A Novel Multi-Objective Binary Chimp Optimization Algorithm for Optimal Feature Selection: Application of Deep-Learning-Based Approaches for SAR Image Classification

Removing redundant features and improving classifier performance necessitates the use of meta-heuristic and deep learning (DL) algorithms in feature selection and classification problems. With the maturity of DL tools, many data-driven polarimetric synthetic aperture radar (POLSAR) representation mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 23; číslo 3; s. 1180
Hlavní autoři: Sadeghi, Fatemeh, Larijani, Ata, Rostami, Omid, Martín, Diego, Hajirahimi, Parisa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 19.01.2023
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Removing redundant features and improving classifier performance necessitates the use of meta-heuristic and deep learning (DL) algorithms in feature selection and classification problems. With the maturity of DL tools, many data-driven polarimetric synthetic aperture radar (POLSAR) representation models have been suggested, most of which are based on deep convolutional neural networks (DCNNs). In this paper, we propose a hybrid approach of a new multi-objective binary chimp optimization algorithm (MOBChOA) and DCNN for optimal feature selection. We implemented the proposed method to classify POLSAR images from San Francisco, USA. To do so, we first performed the necessary preprocessing, including speckle reduction, radiometric calibration, and feature extraction. After that, we implemented the proposed MOBChOA for optimal feature selection. Finally, we trained the fully connected DCNN to classify the pixels into specific land-cover labels. We evaluated the performance of the proposed MOBChOA-DCNN in comparison with nine competitive methods. Our experimental results with the POLSAR image datasets show that the proposed architecture had a great performance for different important optimization parameters. The proposed MOBChOA-DCNN provided fewer features (27) and the highest overall accuracy. The overall accuracy values of MOBChOA-DCNN on the training and validation datasets were 96.89% and 96.13%, respectively, which were the best results. The overall accuracy of SVM was 89.30%, which was the worst result. The results of the proposed MOBChOA on two real-world benchmark problems were also better than the results with the other methods. Furthermore, it was shown that the MOBChOA-DCNN performed better than methods from previous studies.
AbstractList Removing redundant features and improving classifier performance necessitates the use of meta-heuristic and deep learning (DL) algorithms in feature selection and classification problems. With the maturity of DL tools, many data-driven polarimetric synthetic aperture radar (POLSAR) representation models have been suggested, most of which are based on deep convolutional neural networks (DCNNs). In this paper, we propose a hybrid approach of a new multi-objective binary chimp optimization algorithm (MOBChOA) and DCNN for optimal feature selection. We implemented the proposed method to classify POLSAR images from San Francisco, USA. To do so, we first performed the necessary preprocessing, including speckle reduction, radiometric calibration, and feature extraction. After that, we implemented the proposed MOBChOA for optimal feature selection. Finally, we trained the fully connected DCNN to classify the pixels into specific land-cover labels. We evaluated the performance of the proposed MOBChOA-DCNN in comparison with nine competitive methods. Our experimental results with the POLSAR image datasets show that the proposed architecture had a great performance for different important optimization parameters. The proposed MOBChOA-DCNN provided fewer features (27) and the highest overall accuracy. The overall accuracy values of MOBChOA-DCNN on the training and validation datasets were 96.89% and 96.13%, respectively, which were the best results. The overall accuracy of SVM was 89.30%, which was the worst result. The results of the proposed MOBChOA on two real-world benchmark problems were also better than the results with the other methods. Furthermore, it was shown that the MOBChOA-DCNN performed better than methods from previous studies.
Removing redundant features and improving classifier performance necessitates the use of meta-heuristic and deep learning (DL) algorithms in feature selection and classification problems. With the maturity of DL tools, many data-driven polarimetric synthetic aperture radar (POLSAR) representation models have been suggested, most of which are based on deep convolutional neural networks (DCNNs). In this paper, we propose a hybrid approach of a new multi-objective binary chimp optimization algorithm (MOBChOA) and DCNN for optimal feature selection. We implemented the proposed method to classify POLSAR images from San Francisco, USA. To do so, we first performed the necessary preprocessing, including speckle reduction, radiometric calibration, and feature extraction. After that, we implemented the proposed MOBChOA for optimal feature selection. Finally, we trained the fully connected DCNN to classify the pixels into specific land-cover labels. We evaluated the performance of the proposed MOBChOA-DCNN in comparison with nine competitive methods. Our experimental results with the POLSAR image datasets show that the proposed architecture had a great performance for different important optimization parameters. The proposed MOBChOA-DCNN provided fewer features (27) and the highest overall accuracy. The overall accuracy values of MOBChOA-DCNN on the training and validation datasets were 96.89% and 96.13%, respectively, which were the best results. The overall accuracy of SVM was 89.30%, which was the worst result. The results of the proposed MOBChOA on two real-world benchmark problems were also better than the results with the other methods. Furthermore, it was shown that the MOBChOA-DCNN performed better than methods from previous studies.Removing redundant features and improving classifier performance necessitates the use of meta-heuristic and deep learning (DL) algorithms in feature selection and classification problems. With the maturity of DL tools, many data-driven polarimetric synthetic aperture radar (POLSAR) representation models have been suggested, most of which are based on deep convolutional neural networks (DCNNs). In this paper, we propose a hybrid approach of a new multi-objective binary chimp optimization algorithm (MOBChOA) and DCNN for optimal feature selection. We implemented the proposed method to classify POLSAR images from San Francisco, USA. To do so, we first performed the necessary preprocessing, including speckle reduction, radiometric calibration, and feature extraction. After that, we implemented the proposed MOBChOA for optimal feature selection. Finally, we trained the fully connected DCNN to classify the pixels into specific land-cover labels. We evaluated the performance of the proposed MOBChOA-DCNN in comparison with nine competitive methods. Our experimental results with the POLSAR image datasets show that the proposed architecture had a great performance for different important optimization parameters. The proposed MOBChOA-DCNN provided fewer features (27) and the highest overall accuracy. The overall accuracy values of MOBChOA-DCNN on the training and validation datasets were 96.89% and 96.13%, respectively, which were the best results. The overall accuracy of SVM was 89.30%, which was the worst result. The results of the proposed MOBChOA on two real-world benchmark problems were also better than the results with the other methods. Furthermore, it was shown that the MOBChOA-DCNN performed better than methods from previous studies.
Audience Academic
Author Rostami, Omid
Hajirahimi, Parisa
Martín, Diego
Larijani, Ata
Sadeghi, Fatemeh
AuthorAffiliation 3 Department of Industrial Engineering, University of Houston, Houston, TX 77204, USA
4 Department of Business Administration, Boston University, 233 Bay State Road, Boston, MA 02215, USA
2 Spears School of Business, Oklahoma State University, Stillwater, OK 74077, USA
1 ETSI de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
AuthorAffiliation_xml – name: 1 ETSI de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
– name: 3 Department of Industrial Engineering, University of Houston, Houston, TX 77204, USA
– name: 4 Department of Business Administration, Boston University, 233 Bay State Road, Boston, MA 02215, USA
– name: 2 Spears School of Business, Oklahoma State University, Stillwater, OK 74077, USA
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Sadeghi
  fullname: Sadeghi, Fatemeh
– sequence: 2
  givenname: Ata
  surname: Larijani
  fullname: Larijani, Ata
– sequence: 3
  givenname: Omid
  surname: Rostami
  fullname: Rostami, Omid
– sequence: 4
  givenname: Diego
  orcidid: 0000-0001-8810-0695
  surname: Martín
  fullname: Martín, Diego
– sequence: 5
  givenname: Parisa
  surname: Hajirahimi
  fullname: Hajirahimi, Parisa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36772219$$D View this record in MEDLINE/PubMed
BookMark eNptkt-O1CAYxRuzxv2jF76AIfFGL7pLoS3Ui026o6uTjE7i6nVD6dcZJhQqtJOs7-N7ykzHye7GEAKB3znwwTmPTow1EEWvE3xJaYGvPKGYJgnHz6KzJCVpzAnBJw_mp9G59xuMCaWUv4hOac4YIUlxFv0p0Te7BY2-jnpQ8bLegBzUFtCNMsLdo9ladT1a9oPq1G8xKGtQqVfWqWHdoda6aUtodAtiGB2gO9A7B2s-oLLvtZKTyLboI0AfL0A4o8wqvhEemh3irJBr8Huzu_I7mndiBWimhfeqPchfRs9boT28OowX0c_bTz9mX-LF8vN8Vi5imWE-xCKTCWsgdMwIxxmTiaANAYJBNnkBuWxwgSlrMQdOsyAqaFsTUdc4lTgX9CKaT76NFZuqd6Eyd19Zoar9gnWrSrhBSQ0VpilkBHPGZZJCkdYsa7EoGskE5jmpg9f15NWPdQeNBDM4oR-ZPt4xal2t7LYqCoJJQYPBu4OBs79G8EPVKS9Ba2HAjr4ijGU54TTlAX37BN3Y0ZnwVDsqLRglWR6oy4laiVCAMq0N58rQGuiUDJFqVVgvWUpDPoqEBcGbhyUc7_4vPgF4PwHSWe8dtEckwdUumtUxmoG9esJKNex_N9xC6f8o_gLP6eWZ
CitedBy_id crossref_primary_10_1007_s42235_023_00414_1
crossref_primary_10_1108_COMPEL_10_2024_0419
crossref_primary_10_3390_electronics12102263
crossref_primary_10_3390_biomimetics8030310
crossref_primary_10_1016_j_enconman_2025_120263
crossref_primary_10_3390_s23084073
crossref_primary_10_1007_s10586_025_05119_0
crossref_primary_10_1080_0954898X_2024_2376705
crossref_primary_10_1007_s10586_024_04996_1
crossref_primary_10_1109_ACCESS_2023_3311271
crossref_primary_10_1155_acis_7696962
crossref_primary_10_1080_17538947_2024_2347443
crossref_primary_10_1038_s41598_023_50554_x
crossref_primary_10_1007_s11276_023_03604_1
crossref_primary_10_1016_j_esr_2025_101704
crossref_primary_10_1016_j_asoc_2024_112638
crossref_primary_10_1007_s00500_023_09314_2
crossref_primary_10_1109_TGRS_2024_3352150
crossref_primary_10_3390_a16080376
crossref_primary_10_1016_j_engappai_2024_109061
Cites_doi 10.1016/j.eswa.2020.113338
10.1016/j.engappai.2019.103249
10.1080/01431161.2018.1552814
10.1007/s11063-022-11055-6
10.1109/TGRS.2013.2258675
10.1016/j.micpro.2022.104667
10.1109/LGRS.2022.3185118
10.1109/LGRS.2012.2207085
10.1016/j.apacoust.2016.11.012
10.1109/JSTARS.2020.3018161
10.1016/j.sste.2021.100471
10.3390/s21062009
10.1016/j.isprsjprs.2020.07.007
10.1016/j.isprsjprs.2022.02.008
10.1007/s00521-020-05145-6
10.3390/s22124459
10.1016/j.isprsjprs.2022.02.003
10.1080/01431161.2021.1939910
10.1016/j.isprsjprs.2015.03.002
10.1016/j.engappai.2018.03.003
10.1016/j.cie.2019.06.058
10.1007/s12518-020-00297-5
10.3390/rs70404157
10.1007/s10470-020-01599-9
10.1007/s12559-021-09933-7
10.3390/rs13020271
10.1016/j.advengsoft.2013.12.007
10.1109/LGRS.2016.2618840
10.1109/JSTARS.2013.2273074
10.1007/s10470-018-1366-3
10.1109/TEVC.2008.919004
10.1109/TGRS.2019.2926434
10.1007/s10596-020-10030-1
10.1016/j.neucom.2019.03.024
10.1109/LGRS.2018.2799877
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23031180
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_034e520878c14e94b75f0a9dc7a0862b
PMC9920293
A743367917
36772219
10_3390_s23031180
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-a5c17de17d0728057c1a3d2e20ecd69e6cd09037f08e835c5093fb2abb04c06a3
IEDL.DBID BENPR
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000930769500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 14:51:51 EDT 2025
Tue Nov 04 02:07:11 EST 2025
Sun Nov 09 05:23:20 EST 2025
Sat Nov 29 14:49:43 EST 2025
Tue Nov 04 18:14:11 EST 2025
Mon Jul 21 05:42:25 EDT 2025
Tue Nov 18 22:41:53 EST 2025
Sat Nov 29 07:11:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords improved chimp optimization algorithm
deep convolutional neural network
POLSAR image classification
feature selection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-a5c17de17d0728057c1a3d2e20ecd69e6cd09037f08e835c5093fb2abb04c06a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8810-0695
OpenAccessLink https://www.proquest.com/docview/2774973256?pq-origsite=%requestingapplication%
PMID 36772219
PQID 2774973256
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_034e520878c14e94b75f0a9dc7a0862b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920293
proquest_miscellaneous_2775628348
proquest_journals_2774973256
gale_infotracacademiconefile_A743367917
pubmed_primary_36772219
crossref_primary_10_3390_s23031180
crossref_citationtrail_10_3390_s23031180
PublicationCentury 2000
PublicationDate 20230119
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 1
  year: 2023
  text: 20230119
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mosavi (ref_16) 2018; 5
Mirjalili (ref_40) 2014; 69
Biondi (ref_33) 2019; 40
Kaveh (ref_14) 2019; 100
Maghsoudi (ref_34) 2012; 19
Sadeghi (ref_36) 2023; 74
Hayyolalam (ref_39) 2020; 87
Geng (ref_30) 2020; 167
Braik (ref_38) 2021; 33
Khishe (ref_12) 2020; 149
Mohammadi (ref_7) 2018; 12
Jamali (ref_20) 2022; 19
Zhou (ref_29) 2016; 13
Kaveh (ref_10) 2020; 12
ref_18
Zhang (ref_32) 2022; 186
Okwuashi (ref_5) 2021; 42
Wang (ref_11) 2021; 13
Khishe (ref_13) 2017; 118
ref_17
Hua (ref_21) 2020; 13
Salehi (ref_2) 2013; 7
Wang (ref_1) 2022; 186
Deng (ref_4) 2015; 7
Du (ref_23) 2015; 105
Chen (ref_24) 2018; 15
Shimoni (ref_31) 2009; 11
Rostami (ref_3) 2021; 25
Imani (ref_6) 2022; 25
Kaveh (ref_9) 2019; 135
Fard (ref_44) 2022; 94
Zhang (ref_8) 2019; 351
Bi (ref_22) 2019; 57
Kaveh (ref_35) 2020; 7
Kaveh (ref_37) 2019; 28
Uhlmann (ref_25) 2013; 52
Simon (ref_41) 2008; 12
ref_42
Lotfy (ref_15) 2020; 105
Kianfar (ref_19) 2022; 40
ref_28
Mortazavi (ref_43) 2018; 71
Kajimoto (ref_26) 2012; 10
(ref_27) 2010; 8
References_xml – volume: 5
  start-page: 1
  year: 2018
  ident: ref_16
  article-title: Design and implementation a sonar data set classifier using multi-layer perceptron neural network trained by elephant herding optimization
  publication-title: Iran. J. Mar. Technol.
– volume: 149
  start-page: 113338
  year: 2020
  ident: ref_12
  article-title: Chimp optimization algorithm Expert systems with applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 87
  start-page: 103249
  year: 2020
  ident: ref_39
  article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– volume: 40
  start-page: 3721
  year: 2019
  ident: ref_33
  article-title: Multi-chromatic analysis polarimetric interferometric synthetic aperture radar (MCA-PolInSAR) for urban classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1552814
– ident: ref_42
  doi: 10.1007/s11063-022-11055-6
– volume: 52
  start-page: 2197
  year: 2013
  ident: ref_25
  article-title: Integrating color features in polarimetric SAR image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2258675
– volume: 94
  start-page: 104667
  year: 2022
  ident: ref_44
  article-title: An efficient modeling attack for breaking the security of XOR-Arbiter PUFs by using the fully connected and long-short term memory
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2022.104667
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_20
  article-title: PolSAR image classification based on deep convolutional neural networks using wavelet transformation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3185118
– volume: 8
  start-page: 54
  year: 2010
  ident: ref_27
  article-title: Combination of direct and double-bounce ground responses in the homogeneous oriented volume over ground model
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 337
  year: 2012
  ident: ref_26
  article-title: Urban-area extraction from polarimetric SAR images using polarization orientation angle
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2207085
– volume: 118
  start-page: 15
  year: 2017
  ident: ref_13
  article-title: Improved migration models of biogeography-based optimization for sonar dataset classification by using neural network
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2016.11.012
– volume: 13
  start-page: 4895
  year: 2020
  ident: ref_21
  article-title: Three-channel convolutional neural network for polarimetric SAR images classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3018161
– volume: 40
  start-page: 100471
  year: 2022
  ident: ref_19
  article-title: Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms
  publication-title: Spat. Spatio-Temporal Epidemiol.
  doi: 10.1016/j.sste.2021.100471
– ident: ref_18
  doi: 10.3390/s21062009
– volume: 19
  start-page: 139
  year: 2012
  ident: ref_34
  article-title: Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 28
  start-page: 7
  year: 2019
  ident: ref_37
  article-title: Hospital site selection using hybrid PSO algorithm-Case study: District 2 of Tehran
  publication-title: Sci. Res. Q. Geogr. Data
– volume: 167
  start-page: 201
  year: 2020
  ident: ref_30
  article-title: Multi-scale deep feature learning network with bilateral filtering for SAR image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.07.007
– volume: 186
  start-page: 123
  year: 2022
  ident: ref_32
  article-title: PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.02.008
– volume: 33
  start-page: 2515
  year: 2021
  ident: ref_38
  article-title: A novel meta-heuristic search algorithm for solving optimization problems: Capuchin search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05145-6
– ident: ref_17
  doi: 10.3390/s22124459
– volume: 186
  start-page: 246
  year: 2022
  ident: ref_1
  article-title: Parameter selection of Touzi decomposition and a distribution improved autoencoder for PolSAR image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.02.003
– volume: 42
  start-page: 6498
  year: 2021
  ident: ref_5
  article-title: Deep support vector machine for PolSAR image classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1939910
– volume: 105
  start-page: 38
  year: 2015
  ident: ref_23
  article-title: Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.03.002
– volume: 71
  start-page: 275
  year: 2018
  ident: ref_43
  article-title: Interactive search algorithm: A new hybrid metaheuristic optimization algorithm Engineering
  publication-title: Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.03.003
– volume: 135
  start-page: 800
  year: 2019
  ident: ref_9
  article-title: Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.06.058
– volume: 12
  start-page: 291
  year: 2020
  ident: ref_10
  article-title: Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-020-00297-5
– volume: 11
  start-page: 169
  year: 2009
  ident: ref_31
  article-title: Fusion of PolSAR and PolInSAR data for land cover classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 4157
  year: 2015
  ident: ref_4
  article-title: Improved POLSAR image classification by the use of multi-feature combination
  publication-title: Remote Sens.
  doi: 10.3390/rs70404157
– volume: 105
  start-page: 141
  year: 2020
  ident: ref_15
  article-title: An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors
  publication-title: Analog. Integr. Circuits Signal Process.
  doi: 10.1007/s10470-020-01599-9
– volume: 13
  start-page: 1297
  year: 2021
  ident: ref_11
  article-title: Binary chimp optimization algorithm (BChOA): A new binary meta-heuristic for solving optimization problems
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09933-7
– ident: ref_28
  doi: 10.3390/rs13020271
– volume: 7
  start-page: 21
  year: 2020
  ident: ref_35
  article-title: Solving the local positioning problem using a four-layer artificial neural network Engineering
  publication-title: J. Geospat. Inf. Technol.
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_40
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 13
  start-page: 1935
  year: 2016
  ident: ref_29
  article-title: Polarimetric SAR image classification using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2618840
– volume: 12
  start-page: 588
  year: 2018
  ident: ref_7
  article-title: Synthetic aperture radar remote sensing classification using the bag of visual words model to land cover studies
  publication-title: Int. J. Geol. Environ. Eng.
– volume: 7
  start-page: 1394
  year: 2013
  ident: ref_2
  article-title: Improving the accuracy of urban land cover classification using Radarsat-2 PolSAR data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2273074
– volume: 100
  start-page: 405
  year: 2019
  ident: ref_14
  article-title: Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network
  publication-title: Analog. Integr. Circuits Signal Process.
  doi: 10.1007/s10470-018-1366-3
– volume: 12
  start-page: 702
  year: 2008
  ident: ref_41
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 25
  start-page: 55
  year: 2022
  ident: ref_6
  article-title: Low frequency and radar’s physical based features for improvement of convolutional neural networks for PolSAR image classification
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 57
  start-page: 9378
  year: 2019
  ident: ref_22
  article-title: An active deep learning approach for minimally supervised PolSAR image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2926434
– volume: 25
  start-page: 911
  year: 2021
  ident: ref_3
  article-title: Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): A combined approach of optimization and machine learning
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-10030-1
– volume: 351
  start-page: 167
  year: 2019
  ident: ref_8
  article-title: PolSAR image classification based on multi-scale stacked sparse autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.024
– volume: 15
  start-page: 627
  year: 2018
  ident: ref_24
  article-title: PolSAR image classification using polarimetric-feature-driven deep convolutional neural network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2799877
– volume: 74
  start-page: 751
  year: 2023
  ident: ref_36
  article-title: A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images
  publication-title: CMC-Comput. Mater. Contin.
SSID ssj0023338
Score 2.4996765
Snippet Removing redundant features and improving classifier performance necessitates the use of meta-heuristic and deep learning (DL) algorithms in feature selection...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1180
SubjectTerms Accuracy
Algorithms
Artificial satellites in remote sensing
Classification
deep convolutional neural network
Feature selection
Heuristic
improved chimp optimization algorithm
Machine learning
Mathematical optimization
Methods
Neural networks
POLSAR image classification
Remote sensing systems
Support vector machines
Synthetic aperture radar
Urban areas
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMcEG8CCzIICS7WOnZsx9zShRVcuogFaW9R4ky2XbVJ1cf-I_4nYycNjUDiwqGXeuI6mfHMN43nG0LealBWK6FZ7SxnCaSKFWA1Q9tQwHUBpXKh2YSZTtPLS_v1oNWXPxPW0QN3D-6EywSU4KlJXZyATUqjal7YypnCo_HSe19EPftkqk-1JGZeHY-QxKT-ZINAW3qys1H0CST9f7rig1g0Pid5EHjO7pN7PWKkWbfSB-QWNA_J3QMewUfkZ0an7Q0saCinZefldefG6CRU29LT2Xy5oufoHZZ92SXNFlfter6dLSmi1m4If8QDwt0a6EXojoNyH2j2-w03bWv6EWDFelLWKzbBGFh5kVCXBZsw2UX2jX5Zop-ioeOmP4sULn9Mfpx9-n76mfX9F5hD2LZlhXKxqQA_3DexUsbFhawECA6u0ha0q_y_PKbmKSCQw4usrEtRlCVPHOpZPiFHTdvAM0JLLbl1vERd2iQxiJIUmo5QwjjhlI0j8n6vl9z15OS-R8YixyTFqzAfVBiRN4PoqmPk-JvQxCt3EPAk2uELNK28N638X6YVkXfeNHK_1XExrugrFvCWPGlWniH6ktpgwhuR47315L0P2OQCkbXnQlI6Iq-HYdy9_pVM0UC7CzIIQFOZpBF52hnbsGac2ggMKBExIzMc3dR4pJnPAkO4tYIjjnv-P57CC3IHJ_OH7lhsj8nRdr2Dl-S2u9nON-tXYdv9AuN7M08
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Multi-Objective Binary Chimp Optimization Algorithm for Optimal Feature Selection: Application of Deep-Learning-Based Approaches for SAR Image Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/36772219
https://www.proquest.com/docview/2774973256
https://www.proquest.com/docview/2775628348
https://pubmed.ncbi.nlm.nih.gov/PMC9920293
https://doaj.org/article/034e520878c14e94b75f0a9dc7a0862b
Volume 23
WOSCitedRecordID wos000930769500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - NZ
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXQ5w4P0ILJVBSHCx1nk4jrmgdOmKPWy32gWpnKLEcR-obUofe-Tf8D8ZO262FYgLh-YQT5KJ-mX8jR_fALyNNZcxD2I6VJLRSCec5lrGFLHBNYtzXXBli02IXi8ZDGTfDbit3LLKbUy0gbqslBkjPw6QpxhlGR5_XPygpmqUmV11JTQO4NAolUUtOOx0e_3LJuUKMQOr9YRCTO6PV0i4QyN6ttcLWbH-P0PyTp-0v15ypwM6vf-_rj-Ae456krTGykO4peeP4O6OIOFj-JWSXnWtp8Tuy6UXxfc6HpKO3bZLTsaT2YJcYJiZuf2bJJ2O8Fnr8Ywg_a2b8CGGWW6WmlzZMjto94GkN1PlpBqST1ovqFN3HdEOdqalMbEbvPTK3uwqvSRnMwx4xJbuNIua7OVP4Otp98vJZ-oKOVCF_G9Nc658UWr8MVMNiwvl52EZ6IBpVcZSx6o0w0ViyBKNjBAvkuGwCPKiYJFCwIRPoTWv5vo5kCIOmVSsiBBjUSSQbnHEYMADoQLFpe_B--0fmymncm6KbUwzzHYMBrIGAx68aUwXtbTH34w6Bh2NgVHjtieq5ShzH3fGQnQnYIlIlB9pGRWCD1kuSyVykzEWHrwz2MpMzEBnVO62PuArGfWtLEUaF8YCM2cPjrYQylwwWWU3-PHgddOMYcDM7eRzXW2sDTLZJIwSD57VaG18xluLAHsmD8Qejvdear9lPhlbqXEpA4aE8MW_3XoJd9DMrMujvjyC1nq50a_gtrpeT1bLNhyIgbDHpO2-z7Yd-sDj-c8unuufnfe__QYzlkki
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4P0IFDAIVC5RHSeOYySEsi1VV223FS1SOYXE8T7Q7mbZRxE_iCu_kbGTTXcF4tYDh73EY-84mRl_k8wD4FWouQw5C92OktQNdMTdVMvQRdngmoapzriyzSZEux2dncnjNfi1yIUxYZULm2gNdV4o8458iyFOMZVlePh-_M01XaPM19VFC41SLPb1j-_osk3ftXbw-b5mbPfD6faeW3UVcBWCkZmbcuWJXOOPmtZMXCgv9XOmGdUqD6UOVW7eXYgOjTTCE5wk_U7G0iyjgULufVz3CqwHKOxRA9aPW4fHn2sXz0ePr6xf5PuSbk0R4PumyNrKqWebA_x5BCydgavxmUsH3u6t_-1W3YabFbQmcakLd2BNj-7CjaWCi_fgZ0zaxbkeEJt37B5lX0t7T5o2LZls9_rDMTlCMzqs8lNJPOji3ma9IUF4Xw7hnxjkPJ9ocmLbCCHdWxJfhAKQokN2tB67VfXarttEsJAbEpvApqd2sZP4I2kN0aAT25rUBG3Z6ffh06XcpwfQGBUj_QhIFvpUKpoFqENBIBBOctQxxplQTHHpOfBmIUiJqqq4m2YigwS9OSNzSS1zDrysScdl6ZK_ETWNNNYEptq4vVBMukllvBLqIzuMRiJSXqBlkAneoanMlUiNR5w5sGlkOTE2EZlRaZXagVsy1cWSGGGqHwrpCQc2FiKbVMZymlzIqwMv6mE0c-bbVTrSxdzSIFKP_CBy4GGpHTXPuLRgePI6IFb0ZmVTqyOjfs-WUpeSUQS8j__N1nO4tnd6eJActNr7T-A6TjExiK4nN6Axm8z1U7iqzmf96eRZZQ8IfLlsvfoNKsWgkg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGhhA8cL8EBhgEgherjhPHMRJC6UpFNegqNqTtKUscpy1qm9LLED-IP8Gv49hJs1Yg3vbAQ1_iY9dOzuU7ybkg9CLQXAacBSRXkhJfh5wkWgYEeINrGiQ65co2mxDdbnh8LHtb6NcqF8aEVa50olXUWaHMO_IGA5xiKsvwoJFXYRG9Vvvd9BsxHaTMl9ZVO42SRfb1j-_gvs3fdlrwrF8y1n5_tPeBVB0GiAJgsiAJV67INPyoadPEhXITL2OaUa2yQOpAZeY9hshpqAGqwCTp5SlL0pT6Ck7iwbqX0A5Ach9kbKfX-dQ7qd09D7y_spaR50namAPY90zBtQ0LaBsF_GkO1uzhZqzmmvFr3_ifb9tNdL2C3DgqZeQW2tKT2-jaWiHGO-hnhLvFmR5hm49MDtKvpR3ATZuujPcGw_EUH4B6HVd5qzga9eFsi8EYA-wvh-BPDKJezjQ-tO2FgO4Njs5DBHCR45bWU1JVte2TJoCIzJDYxDY9t4sdRp9xZwyKHtuWpSaYy06_i75cyH26h7YnxUQ_QDgNPCoVTX2QLd8XADM5yB7jTCimuHQd9HrFVLGqqrubJiOjGLw8w39xzX8Oel6TTsuSJn8jahrOrAlMFXJ7oZj140qpxdSD7TAailC5vpZ-KnhOE5kpkRhPOXXQK8PXsdGVsBmVVCkfcCRTdSyOQGy8QEhXOGh3xb5xpUTn8TnvOuhZPQzqz3zTSia6WFoaQPCh54cOul9KSr1nWFowsMgOEhsytHGozZHJcGBLrEvJKADhh__e1lN0BYQp_tjp7j9CV2GGCU0krtxF24vZUj9Gl9XZYjifPalUA0anFy1WvwHc7alS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Multi-Objective+Binary+Chimp+Optimization+Algorithm+for+Optimal+Feature+Selection%3A+Application+of+Deep-Learning-Based+Approaches+for+SAR+Image+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sadeghi%2C+Fatemeh&rft.au=Larijani%2C+Ata&rft.au=Rostami%2C+Omid&rft.au=Mart%C3%ADn%2C+Diego&rft.date=2023-01-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft.spage=1180&rft_id=info:doi/10.3390%2Fs23031180&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon