Crack Unet: Crack Recognition Algorithm Based on Three-Dimensional Ground Penetrating Radar Images

Three-dimensional (3D) ground-penetrating radar is an effective method for detecting internal crack damage in pavement structures. Inefficient manual interpretation of radar images and high personnel requirements have substantially restrained the generalization of 3D ground-penetrating radar. An imp...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 23; p. 9366
Main Authors: Tang, Jiaming, Chen, Chunhua, Huang, Zhiyong, Zhang, Xiaoning, Li, Weixiong, Huang, Min, Deng, Linghui
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.12.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Three-dimensional (3D) ground-penetrating radar is an effective method for detecting internal crack damage in pavement structures. Inefficient manual interpretation of radar images and high personnel requirements have substantially restrained the generalization of 3D ground-penetrating radar. An improved Crack Unet model based on the Unet semantic segmentation model is proposed herein for 3D ground-penetrating radar crack image processing. The experiment showed that the MPA, MioU, and accuracy of the model were improved, and it displayed better capacity in the radar image crack segmentation task than current mainstream algorithms do, such as deepLabv3, PSPNet, and Unet. In the test dataset without cracks, Crack Unet is on the same level as deepLabv3 and PSPNet, which can meet engineering requirements and display a significant improvement compared with Unet. According to the ablation experiment, the MPA and MioU of Unet configured with PMDA, MC-FS, and RS modules were larger than those of Unet configured with one or two modules. The PMDA module adopted by the Crack Unet model showed a higher MPA and MioU than the SE module and the CBAM module did, respectively. The results show that the Crack Unet model has a better segmentation ability than the current mainstream algorithms do in the task of the crack segmentation of radar images, and the performance of crack segmentation is significantly improved compared with the Unet model. The Crack Unet model has excellent engineering application value in the task of the crack segmentation of radar images.
AbstractList Three-dimensional (3D) ground-penetrating radar is an effective method for detecting internal crack damage in pavement structures. Inefficient manual interpretation of radar images and high personnel requirements have substantially restrained the generalization of 3D ground-penetrating radar. An improved Crack Unet model based on the Unet semantic segmentation model is proposed herein for 3D ground-penetrating radar crack image processing. The experiment showed that the MPA, MioU, and accuracy of the model were improved, and it displayed better capacity in the radar image crack segmentation task than current mainstream algorithms do, such as deepLabv3, PSPNet, and Unet. In the test dataset without cracks, Crack Unet is on the same level as deepLabv3 and PSPNet, which can meet engineering requirements and display a significant improvement compared with Unet. According to the ablation experiment, the MPA and MioU of Unet configured with PMDA, MC-FS, and RS modules were larger than those of Unet configured with one or two modules. The PMDA module adopted by the Crack Unet model showed a higher MPA and MioU than the SE module and the CBAM module did, respectively. The results show that the Crack Unet model has a better segmentation ability than the current mainstream algorithms do in the task of the crack segmentation of radar images, and the performance of crack segmentation is significantly improved compared with the Unet model. The Crack Unet model has excellent engineering application value in the task of the crack segmentation of radar images.
Three-dimensional (3D) ground-penetrating radar is an effective method for detecting internal crack damage in pavement structures. Inefficient manual interpretation of radar images and high personnel requirements have substantially restrained the generalization of 3D ground-penetrating radar. An improved Crack Unet model based on the Unet semantic segmentation model is proposed herein for 3D ground-penetrating radar crack image processing. The experiment showed that the MPA, MioU, and accuracy of the model were improved, and it displayed better capacity in the radar image crack segmentation task than current mainstream algorithms do, such as deepLabv3, PSPNet, and Unet. In the test dataset without cracks, Crack Unet is on the same level as deepLabv3 and PSPNet, which can meet engineering requirements and display a significant improvement compared with Unet. According to the ablation experiment, the MPA and MioU of Unet configured with PMDA, MC-FS, and RS modules were larger than those of Unet configured with one or two modules. The PMDA module adopted by the Crack Unet model showed a higher MPA and MioU than the SE module and the CBAM module did, respectively. The results show that the Crack Unet model has a better segmentation ability than the current mainstream algorithms do in the task of the crack segmentation of radar images, and the performance of crack segmentation is significantly improved compared with the Unet model. The Crack Unet model has excellent engineering application value in the task of the crack segmentation of radar images.Three-dimensional (3D) ground-penetrating radar is an effective method for detecting internal crack damage in pavement structures. Inefficient manual interpretation of radar images and high personnel requirements have substantially restrained the generalization of 3D ground-penetrating radar. An improved Crack Unet model based on the Unet semantic segmentation model is proposed herein for 3D ground-penetrating radar crack image processing. The experiment showed that the MPA, MioU, and accuracy of the model were improved, and it displayed better capacity in the radar image crack segmentation task than current mainstream algorithms do, such as deepLabv3, PSPNet, and Unet. In the test dataset without cracks, Crack Unet is on the same level as deepLabv3 and PSPNet, which can meet engineering requirements and display a significant improvement compared with Unet. According to the ablation experiment, the MPA and MioU of Unet configured with PMDA, MC-FS, and RS modules were larger than those of Unet configured with one or two modules. The PMDA module adopted by the Crack Unet model showed a higher MPA and MioU than the SE module and the CBAM module did, respectively. The results show that the Crack Unet model has a better segmentation ability than the current mainstream algorithms do in the task of the crack segmentation of radar images, and the performance of crack segmentation is significantly improved compared with the Unet model. The Crack Unet model has excellent engineering application value in the task of the crack segmentation of radar images.
Audience Academic
Author Chen, Chunhua
Li, Weixiong
Tang, Jiaming
Zhang, Xiaoning
Deng, Linghui
Huang, Zhiyong
Huang, Min
AuthorAffiliation 1 Xiaoning Institute of Roadway Engineering, Guangzhou 510640, China
2 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
AuthorAffiliation_xml – name: 2 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
– name: 1 Xiaoning Institute of Roadway Engineering, Guangzhou 510640, China
Author_xml – sequence: 1
  givenname: Jiaming
  orcidid: 0000-0001-8421-7888
  surname: Tang
  fullname: Tang, Jiaming
– sequence: 2
  givenname: Chunhua
  surname: Chen
  fullname: Chen, Chunhua
– sequence: 3
  givenname: Zhiyong
  orcidid: 0009-0008-2357-9859
  surname: Huang
  fullname: Huang, Zhiyong
– sequence: 4
  givenname: Xiaoning
  surname: Zhang
  fullname: Zhang, Xiaoning
– sequence: 5
  givenname: Weixiong
  surname: Li
  fullname: Li, Weixiong
– sequence: 6
  givenname: Min
  surname: Huang
  fullname: Huang, Min
– sequence: 7
  givenname: Linghui
  surname: Deng
  fullname: Deng, Linghui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36502068$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQQCNURD_gwB9AkbjAYVvHdhyHA9KyQFmpEqhqz9bEmWS9JHaxs0j8e2ZJW7VFkZLR-M1zxp7j7MAHj1n2umCnQtTsLHHORS2UepYdFZLLheacHTyID7PjlLaMcSGEfpEdClUyzpQ-yppVBPszv_Y4fcjn-BJt6L2bXPD5cuhDdNNmzD9Bwjan1NUmIi4-uxF9IgSG_DyGnW_zH0iSCJPzfX4JLcR8PUKP6WX2vIMh4avb70l2_fXL1erb4uL7-Xq1vFjYkulpAVba2lpd1kXBLOusqugtdSFYCShrCnXDkJcgBAjglexqaBvolC7aTqM4ydaztw2wNTfRjRD_mADO_EuE2BuIk7MDGivLpqm4rLkVUmoSaS4UNqIulCygINfH2XWza0ZsLXrqbHgkfbzi3cb04bepK6FqJUnw7lYQw68dpsmMLlkcBvAYdsnwqhSi4NQcoW-foNuwi3Swe0rqUjFZcaJOZ6oHasD5LtC-lp4WR2dpHjpH-WUlVSmkFhUVvHnYwv2_3909AWczYGNIKWJnrJtgf-1kdoMpmNlPl7mfLqp4_6TiTvo_-xeVDs01
CitedBy_id crossref_primary_10_1016_j_autcon_2023_105185
crossref_primary_10_1016_j_ghm_2023_11_004
crossref_primary_10_1016_j_measurement_2023_113296
crossref_primary_10_1016_j_conbuildmat_2025_141124
crossref_primary_10_1155_2024_6490775
crossref_primary_10_1109_ACCESS_2024_3368376
crossref_primary_10_3389_fmats_2023_1239263
crossref_primary_10_3390_electronics14091720
crossref_primary_10_1016_j_measurement_2024_116429
crossref_primary_10_1080_10589759_2024_2340645
crossref_primary_10_1061_JCCEE5_CPENG_6572
crossref_primary_10_3390_infrastructures9120213
crossref_primary_10_1016_j_measurement_2024_116486
crossref_primary_10_1371_journal_pone_0327906
crossref_primary_10_1109_ACCESS_2025_3534803
crossref_primary_10_1016_j_cscm_2024_e03555
crossref_primary_10_1061_JITSE4_ISENG_2499
Cites_doi 10.1007/s40996-021-00671-2
10.3390/buildings11120623
10.1016/j.conbuildmat.2022.127753
10.1016/j.jclepro.2019.119008
10.1190/geo2020-0361.1
10.1109/TITS.2015.2482222
10.1190/geo2018-0597.1
10.1109/ACCESS.2021.3053408
10.1109/TIP.2018.2878966
10.1177/03611981211012001
10.1016/j.patcog.2020.107474
10.1109/JSTARS.2022.3165660
10.3390/s22207980
10.1111/mice.12387
10.1080/10298436.2022.2092617
10.1109/TPAMI.2016.2644615
10.1016/j.conbuildmat.2016.12.078
10.1016/j.trd.2021.102712
10.1190/geo2020-0384.1
10.1109/CVPR.2017.660
10.1109/TPAMI.2017.2699184
10.1016/j.jclepro.2016.09.043
10.1109/TAP.2022.3176386
10.1109/LRA.2021.3062599
10.3390/ma13132960
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22239366
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c45bb72492c3448f9a8236eb391641a1
PMC9736964
A746534837
36502068
10_3390_s22239366
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-ac4c9cc859110c0fc67c0f481305ae49f488b0e25a33a3a274f9adbaf681df8e3
IEDL.DBID 7X7
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896430700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:42 EDT 2025
Tue Nov 04 02:06:53 EST 2025
Thu Sep 04 17:28:22 EDT 2025
Tue Oct 07 07:24:42 EDT 2025
Tue Nov 04 18:15:19 EST 2025
Wed Feb 19 02:25:51 EST 2025
Sat Nov 29 07:17:17 EST 2025
Tue Nov 18 21:19:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords crack recognition
3D ground penetrating radar
convolutional neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-ac4c9cc859110c0fc67c0f481305ae49f488b0e25a33a3a274f9adbaf681df8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8421-7888
0009-0008-2357-9859
OpenAccessLink https://www.proquest.com/docview/2748560472?pq-origsite=%requestingapplication%
PMID 36502068
PQID 2748560472
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c45bb72492c3448f9a8236eb391641a1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9736964
proquest_miscellaneous_2753312130
proquest_journals_2748560472
gale_infotracacademiconefile_A746534837
pubmed_primary_36502068
crossref_citationtrail_10_3390_s22239366
crossref_primary_10_3390_s22239366
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dai (ref_27) 2022; 70
ref_14
Chen (ref_4) 2017; 133
Yu (ref_8) 2017; 141
Yamaguchi (ref_24) 2022; 15
ref_30
Quintana (ref_1) 2016; 17
Shi (ref_5) 2022; 340
Liu (ref_12) 2021; 86
Li (ref_22) 2021; 6
ref_18
Fang (ref_10) 2020; 107
Ronneberger (ref_25) 2015; 9351
Klotzsche (ref_15) 2019; 84
Maeda (ref_2) 2018; 33
Yu (ref_3) 2021; 91
Weng (ref_20) 2021; 9
Yu (ref_7) 2020; 246
Chen (ref_17) 2018; 40
ref_23
Peraka (ref_11) 2021; 2675
ref_21
Badrinarayanan (ref_19) 2017; 39
Zou (ref_13) 2021; 86
Hacefendiolu (ref_9) 2022; 46
ref_29
ref_28
ref_26
Zou (ref_16) 2018; 28
ref_6
References_xml – volume: 46
  start-page: 1621
  year: 2022
  ident: ref_9
  article-title: Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method
  publication-title: Iran. J. Sci. Technol.-Trans. Civ. Eng.
  doi: 10.1007/s40996-021-00671-2
– ident: ref_28
– ident: ref_6
  doi: 10.3390/buildings11120623
– volume: 340
  start-page: 127753
  year: 2022
  ident: ref_5
  article-title: Mesostructural characteristics and evaluation of asphalt mixture contact chain complex networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127753
– volume: 246
  start-page: 119008
  year: 2020
  ident: ref_7
  article-title: Effect of mixing sequence on asphalt mixtures containing waste tire rubber and warm mix surfactants
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119008
– volume: 86
  start-page: WA69
  year: 2021
  ident: ref_13
  article-title: Study on Wavelet Entropy for Airport Pavement Inspection using a Multi-Static GPR System
  publication-title: Geophysics
  doi: 10.1190/geo2020-0361.1
– volume: 17
  start-page: 608
  year: 2016
  ident: ref_1
  article-title: A Simplified Computer Vision System for Road Surface Inspection and Maintenance
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2482222
– volume: 84
  start-page: H13
  year: 2019
  ident: ref_15
  article-title: Review of Crosshole GPR Full-waveform Inversion of Experimental Data: Recent Developments, Challenges and Pitfalls
  publication-title: Geophysics
  doi: 10.1190/geo2018-0597.1
– volume: 9
  start-page: 16591
  year: 2021
  ident: ref_20
  article-title: UNet: Convolutional Networks for Biomedical Image Segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053408
– volume: 28
  start-page: 1498
  year: 2018
  ident: ref_16
  article-title: DeepCrack: Learning Hierarchical Convolutional Features for Crack Detection
  publication-title: IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc.
  doi: 10.1109/TIP.2018.2878966
– volume: 2675
  start-page: 538
  year: 2021
  ident: ref_11
  article-title: Development of a Multi-Distress Detection System for Asphalt Pavements: Transfer Learning-Based Approach
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.1177/03611981211012001
– ident: ref_14
– volume: 107
  start-page: 107474
  year: 2020
  ident: ref_10
  article-title: A Novel Hybrid Approach for Crack Detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107474
– ident: ref_18
– volume: 15
  start-page: 3061
  year: 2022
  ident: ref_24
  article-title: Detecting Subsurface Voids From GPR Images by 3-D Convolutional Neural Network Using 2-D Finite Difference Time Domain Method
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3165660
– ident: ref_21
  doi: 10.3390/s22207980
– volume: 33
  start-page: 1127
  year: 2018
  ident: ref_2
  article-title: Road Damage Detection and Classification Using Deep Neural Networks with Smartphone Images: Road damage detection and classification
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12387
– ident: ref_23
  doi: 10.1080/10298436.2022.2092617
– volume: 9351
  start-page: 234
  year: 2015
  ident: ref_25
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Lect. Notes Artif. Intell.
– ident: ref_29
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_19
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 133
  start-page: 330
  year: 2017
  ident: ref_4
  article-title: Impact of contact stress distribution on skid resistance of asphalt pavements
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.12.078
– volume: 91
  start-page: 102712
  year: 2021
  ident: ref_3
  article-title: Workability of rubberized asphalt from a perspective of particle effect
  publication-title: Transp. Res. Part D Transp. Environ.
  doi: 10.1016/j.trd.2021.102712
– volume: 86
  start-page: WA25
  year: 2021
  ident: ref_12
  article-title: Detection of Cavities in Urban Cities by 3D Ground Penetrating Radar
  publication-title: Geophysics
  doi: 10.1190/geo2020-0384.1
– ident: ref_26
  doi: 10.1109/CVPR.2017.660
– volume: 40
  start-page: 834
  year: 2018
  ident: ref_17
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 141
  start-page: 336
  year: 2017
  ident: ref_8
  article-title: Optimization of preparation procedure of liquid warm mix additive modified asphalt rubber
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.09.043
– volume: 70
  start-page: 6313
  year: 2022
  ident: ref_27
  article-title: DMRF-UNet: A Two-Stage Deep Learning Scheme for GPR Data Inversion Under Heterogeneous Soil Conditions
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2022.3176386
– volume: 6
  start-page: 3001
  year: 2021
  ident: ref_22
  article-title: GPR-RCNN: An Algorithm of Subsurface Defect Detection for Airport Runway Based on GPR
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3062599
– ident: ref_30
  doi: 10.3390/ma13132960
RelatedPersons Torres, J
RelatedPersons_xml – fullname: Torres, J
SSID ssj0023338
Score 2.499801
Snippet Three-dimensional (3D) ground-penetrating radar is an effective method for detecting internal crack damage in pavement structures. Inefficient manual...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9366
SubjectTerms 3D ground penetrating radar
Accuracy
Algorithms
Asphalt pavements
Cavitation
convolutional neural network
crack recognition
Cracks
Deep learning
Ground penetrating radar
Image processing
Image Processing, Computer-Assisted
Medical imaging
Neural networks
Radar
Recognition, Psychology
Roads & highways
Semantics
Support vector machines
Torres, J
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT9wwEIBHFeqBHqq29BFKkVtVgkuEN_au494WWtRKFUIIJG6WYzuwArwoG_r7O-Nkw65aqZdeosjxwZkZe2Zi5xuAz6FypRzR1r-0KscInOdaBZ-Lui689HpS-ITM_6lOTsrLS326UuqLzoR1eOBOcAdOjqtKEdfOCUwlam2pRDemgBjXyJFNiQ9XeplM9amWwMyr4wgJTOoPFuQFtUgoxEfvkyD9fy7FK75o_ZzkiuM5fgHP-4iRTbuRvoQnIb6CZyscwS2ojhrrbthFDO0X1t2fLQ8GzSOb3l7Nm1l7fccO0Wd5hk3nqMKQfyW0f4flYPQRKnp2imtfIunGK3ZmvW3Yjztcchav4eL42_nR97wvnpA7jLna3DrptHOEpxtxx2s3UXiVJfqssQ1S421Z8VCMrRBWWExOUbS-svUEI9i6DOINbMR5DO-AYQ6ImubWuzFqQFnLR0EpvFbYxp3IYH8pVON6sjgVuLg1mGGQ_M0g_ww-DV3vO5zG3zodkmaGDkTATg1oF6a3C_Mvu8hgj_RqaJ7iYJztfzfAVyLilZkqIssRTz-DnaXqTT-BFwblUWIwKFWRwcfhMU492k-xMcwfqA_GyoTE4xm87SxlGLPAyLfgkzIDtWZDay-1_iTOrhPeWyuqsSi3_4cU3sNmQf9rpPM3O7DRNg_hAzx1v9rZotlNc-Y3AmMbSQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Crack Unet: Crack Recognition Algorithm Based on Three-Dimensional Ground Penetrating Radar Images
URI https://www.ncbi.nlm.nih.gov/pubmed/36502068
https://www.proquest.com/docview/2748560472
https://www.proquest.com/docview/2753312130
https://pubmed.ncbi.nlm.nih.gov/PMC9736964
https://doaj.org/article/c45bb72492c3448f9a8236eb391641a1
Volume 22
WOSCitedRecordID wos000896430700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CjQMc-IYFRmUQElyiJbFbJ1xQOzoxiVVRtUnlFDmO001syZZkHPnbec9J01YgLlysyLaiZ73n92X79wDem1SHwqejf6Gkix6450bSZC7P8yATWTQKMguZ_03OZuFiEcVdwq3urlWudKJV1FmpKUd-gNFTiNZZyODz9Y1LVaPodLUroXEXdqlsNsm5XKwDLo7xV4smxDG0P6jJFkbcAiKubZCF6v9TIW9YpO3bkhvm5-jR_xL-GB52jicbt5LyBO6Y4ik82IAjfAbpYaX0D3ZWmOYTa7_nq_tFZcHGl0v8b3N-xSZo-jKGXacoCcb9QhUCWnQPRrmsImMxqlALyFss2VxlqmLHV6i56udwdjQ9PfzqdjUYXI2uW-MqLXSkNaHc-Z72cj2S2IoQTd9QGRHhZ5h6JhgqzhVXuNg8Ulmq8hE6wnlo-AvYKcrC7AHDUBIFxlOZHmJMKJXyfCMltin2eZo78HHFlUR3AOVUJ-MywUCFGJj0DHTgXT_1ukXl-NukCbG2n0BA2rajrJZJty8TLYZpKgk2UXOkComnCvAmpffIwle-Ax9IMBLa7kiMVt2rBVwSAWclY0kAdQTL78D-iv9JpwfqZM18B972w7iD6VhGFaa8pTnochOynufAy1bUepo5OtCBNwodkFtCuLWo7ZHi4tyihEeSSjWKV_8m6zXcD-hBh72gsw87TXVr3sA9_bO5qKuB3U62DQewO5nO4vnAZi2wPfk1xb74-CT-_hv4GzCx
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwCwSWqN_auEySEti1VV11WVbWV9hYcx9lWtElJUhB_it_ITF67KxC3HrhEkWMl4-TzjL_Y_gbgtY2ML3s09S-1cnEEzt1A2dgVSeLFMg4GXlxJ5o_VZOLPZsHBGvxq98LQssrWJ1aOOs4M_SPfRPbkY3SWyvt4_s2lrFE0u9qm0KhhsW9__kDKVnwY7eD3feN5u5-m23tuk1XANTgYKV1tpAmMId22Hjc8MQOFR-mjM-9rKwM89SNuvb4WQguNz00CHUc6GeDQLvGtwPtegavoxxWRPTVbEDyBfK9WLxIi4JsFxd5AVAKMi5hXpQb4MwAsRcDV1ZlL4W739v_2ou7ArWZgzYZ1T7gLaza9BzeX5BbvQ7Sda_OVHaW2fM_q88N2_VSWsuHpHNtRHp-xLQztMcOiKSLdujuUAaFWL2H0ry6N2QGGiEpwOJ2zQx3rnI3O0DMXD-DoUhr5ENbTLLWPgSFVxg7BdWz6yHmV1rxnlcJjhGXcCAfetSgITSPATnlATkMkYgSYsAOMA6-6que16sjfKm0RlLoKJBReFWT5PGz8TmhkP4oUyUIagVah8ZTh3ka031r2dM-BtwTEkNwZGmN0sysDm0TCYOFQkQAfpR1wYKPFW9j4uSJcgM2Bl91l9FA07aRTm11QHaQUpBzIHXhUQ7uzWSBB8PjAd0CtgH6lUatX0pPjSgU9UJSKUj75t1kv4Pre9PM4HI8m-0_hhkebV6rFSBuwXuYX9hlcM9_LkyJ_XnVlBl8uu0v8BuOYiJ0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIVC5WbO8mayMhlDZERC1RVLVSOS3r9TqtaJ1ipyD-Gr-OGb-aCMStBy6WtV5Fs843L-_sNwCvbGxC4dPWv9DSxQjccyNpE5enaZCIJOoHSUmZvysnk_DwMJquwa_mLAyVVTY2sTTUydzQN_IuZk8hemchg25al0VMh6P3Z99c6iBFO61NO40KIjv25w9M34p34yH-16-DYPRhf_ujW3cYcA0GJgtXG2EiY4jDzfeMl5q-xKsI0bD3tBUR3oaxZ4Oe5lxzjTKkkU5infYxzEtDy_F3r8A6huQi6MD6dPxp-rlN9zhmfxWXEeeR1y3IE0e8pGO88IBlo4A_3cGSP1yt1VxyfqNb__Nruw0365CbDSoduQNrNrsLN5aIGO9BvJ1r85UdZHbxllX3e01l1Txjg5MZrmNxdMq20OknDIf2UQesO6TeCBWvCaOveFnCpug8SiribMb2dKJzNj5Fm13ch4NLWeQD6GTzzD4Chkk0qoqnE9PDbFhq7flWSrzGOOYZ7sCbBhHK1NTs1CHkRGGKRuBRLXgceNlOPav4SP42aYtg1U4gCvFyYJ7PVG2RlBG9OJZEGGk4SoXChwHv25hOYgtf-w5sEigVGToUxuj6vAYuiSjD1EASNR81JHBgo8Geqi1goS6A58CL9jHaLtqQ0pmdn9McTDaIU9Bz4GEF81ZmjqlD4PVDB-SKAqwsavVJdnxU8qNHkppUisf_Fus5XENNULvjyc4TuB7QqZaySmkDOov83D6Fq-b74rjIn9V6zeDLZevEbzsikuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crack+Unet%3A+Crack+Recognition+Algorithm+Based+on+Three-Dimensional+Ground+Penetrating+Radar+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tang%2C+Jiaming&rft.au=Chen%2C+Chunhua&rft.au=Huang%2C+Zhiyong&rft.au=Zhang%2C+Xiaoning&rft.date=2022-12-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft_id=info:doi/10.3390%2Fs22239366&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon