4-2022 |
| WOSCitedRecordID | wos000855689800093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: M7S dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: PCBAR dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBajG2M7jP2k2bqgw65eJVuW5csgTpzOMCcmdkJ6ErIsQ2BkJU779_dJdkrHDmOwmxC2bD49vfc9Wf4eQl8aIPFtLVpPm8b3mDCwpAJoGcNasBETN0Hjik1Ei4XYbuPiUakveyaslwfugbtUrVFAaWqhqWaB4qL2qbKibWEMmYzfWu9LovhRMuV2VxgH6mHPL1IOFBJiJHmOwOV8BcLCLnfdzaHz1CDt6m1_ZFnmJQwsBjIzCFiu8Vugcnr-f7hrF4Pmr9GrgTziSf_Sb9ATs3-LXm523W3f271DyXSZF2vgqHiTWT-Jy-uySnMMyR6epVU6rbLFFV7aH61XM1yt0rTE89Uyx-vJBmf55Cot36P1PK2m372hToKngV4dPd2EtbKf07jWgvLQ6FABVBFrqKKiJTqitSZG-dw0RFNhCItCVbcBXBoHsQo-oLP9r705R7iNiZXgMiQwgoUNqWNexwrCm6Yq0NwfodkJFKkHEXFby-KnhGTCYisdtvKErXTYyoRJC6kEbF1jhL49DHPTq2r86wCJnZGHm61ItusA05GD6ci_mc4IXZzmUw4rt5M-j_yARUBzPv6PZ3xCL5xV2X0b_wKdHQ-35jN6pu-Ou-4wRk-TdFGsxs54x_bcaQl9RZYX1_cSt-w6 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKWK5sBURKDAHOJp6GW8HQFmc1mqcWIkTpafpeDxGkaok2CmIP8Vv5I1rJ0JISBx64Dby8iTPfH7f92Z5D-BdhiI-T71cEzIzNepJ_KUsbElJc8SI9DMrq4pNuKORt1j48QH8bM7CqG2VjU-sHHW2FmqO_MR0XNOiLtLP581XTVWNUqurTQmNG1icyx_fMWQrP4Z9HN_3pjkIkt6ZVlcV0ASKka0mMjvlavHJEcIzHFsKm1OLuzQzuOHlunCNVOiSm47MdGF4UqeuzdPcwkd9y-cW2r0DhxQt6C04jMMovtjP6lAHJY_aN2k4KF2Rm_V7gK7uAwolerIsN0Wp8TqlrLYYhmGodSkiFSNCJMqq8RtBVnUE_qCJivsGj_63XnsMR_tjjCTeEfQTOJCrp_Bwviyv-RXpFNvyGXR74yieoaQn81DRCpleTJMgIhgbk36QBL0kHJ2SsTqXPumTZBIEUzKYjCMy68xJGHVOg-kRzG7lU55Da7VeyRdAcl9XGcukbkmP2pme-k7qc1QDwuCWcMw29JuxZKLOua5Kf1wxjL0UJFgFCdZAglWQYF3KFBIYQqJqtOHTzszmJgnJvxroKiDtXlY5xasL6-ILq10U47nkGDyknjAE9ofjpabBVXpE26fUMfM2HDcYY7WjK9keYC__fvst3D9LoiEbhqPzV_CggryazDKPobUtruVruCu-bZdl8ab-pwhc3jYgfwHxMFhl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=COMPUTER+VISION+SYSTEM+FOR+DETECTING+ORCHARD+TREES+FROM+UAV+IMAGES&rft.au=Jemaa%2C+H&rft.au=Bouachir%2C+W&rft.au=Leblon%2C+B&rft.au=Bouguila%2C+N&rft.date=2022-06-02&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLIII-B4-2022&rft.spage=661&rft.epage=668&rft_id=info:doi/10.5194%2Fisprs-archives-XLIII-B4-2022-661-2022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon |