QoS-Aware Joint Task Scheduling and Resource Allocation in Vehicular Edge Computing

Vehicular edge computing (VEC) has emerged in the Internet of Vehicles (IoV) as a new paradigm that offloads computation tasks to Road Side Units (RSU), aiming to thereby reduce the processing delay and resource consumption of vehicles. Ideal computation offloading policies for VEC are expected to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 23; S. 9340
Hauptverfasser: Cao, Chenhong, Su, Meijia, Duan, Shengyu, Dai, Miaoling, Li, Jiangtao, Li, Yufeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 30.11.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Vehicular edge computing (VEC) has emerged in the Internet of Vehicles (IoV) as a new paradigm that offloads computation tasks to Road Side Units (RSU), aiming to thereby reduce the processing delay and resource consumption of vehicles. Ideal computation offloading policies for VEC are expected to achieve both low latency and low energy consumption. Although existing works have made great contributions, they rarely consider the coordination of multiple RSUs and the individual Quality of Service (QoS) requirements of different applications, resulting in suboptimal offloading policies. In this paper we present FEVEC, a Fast and Energy-efficient VEC framework, with the objective of realizing an optimal offloading strategy that minimizes both delay and energy consumption. FEVEC coordinates multiple RSUs and considers the application-specific QoS requirements. We formalize the computation offloading problem as a multi-objective optimization problem by jointly optimizing offloading decisions and resource allocation, which is a mixed-integer nonlinear programming (MINLP) problem and NP-hard. We propose MOV, a Multi-Objective computing offloading method for VEC. First, vehicle prejudgment is proposed to meet the requirements of different applications by considering the maximum tolerance delay related to the current vehicle speed. Second, an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is adopted to obtain the Pareto-optimal solutions with low complexity. Finally, the optimal offloading strategy is selected for QoS maximization. Extensive evaluation results based on real and simulated vehicle trajectories verify that the average QoS value of MOV is improved by 20% compared with the state-of-the-art VEC mechanism.
AbstractList Vehicular edge computing (VEC) has emerged in the Internet of Vehicles (IoV) as a new paradigm that offloads computation tasks to Road Side Units (RSU), aiming to thereby reduce the processing delay and resource consumption of vehicles. Ideal computation offloading policies for VEC are expected to achieve both low latency and low energy consumption. Although existing works have made great contributions, they rarely consider the coordination of multiple RSUs and the individual Quality of Service (QoS) requirements of different applications, resulting in suboptimal offloading policies. In this paper we present FEVEC, a Fast and Energy-efficient VEC framework, with the objective of realizing an optimal offloading strategy that minimizes both delay and energy consumption. FEVEC coordinates multiple RSUs and considers the application-specific QoS requirements. We formalize the computation offloading problem as a multi-objective optimization problem by jointly optimizing offloading decisions and resource allocation, which is a mixed-integer nonlinear programming (MINLP) problem and NP-hard. We propose MOV, a Multi-Objective computing offloading method for VEC. First, vehicle prejudgment is proposed to meet the requirements of different applications by considering the maximum tolerance delay related to the current vehicle speed. Second, an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is adopted to obtain the Pareto-optimal solutions with low complexity. Finally, the optimal offloading strategy is selected for QoS maximization. Extensive evaluation results based on real and simulated vehicle trajectories verify that the average QoS value of MOV is improved by 20% compared with the state-of-the-art VEC mechanism.Vehicular edge computing (VEC) has emerged in the Internet of Vehicles (IoV) as a new paradigm that offloads computation tasks to Road Side Units (RSU), aiming to thereby reduce the processing delay and resource consumption of vehicles. Ideal computation offloading policies for VEC are expected to achieve both low latency and low energy consumption. Although existing works have made great contributions, they rarely consider the coordination of multiple RSUs and the individual Quality of Service (QoS) requirements of different applications, resulting in suboptimal offloading policies. In this paper we present FEVEC, a Fast and Energy-efficient VEC framework, with the objective of realizing an optimal offloading strategy that minimizes both delay and energy consumption. FEVEC coordinates multiple RSUs and considers the application-specific QoS requirements. We formalize the computation offloading problem as a multi-objective optimization problem by jointly optimizing offloading decisions and resource allocation, which is a mixed-integer nonlinear programming (MINLP) problem and NP-hard. We propose MOV, a Multi-Objective computing offloading method for VEC. First, vehicle prejudgment is proposed to meet the requirements of different applications by considering the maximum tolerance delay related to the current vehicle speed. Second, an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is adopted to obtain the Pareto-optimal solutions with low complexity. Finally, the optimal offloading strategy is selected for QoS maximization. Extensive evaluation results based on real and simulated vehicle trajectories verify that the average QoS value of MOV is improved by 20% compared with the state-of-the-art VEC mechanism.
Vehicular edge computing (VEC) has emerged in the Internet of Vehicles (IoV) as a new paradigm that offloads computation tasks to Road Side Units (RSU), aiming to thereby reduce the processing delay and resource consumption of vehicles. Ideal computation offloading policies for VEC are expected to achieve both low latency and low energy consumption. Although existing works have made great contributions, they rarely consider the coordination of multiple RSUs and the individual Quality of Service (QoS) requirements of different applications, resulting in suboptimal offloading policies. In this paper we present FEVEC, a Fast and Energy-efficient VEC framework, with the objective of realizing an optimal offloading strategy that minimizes both delay and energy consumption. FEVEC coordinates multiple RSUs and considers the application-specific QoS requirements. We formalize the computation offloading problem as a multi-objective optimization problem by jointly optimizing offloading decisions and resource allocation, which is a mixed-integer nonlinear programming (MINLP) problem and NP-hard. We propose MOV, a Multi-Objective computing offloading method for VEC. First, vehicle prejudgment is proposed to meet the requirements of different applications by considering the maximum tolerance delay related to the current vehicle speed. Second, an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is adopted to obtain the Pareto-optimal solutions with low complexity. Finally, the optimal offloading strategy is selected for QoS maximization. Extensive evaluation results based on real and simulated vehicle trajectories verify that the average QoS value of MOV is improved by 20% compared with the state-of-the-art VEC mechanism.
Audience Academic
Author Su, Meijia
Li, Jiangtao
Cao, Chenhong
Dai, Miaoling
Duan, Shengyu
Li, Yufeng
AuthorAffiliation 1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
2 Purple Mountain Laboratories, Nanjing 211111, China
AuthorAffiliation_xml – name: 1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– name: 2 Purple Mountain Laboratories, Nanjing 211111, China
Author_xml – sequence: 1
  givenname: Chenhong
  surname: Cao
  fullname: Cao, Chenhong
– sequence: 2
  givenname: Meijia
  surname: Su
  fullname: Su, Meijia
– sequence: 3
  givenname: Shengyu
  surname: Duan
  fullname: Duan, Shengyu
– sequence: 4
  givenname: Miaoling
  surname: Dai
  fullname: Dai, Miaoling
– sequence: 5
  givenname: Jiangtao
  orcidid: 0000-0002-9754-0008
  surname: Li
  fullname: Li, Jiangtao
– sequence: 6
  givenname: Yufeng
  surname: Li
  fullname: Li, Yufeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36502043$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhi1URNuFA38AReICh7TO2M7HBWm1KlBUCcEWrpbjTHa9ZO2tnYD490y7bdUW-WDLfucZzztzzA588MjY64KfCNHw0wQAohGSP2NHhQSZ1wD84MH5kB2ntOEchBD1C3YoSsWBS3HElt_CMp__MRGzL8H5Mbs06Ve2tGvspsH5VWZ8l33HFKZoMZsPQ7BmdMFnzmc_ce3sNJiYnXUrzBZhu5tGinnJnvdmSPjqdp-xHx_PLhef84uvn84X84vcKl6Pua1UCbaRVV_KvuRgWgSjpOyFagXaxqq2tQAtdE2rTCEF6UuF2FDNRQtGzNj5ntsFs9G76LYm_tXBOH1zEeJKmzg6O6AueK0Mh9pSLsmVrMta1dYUKDvVV21JrA971m5qt9hZ9GM0wyPo4xfv1noVfuumEiUUQIB3t4AYriZMo966ZHEYjMcwJQ2VEqIAKAqSvn0i3ZC9nqwilayVaq47NWMne9XKUAHO94HyWlodbp2lAegd3c8rWSohyRIKePOwhPu_3zWbBKd7gY0hpYi9tm686SaR3UAm6etx0vfjRBHvn0TcQf_X_gPXxsbs
CitedBy_id crossref_primary_10_3390_s23052565
crossref_primary_10_1016_j_rineng_2025_105676
crossref_primary_10_1007_s11277_025_11769_5
crossref_primary_10_3390_electronics13122307
crossref_primary_10_1007_s11082_023_05201_0
crossref_primary_10_1109_OJITS_2025_3584024
Cites_doi 10.1109/TSC.2021.3064579
10.1016/j.comcom.2022.04.006
10.1109/ICPADS56603.2022.00090
10.1109/ICCC49849.2020.9238970
10.3390/s21082628
10.1109/TVT.2017.2714704
10.1016/j.phycom.2022.101867
10.1016/j.comcom.2019.11.019
10.1109/TITS.2020.2997832
10.1109/TVT.2019.2917890
10.1109/TITS.2016.2529000
10.1109/MVT.2017.2668838
10.1109/JIOT.2021.3116108
10.1007/s11036-020-01624-1
10.1109/JIOT.2018.2876298
10.1109/4235.996017
10.1109/MVT.2018.2882873
10.1109/OJITS.2022.3142065
10.1109/TVT.2022.3174530
10.1007/s11227-019-03011-4
10.1109/INFOCOM42981.2021.9488886
10.1109/TVT.2020.2999617
10.1109/MNET.2019.1900120
10.1109/TNSE.2021.3106955
10.1109/TVT.2019.2935450
10.1109/TVT.2019.2905432
10.1080/01621459.1970.10481112
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22239340
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1085a028cf64405486858ca1e4d5f7b6
PMC9736212
A746534339
36502043
10_3390_s22239340
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Sailing Program
  grantid: 20YF1413700; 21YF1413800
– fundername: National Natural Science Foundation of China
  grantid: U21B2019
– fundername: Henan Science and Technology Major
  grantid: 221100240100
– fundername: Shanghai Science and Technology Innovation Action Plan
  grantid: 21511102502; 21511102500
– fundername: National Science Foundation of China
  grantid: 62002213
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-c7562c947f64f602abe2a544f35b3ec9c5bbc22b2d9b5a14375665ee93391b2a3
IEDL.DBID 7X7
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896464300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:36 EDT 2025
Tue Nov 04 02:06:53 EST 2025
Sun Nov 09 12:20:48 EST 2025
Tue Oct 07 07:08:20 EDT 2025
Tue Nov 04 18:17:26 EST 2025
Wed Feb 19 02:26:21 EST 2025
Tue Nov 18 21:39:48 EST 2025
Sat Nov 29 07:12:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords resource allocation
multi-objective optimization
computation offloading
vehicular edge computing
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-c7562c947f64f602abe2a544f35b3ec9c5bbc22b2d9b5a14375665ee93391b2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9754-0008
OpenAccessLink https://www.proquest.com/docview/2748559002?pq-origsite=%requestingapplication%
PMID 36502043
PQID 2748559002
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1085a028cf64405486858ca1e4d5f7b6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9736212
proquest_miscellaneous_2753312211
proquest_journals_2748559002
gale_infotracacademiconefile_A746534339
pubmed_primary_36502043
crossref_citationtrail_10_3390_s22239340
crossref_primary_10_3390_s22239340
PublicationCentury 2000
PublicationDate 20221130
PublicationDateYYYYMMDD 2022-11-30
PublicationDate_xml – month: 11
  year: 2022
  text: 20221130
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Huang (ref_17) 2021; 9
Pang (ref_30) 2021; 8
Liu (ref_6) 2019; 68
Zhou (ref_14) 2019; 68
Zhao (ref_12) 2016; 17
White (ref_18) 1970; 65
ref_19
Zhao (ref_5) 2019; 68
Karimi (ref_28) 2022; 189
Liu (ref_2) 2021; 26
Wan (ref_8) 2020; 76
Deb (ref_15) 2002; 6
Lin (ref_25) 2022; 3
Dai (ref_10) 2018; 6
Zhang (ref_29) 2022; 71
Zhang (ref_1) 2017; 12
ref_24
ref_23
ref_22
Yaqoob (ref_4) 2020; 34
ref_20
Wu (ref_21) 2022; 55
Feng (ref_16) 2017; 66
Ning (ref_26) 2020; 22
ref_27
ref_9
Luo (ref_3) 2021; 15
Wu (ref_11) 2020; 150
Ning (ref_13) 2018; 14
Yuan (ref_31) 2020; 69
ref_7
References_xml – volume: 15
  start-page: 2897
  year: 2021
  ident: ref_3
  article-title: Minimizing the Delay and Cost of Computation Offloading for Vehicular Edge Computing
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2021.3064579
– volume: 189
  start-page: 193
  year: 2022
  ident: ref_28
  article-title: Task offloading in vehicular edge computing networks via deep reinforcement learning
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.04.006
– ident: ref_23
  doi: 10.1109/ICPADS56603.2022.00090
– ident: ref_24
  doi: 10.1109/ICCC49849.2020.9238970
– ident: ref_9
  doi: 10.3390/s21082628
– volume: 66
  start-page: 10660
  year: 2017
  ident: ref_16
  article-title: AVE: Autonomous vehicular edge computing framework with ACO-based scheduling
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2714704
– volume: 55
  start-page: 101867
  year: 2022
  ident: ref_21
  article-title: Task offloading for vehicular edge computing with imperfect CSI: A deep reinforcement approach
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2022.101867
– volume: 150
  start-page: 245
  year: 2020
  ident: ref_11
  article-title: Efficient task scheduling for servers with dynamic states in vehicular edge computing
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.11.019
– volume: 22
  start-page: 2212
  year: 2020
  ident: ref_26
  article-title: Intelligent edge computing in internet of vehicles: A joint computation offloading and caching solution
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2997832
– volume: 68
  start-page: 7944
  year: 2019
  ident: ref_5
  article-title: Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2917890
– volume: 17
  start-page: 2854
  year: 2016
  ident: ref_12
  article-title: High-Precision Vehicle Navigation in Urban Environments using a MEM’s IMU and Single-frequency GPS Receiver
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2529000
– volume: 12
  start-page: 36
  year: 2017
  ident: ref_1
  article-title: Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2017.2668838
– volume: 9
  start-page: 8852
  year: 2021
  ident: ref_17
  article-title: Revenue and energy efficiency-driven delay constrained computing task offloading and resource allocation in a vehicular edge computing network: A deep reinforcement learning approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3116108
– ident: ref_27
– volume: 26
  start-page: 1145
  year: 2021
  ident: ref_2
  article-title: Vehicular edge computing and networking: A survey
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-020-01624-1
– volume: 6
  start-page: 4377
  year: 2018
  ident: ref_10
  article-title: Joint Load Balancing and Offloading in Vehicular Edge Computing and Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2876298
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_15
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 14
  start-page: 54
  year: 2018
  ident: ref_13
  article-title: Mobile edge computing-enabled 5G vehicular networks: Toward the integration of communication and computing
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2018.2882873
– volume: 3
  start-page: 7
  year: 2022
  ident: ref_25
  article-title: Multi-Access Edge Computing-Based Vehicle-Vehicle-RSU Data Offloading Over the Multi-RSU-Overlapped Environment
  publication-title: IEEE Open J. Intell. Transp. Syst.
  doi: 10.1109/OJITS.2022.3142065
– volume: 71
  start-page: 8877
  year: 2022
  ident: ref_29
  article-title: Joint Resource Allocation and Multi-Part Collaborative Task Offloading in MEC Systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3174530
– volume: 76
  start-page: 2518
  year: 2020
  ident: ref_8
  article-title: Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networks
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-03011-4
– ident: ref_7
  doi: 10.1109/INFOCOM42981.2021.9488886
– volume: 69
  start-page: 9041
  year: 2020
  ident: ref_31
  article-title: A Joint Service Migration and Mobility Optimization Approach for Vehicular Edge Computing
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2999617
– volume: 34
  start-page: 174
  year: 2020
  ident: ref_4
  article-title: Autonomous Driving Cars in Smart Cities: Recent Advances, Requirements, and Challenges
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2019.1900120
– ident: ref_19
– ident: ref_22
– ident: ref_20
– volume: 8
  start-page: 3179
  year: 2021
  ident: ref_30
  article-title: A Smart Network Resource Management System for High Mobility Edge Computing in 5G Internet of Vehicles
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2021.3106955
– volume: 68
  start-page: 11158
  year: 2019
  ident: ref_6
  article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2935450
– volume: 68
  start-page: 5087
  year: 2019
  ident: ref_14
  article-title: Energy-Efficient Edge Computing Service Provisioning for Vehicular Networks: A Consensus ADMM Approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2905432
– volume: 65
  start-page: 635
  year: 1970
  ident: ref_18
  article-title: Tables of normal percentile points
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1970.10481112
SSID ssj0023338
Score 2.4205756
Snippet Vehicular edge computing (VEC) has emerged in the Internet of Vehicles (IoV) as a new paradigm that offloads computation tasks to Road Side Units (RSU), aiming...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9340
SubjectTerms Algorithms
Awareness
Cell Movement
Collaboration
Communication
computation offloading
Cooperation
Energy consumption
Internet
Motivation
multi-objective optimization
Optimization
Policy
Resource Allocation
Vehicles
vehicular edge computing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_k8EEfxG-rp0QR9KVcN02a5nGVO0TkUPaUewv5mL0rHl3Z3dN_35m2W7oo-OJrM6XpbyadmXTyG4DXvvaVTVHnJkmVq2SK3CZl86hLGzF4Y3pNfzKnp_X5uf08afXFNWE9PXAP3BFXx3tygnFJnpvii5oJ06OfoUp6aUJHtl0Yu0umhlSrpMyr5xEqKak_2rAXtCXvcEy8T0fS_-eneOKL9uskJ47n5C7cGSJGMe9neg9uYHsfbk94BB_A4stqkc9_-TWKj6um3Yozv_kuFqSPxIXmF8K3Sew26sX8ih0YK0Q0rfiGl01XiyqO0wWKvssD3fMQvp4cn73_kA_dEgjXot7m0VAoE60yBNSyKqQPKL1WalnqUGK0UYcQpQwy2aA9hUkkX2lESwjNgvTlIzhoVy0-AeG1x6JCrVEGVaUqRJ9igSEEj6lAm8HbHYouDlTi3NHiylFKwYC7EfAMXo2iP3r-jL8JvWNVjAJMed1dIENwgyG4fxlCBm9YkY4XJk0m-uF8Ab0SU1y5uWEqOUVPzuBwp2s3rNiNo-y81txCVWbwchymtcY_UHyLq2uWoeB4JilnzuBxbxrjnEsKdfmccQZmz2j2Xmp_pG0uOz5vayiKmMmn_wOFZ3BL8gGNjpzyEA6262t8Djfjz22zWb_oFslvDV0Wdg
  priority: 102
  providerName: Directory of Open Access Journals
Title QoS-Aware Joint Task Scheduling and Resource Allocation in Vehicular Edge Computing
URI https://www.ncbi.nlm.nih.gov/pubmed/36502043
https://www.proquest.com/docview/2748559002
https://www.proquest.com/docview/2753312211
https://pubmed.ncbi.nlm.nih.gov/PMC9736212
https://doaj.org/article/1085a028cf64405486858ca1e4d5f7b6
Volume 22
WOSCitedRecordID wos000896464300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BywEOvKGGEi0ICS5WnfWu13tCKUoFiEaBFBRO1r6SRlR2m6Rw47czYztpIhAXLj7YE2XX38zOw7vfALw0ucm0dzJWnotYeJXE2gsdO5lqF6xRqkH6oxoM8vFYD9uC26LdVrlaE-uF2leOauQHmD3lklpc8jfnFzF1jaKvq20LjeuwS22zSc_V-CrhSjH_atiEUkztDxbkC3VKdY4NH1RT9f-5IG94pO3dkhvu5-jO_w78LtxuA0_WazTlHlwL5X24tUFH-ABGn6pR3Ptp5oF9qGblkp2YxXc2Qlg97VefMlN6tqr3s94Z-UHClc1K9jWczuotrazvp4E1zSLwNw_hy1H_5O27uG26gPAk-TJ2CiMip4WaZGKSJdzYwI0UYpJKmwannbTWcW6511YajLZQPpMhaHzFXctN-gh2yqoMe8CMNCHJgpSBW5H5zDrjXRKstSb4JOgIXq9gKFzLSE6NMc4KzEwIsWKNWAQv1qLnDQ3H34QOCcu1ADFn1zeq-bRoDZEIUaXBoMrh_DBYFTkR8DvTDcLLibJZBK9IEwqybxyMM-0xBZwSMWUVPUWMdAL_OYL9FeBFa_iL4grtCJ6vH6PJ0ncYU4bqkmQwxu5yTL0jeNzo1nrMKUbMdFw5ArWldVuT2n5Szk5rWnCtMBjp8if_HtZTuMnpBEfNXrkPO8v5ZXgGN9yP5Wwx79T2U1_zDuwe9gfDz526TIHX4199vDd8fzz89htweyvJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBRYEgotVe-31Zg8IBWjV0hCBmqLczL6SRlR2SVIq_hS_kRk_0kQgbj1wtSf2bvbbmfm8u98APNcdnSlnRSgdT8PUyShULlWhFYmy3mgp65HuyX6_MxyqT2vwqz0LQ9sqW59YOWpXWvpGvonsqSOoxCV_c_w9pKpRtLraltCoYbHnf54iZZu93n2P4_uC8-2twbudsKkqgO-POvPQSgz5VqVylKWjLOLaeK5Fmo4SYRJvlRXGWM4Nd8oIjekE2mfCe2T-KjZcJ_jcC3AR_bgksieHZwQvQb5XqxehbbQ5o9irEvqushTzqtIAfwaApQi4ujtzKdxtX__f_qgbcK1JrFm3ngk3Yc0Xt-Dqktzibdj_XO6H3VM99exDOSnmbKBn39g-wtbRfvwx04Vj7XoG6x5RnCfcsknBvvjDSbVll225sWd1MQz8zR04OJde3YX1oiz8fWBaaB9lXgjPTZq5zFjtbOSNMdq7yKsAXrXDnttGcZ0KfxzlyLwIIfkCIQE8W5ge1zIjfzN6S9hZGJAyeHWhnI7zxtGQ4KvQmDRa7B8m42mHCgxYHfvUiZE0WQAvCXk5-S9sjNXNMQzsEimB5V1JinspvjmAjRZgeePYZvkZugJ4uriNLonWmXThyxOyQQ4Rcx7HAdyrsbxoc4KMgI5jByBXUL7SqdU7xeSwkj1XEpOtmD_4d7OewOWdwcde3tvt7z2EK5xOq1RKnRuwPp-e-Edwyf6YT2bTx9XcZfD1vOfAbxwlggg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIBBcr9tprZw8IBdqI0BIFpUXlZPaVNKKyS5JS8df4dcz4ERKBuPXA1R7bu95v57E7-w3AM9VRibRG-KnlsR_bNPCljaVvRCSN0ypNq5HeSweDzuGhHG7Az-YsDKVVNjqxVNS2MLRG3sboqSOoxCVvj-u0iOF27_XJN58qSNFOa1NOo4LIrvtxhuHb_FV_G8f6Oee9nf237_y6wgC2JegsfJOi-TcyTsdJPE4CrrTjSsTxOBI6ckYaobXhXHMrtVDoWqB8IpyTUSRDzVWE770Am-iSx7wFm8P-h-HnZbgXYfRXcRmhdNCekyWWEa2yrFjAslDAn-ZgxR6u52quGL_etf_5t12Hq7XLzbrVHLkBGy6_CVdWiBhvwehjMfK7Z2rm2Ptimi_Yvpp_ZSMEtKVM_QlTuWXNTgfrHpMHQIhm05x9ckfTMpmX7diJY1WZDHzmNhycS6_uQCsvcncPmBLKBYkTwnEdJzbRRlkTOK21cjZw0oOXDQQyU3OxU0mQ4wxjMkJLtkSLB0-XoicVAcnfhN4QjpYCxBleXihmk6xWQUQFKxS6kwb7h2563KHSA0aFLrZinOrEgxeEwow0GzbGqPqABnaJOMKybkpcfDF-2YOtBmxZrfLm2W-kefBkeRuVFe1AqdwVpySD0UXIeRh6cLfC9bLNEcYKdFDbg3QN8WudWr-TT49KQnSZohsW8vv_btZjuITQz_b6g90HcJnTMZaSwnMLWovZqXsIF833xXQ-e1RPZAZfznsS_ALV9oxX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoS-Aware+Joint+Task+Scheduling+and+Resource+Allocation+in+Vehicular+Edge+Computing&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Chenhong&rft.au=Su%2C+Meijia&rft.au=Duan%2C+Shengyu&rft.au=Dai%2C+Miaoling&rft.date=2022-11-30&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft_id=info:doi/10.3390%2Fs22239340&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon