A Metacommunity Approach to Improve Biological Assessments in Highly Dynamic Freshwater Ecosystems

Abstract Rapid shifts in biotic communities due to environmental variability challenge the detection of anthropogenic impacts by current biomonitoring programs. Metacommunity ecology has the potential to inform such programs, because it combines dispersal processes with niche-based approaches and re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioscience Ročník 70; číslo 5; s. 427 - 438
Hlavní autoři: Cid, Núria, Bonada, Núria, Heino, Jani, Cañedo-Argüelles, Miguel, Crabot, Julie, Sarremejane, Romain, Soininen, Janne, Stubbington, Rachel, Datry, Thibault
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 01.05.2020
Témata:
ISSN:0006-3568, 1525-3244
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Abstract Rapid shifts in biotic communities due to environmental variability challenge the detection of anthropogenic impacts by current biomonitoring programs. Metacommunity ecology has the potential to inform such programs, because it combines dispersal processes with niche-based approaches and recognizes variability in community composition. Using intermittent rivers—prevalent and highly dynamic ecosystems that sometimes dry—we develop a conceptual model to illustrate how dispersal limitation and flow intermittence influence the performance of biological indices. We produce a methodological framework integrating physical- and organismal-based dispersal measurements into predictive modeling, to inform development of dynamic ecological quality assessments. Such metacommunity-based approaches could be extended to other ecosystems and are required to underpin our capacity to monitor and protect ecosystems threatened under future environmental changes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3568
1525-3244
DOI:10.1093/biosci/biaa033