COMPUTER VISION SYSTEM FOR DETECTING ORCHARD TREES FROM UAV IMAGES

Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop insurance purposes. Determining tree damage could help assess orchards’ health faster and cheaper. Having accurate information on the tree’s status could also help ma...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLIII-B4-2022; pp. 661 - 668
Main Authors: Jemaa, H., Bouachir, W., Leblon, B., Bouguila, N.
Format: Journal Article Conference Proceeding
Language:English
Published: Gottingen Copernicus GmbH 02.06.2022
Copernicus Publications
Subjects:
ISSN:2194-9034, 1682-1750, 2194-9034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop insurance purposes. Determining tree damage could help assess orchards’ health faster and cheaper. Having accurate information on the tree’s status could also help managers to plan necessary fieldwork and predict productivity. Traditional orchard inventory is often performed manually, and thus is time-consuming, costly, and subject to error. An alternative is computer vision algorithms that could automatically detect orchard trees based on UAV imagery. The objective of this study is to develop a method using advanced computer vision algorithms to automatically detect apple trees on UAV multispectral images. This task is challenging since apple trees are overlapping over the UAV images, and hence distinguishing different crowns could be difficult. Motivated by the latest advances in UAV imagery and deep-learning models, addressed the tree detection problem by exploring the two CNN models YOLO (You Only Look Once) and DeepForest for detecting apple trees on UAV images. We first constructed a labelled dataset by dividing the study area into equally sized patches. Then we manually annotated all apple trees seen in RGB images. The annotated dataset was then randomly divided into three subsets (training, validation, and testing), for training and testing machine learning models. The performed experiments demonstrate the efficiency and validity of the proposed approach for orchard tree inventory. In particular, the proposed framework achieved a precision of 91% and an F1-score of 87% by adopting the DeepForest model for tree detection.
AbstractList Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop insurance purposes. Determining tree damage could help assess orchards’ health faster and cheaper. Having accurate information on the tree’s status could also help managers to plan necessary fieldwork and predict productivity. Traditional orchard inventory is often performed manually, and thus is time-consuming, costly, and subject to error. An alternative is computer vision algorithms that could automatically detect orchard trees based on UAV imagery. The objective of this study is to develop a method using advanced computer vision algorithms to automatically detect apple trees on UAV multispectral images. This task is challenging since apple trees are overlapping over the UAV images, and hence distinguishing different crowns could be difficult. Motivated by the latest advances in UAV imagery and deep-learning models, addressed the tree detection problem by exploring the two CNN models YOLO (You Only Look Once) and DeepForest for detecting apple trees on UAV images. We first constructed a labelled dataset by dividing the study area into equally sized patches. Then we manually annotated all apple trees seen in RGB images. The annotated dataset was then randomly divided into three subsets (training, validation, and testing), for training and testing machine learning models. The performed experiments demonstrate the efficiency and validity of the proposed approach for orchard tree inventory. In particular, the proposed framework achieved a precision of 91% and an F1-score of 87% by adopting the DeepForest model for tree detection.
Author Bouguila, N.
Jemaa, H.
Bouachir, W.
Leblon, B.
Author_xml – sequence: 1
  givenname: H.
  surname: Jemaa
  fullname: Jemaa, H.
– sequence: 2
  givenname: W.
  surname: Bouachir
  fullname: Bouachir, W.
– sequence: 3
  givenname: B.
  surname: Leblon
  fullname: Leblon, B.
– sequence: 4
  givenname: N.
  surname: Bouguila
  fullname: Bouguila, N.
BookMark eNqVkdFq2zAUhsVoYV3bdzDsWpskS7J9mbhKKprUw3bKdiWOFXlzyOJUcgd7-7rONkrvdnV-Dj_fOfB9QGeH_uAQwpR8EjTjn7tw9AGDtz-6Xy7gryutNZ5zzAhjWEo6hXfogo1lnJGYn73K79F1CDtCCOVSCiIu0Dwv1l82tSqjB13p4j6qvlW1WkeLooxuVK3yWt8vo6LMb2flTVSXSlXRoizW0Wb2EOn1bKmqK3Tewj646z_zEm0Wqs5v8apY6ny2wlaQdMB2KxpIORPS2pRK4awAHkPCtxRo2hKb0MYSB0y6LbE0dYQnApo2HqtZnEF8ifSJu-1hZ46--wn-t-mhM9Oi998N-KGze2egdUAYaVJL7XhDpg2jIDiPRca5ZO3I-nhiHX3_-OTCYHb9kz-M7xsmExbzhEg6ttSpZX0fgnftv6uUmBcbZrJh_towkw0z5-ZFghltTGHk3L3h2G6AoesPg4du_5-0Z3iImKk
CitedBy_id crossref_primary_10_3390_rs17183245
crossref_primary_10_3390_computers13120336
crossref_primary_10_3390_rs15030778
crossref_primary_10_3390_rs15143558
ContentType Journal Article
Conference Proceeding
Copyright 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/isprs-archives-XLIII-B4-2022-661-2022
DatabaseName CrossRef
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9034
EndPage 668
ExternalDocumentID oai_doaj_org_article_afea020b8c1c43a68b21a5443594462f
10_5194_isprs_archives_XLIII_B4_2022_661_2022
GroupedDBID 8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TUS
7TN
ABUWG
AZQEC
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c508t-cd5ba84256cc8165ec5a43a74d1a18f0c71bc0ea26ed0c18e0475abf365e939a3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855689800093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2194-9034
1682-1750
IngestDate Fri Oct 03 12:41:36 EDT 2025
Fri Jul 25 12:05:29 EDT 2025
Tue Nov 18 22:03:12 EST 2025
Sat Nov 29 04:07:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-cd5ba84256cc8165ec5a43a74d1a18f0c71bc0ea26ed0c18e0475abf365e939a3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
OpenAccessLink https://doaj.org/article/afea020b8c1c43a68b21a5443594462f
PQID 2672347061
PQPubID 2037674
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_afea020b8c1c43a68b21a5443594462f
proquest_journals_2672347061
crossref_primary_10_5194_isprs_archives_XLIII_B4_2022_661_2022
crossref_citationtrail_10_5194_isprs_archives_XLIII_B4_2022_661_2022
PublicationCentury 2000
PublicationDate 2022-06-02
PublicationDateYYYYMMDD 2022-06-02
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-02
  day: 02
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle International archives of the photogrammetry, remote sensing and spatial information sciences.
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0001466505
Score 2.2979257
Snippet Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop insurance purposes....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 661
SubjectTerms Algorithms
Apples
Color imagery
Computer vision
Computers
Crop insurance
Damage assessment
Datasets
Deep learning
Detection
Fieldwork
Fruit trees
Fruits
Imagery
Machine learning
Orchards
Testing
Training
Trees
Unmanned aerial vehicles
Vision systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZbO0b3sltHs7VDD3vValmybL90xInTGZYLiROyJyHL8giUJLXT_f4daU7CKAzG3oQtC6zv6NwkfQehTyU48VURVUSb0ic8MrCkGLSM4RXIiIlLVrpiE-FoFC2X8aRNuDXtscq9TnSKutxomyO_9kXoMx6C-fmyvSe2apTdXW1LaDxFp5apDOT8NElHk-kxy8IFuCD2HCMV4EqCrfSeI1A9n8Fx4derZls3RLUUr2T5LcsyknCQHIjQwHC5xh8Gy_H6P1LbzhYNXv7vX7xC58drfnhyMGCv0ROzfoNeLFbNg7rD3XrXvEVJbzyczMHlxYvMql08-z7L0yGG2BH30zzt5dnoFo_tve1pH-fTNJ3hwXQ8xPPuAmfD7m06O0fzQZr3vpK27ALR4K3tiC6DQtndOaF1REVgdKA4UyEvqaJR5emQFtozyhem9DSNjMfDQBUVg64xixV7h07Wm7W5QLiKPcvoZTxmIh6UXhGLIlZgLTVVTAu_g_r7uZW65SS3pTHuJMQmFiLpIJJ7iKSDSCZcWmQkQOQaHXRzGGb7m6TjXwdILLCHjy3ntnuwqX_IdglLVRkFznURaaphPkRU-FRZ-sAghpjarzroco-5bBVBI4-Av__76w_ozImdTfD4l-hkVz-YK_RM_9ytmvpjK9e_AKgp-hQ
  priority: 102
  providerName: ProQuest
Title COMPUTER VISION SYSTEM FOR DETECTING ORCHARD TREES FROM UAV IMAGES
URI https://www.proquest.com/docview/2672347061
https://doaj.org/article/afea020b8c1c43a68b21a5443594462f
Volume XLIII-B4-2022
WOSCitedRecordID wos000855689800093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: M7S
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: PCBAR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBajG2M7jP2k2bqgw65eJVuW5csgTpzOMCcmdkJ6ErIsQ2BkJU779_dJdkrHDmOwmxC2bD49vfc9Wf4eQl8aIPFtLVpPm8b3mDCwpAJoGcNasBETN0Hjik1Ei4XYbuPiUakveyaslwfugbtUrVFAaWqhqWaB4qL2qbKibWEMmYzfWu9LovhRMuV2VxgH6mHPL1IOFBJiJHmOwOV8BcLCLnfdzaHz1CDt6m1_ZFnmJQwsBjIzCFiu8Vugcnr-f7hrF4Pmr9GrgTziSf_Sb9ATs3-LXm523W3f271DyXSZF2vgqHiTWT-Jy-uySnMMyR6epVU6rbLFFV7aH61XM1yt0rTE89Uyx-vJBmf55Cot36P1PK2m372hToKngV4dPd2EtbKf07jWgvLQ6FABVBFrqKKiJTqitSZG-dw0RFNhCItCVbcBXBoHsQo-oLP9r705R7iNiZXgMiQwgoUNqWNexwrCm6Yq0NwfodkJFKkHEXFby-KnhGTCYisdtvKErXTYyoRJC6kEbF1jhL49DHPTq2r86wCJnZGHm61ItusA05GD6ci_mc4IXZzmUw4rt5M-j_yARUBzPv6PZ3xCL5xV2X0b_wKdHQ-35jN6pu-Ou-4wRk-TdFGsxs54x_bcaQl9RZYX1_cSt-w6
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKWK5sBURKDAHOJp6GW8HQFmc1mqcWIkTpafpeDxGkaok2CmIP8Vv5I1rJ0JISBx64Dby8iTPfH7f92Z5D-BdhiI-T71cEzIzNepJ_KUsbElJc8SI9DMrq4pNuKORt1j48QH8bM7CqG2VjU-sHHW2FmqO_MR0XNOiLtLP581XTVWNUqurTQmNG1icyx_fMWQrP4Z9HN_3pjkIkt6ZVlcV0ASKka0mMjvlavHJEcIzHFsKm1OLuzQzuOHlunCNVOiSm47MdGF4UqeuzdPcwkd9y-cW2r0DhxQt6C04jMMovtjP6lAHJY_aN2k4KF2Rm_V7gK7uAwolerIsN0Wp8TqlrLYYhmGodSkiFSNCJMqq8RtBVnUE_qCJivsGj_63XnsMR_tjjCTeEfQTOJCrp_Bwviyv-RXpFNvyGXR74yieoaQn81DRCpleTJMgIhgbk36QBL0kHJ2SsTqXPumTZBIEUzKYjCMy68xJGHVOg-kRzG7lU55Da7VeyRdAcl9XGcukbkmP2pme-k7qc1QDwuCWcMw29JuxZKLOua5Kf1wxjL0UJFgFCdZAglWQYF3KFBIYQqJqtOHTzszmJgnJvxroKiDtXlY5xasL6-ILq10U47nkGDyknjAE9ofjpabBVXpE26fUMfM2HDcYY7WjK9keYC__fvst3D9LoiEbhqPzV_CggryazDKPobUtruVruCu-bZdl8ab-pwhc3jYgfwHxMFhl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=COMPUTER+VISION+SYSTEM+FOR+DETECTING+ORCHARD+TREES+FROM+UAV+IMAGES&rft.au=Jemaa%2C+H&rft.au=Bouachir%2C+W&rft.au=Leblon%2C+B&rft.au=Bouguila%2C+N&rft.date=2022-06-02&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLIII-B4-2022&rft.spage=661&rft.epage=668&rft_id=info:doi/10.5194%2Fisprs-archives-XLIII-B4-2022-661-2022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon