Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization

Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) Vol. 10; no. 1; p. 18
Main Authors: ZainEldin, Hanaa, Gamel, Samah A., El-Kenawy, El-Sayed M., Alharbi, Amal H., Khafaga, Doaa Sami, Ibrahim, Abdelhameed, Talaat, Fatma M.
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 22.12.2022
MDPI
Subjects:
ISSN:2306-5354, 2306-5354
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms’ strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN’s performance by the CNN optimization’s hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset.
AbstractList Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms' strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN's performance by the CNN optimization's hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset.Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms' strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN's performance by the CNN optimization's hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset.
Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms’ strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN’s performance by the CNN optimization’s hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset.
Author Alharbi, Amal H.
Ibrahim, Abdelhameed
Gamel, Samah A.
Khafaga, Doaa Sami
ZainEldin, Hanaa
El-Kenawy, El-Sayed M.
Talaat, Fatma M.
AuthorAffiliation 3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
1 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
2 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt
4 Machine Learning & Information Retrieval Department, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
AuthorAffiliation_xml – name: 4 Machine Learning & Information Retrieval Department, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
– name: 1 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
– name: 2 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt
– name: 3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
Author_xml – sequence: 1
  givenname: Hanaa
  surname: ZainEldin
  fullname: ZainEldin, Hanaa
– sequence: 2
  givenname: Samah A.
  orcidid: 0000-0003-1753-030X
  surname: Gamel
  fullname: Gamel, Samah A.
– sequence: 3
  givenname: El-Sayed M.
  orcidid: 0000-0002-9221-7658
  surname: El-Kenawy
  fullname: El-Kenawy, El-Sayed M.
– sequence: 4
  givenname: Amal H.
  surname: Alharbi
  fullname: Alharbi, Amal H.
– sequence: 5
  givenname: Doaa Sami
  orcidid: 0000-0002-9843-6392
  surname: Khafaga
  fullname: Khafaga, Doaa Sami
– sequence: 6
  givenname: Abdelhameed
  orcidid: 0000-0002-8352-6731
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
– sequence: 7
  givenname: Fatma M.
  orcidid: 0000-0001-6116-2191
  surname: Talaat
  fullname: Talaat, Fatma M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36671591$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhgep2Fr7F8qAN96M5jszIIJdbS0s9MIWL0OSOVmzziZrMiPUX29mt5W2CEIgyclz3veQc15WByEGqKpTjN5S2qF3xkcIKx8Akg8rjNC82mfVEaFINJxydvDgfFid5LxGBaGEE8FeVIdUCIl5h4-qH2dJ-1BfT5uY6k8wgh19DLUOfb0YdM7eeat3oZtcvAoC23oJOoX5NmNfSx3NIpZXqM_9GCDn-iLBbf0tDq6-2o5-43_vJF5Vz50eMpzc7cfVzfnn68WXZnl1cbn4uGwsR-3YaEakbDntgGNnmANwrTAtNqgFKh1G2JK-M1qSvpWSY8404daYXjthhRT0uLrc6_ZRr9U2-Y1Otypqr3aBmFZKp9HbAVRvqBG205ZZzHSntS0-lEghhAPCSNH6sNfaTmYDvYUwJj08En38Evx3tYq_VNdyJmlXBN7cCaT4c4I8qo3PFoZBB4hTVsWrJQxjiQr6-gm6jlMK5atmSmIhCJqp04cV_S3lvqcFeL8HbIo5J3DK-nHXgFKgHxRGap4i9e8pKuniSfq9w38S_wBAHtIa
CitedBy_id crossref_primary_10_1007_s11518_025_5671_y
crossref_primary_10_1007_s00521_023_09391_2
crossref_primary_10_1007_s42979_024_03228_y
crossref_primary_10_1155_acis_9991264
crossref_primary_10_1038_s41598_025_99228_w
crossref_primary_10_3390_biomimetics9060331
crossref_primary_10_1016_j_bspc_2025_107942
crossref_primary_10_1007_s11042_023_17587_w
crossref_primary_10_1016_j_seta_2025_104348
crossref_primary_10_3389_fonc_2025_1508326
crossref_primary_10_1038_s41598_025_06455_2
crossref_primary_10_1088_2057_1976_acebf1
crossref_primary_10_1109_ACCESS_2024_3403902
crossref_primary_10_3390_biomimetics8020141
crossref_primary_10_1038_s41598_025_11754_9
crossref_primary_10_1080_0954898X_2024_2343342
crossref_primary_10_1186_s40537_025_01207_5
crossref_primary_10_1007_s00521_025_11278_3
crossref_primary_10_1051_matecconf_202439201110
crossref_primary_10_1051_epjconf_202532801052
crossref_primary_10_12720_jait_16_6_884_892
crossref_primary_10_3390_en17215417
crossref_primary_10_4018_IJSKD_352848
crossref_primary_10_1007_s12559_025_10446_w
crossref_primary_10_1016_j_procs_2024_03_259
crossref_primary_10_3390_a18020089
crossref_primary_10_1002_adhm_202303563
crossref_primary_10_1007_s00521_023_08962_7
crossref_primary_10_1109_ACCESS_2023_3343126
crossref_primary_10_1007_s11042_023_15923_8
crossref_primary_10_1007_s11831_025_10238_3
crossref_primary_10_1007_s00521_023_08809_1
crossref_primary_10_3389_fonc_2025_1596718
crossref_primary_10_1016_j_bspc_2024_107365
crossref_primary_10_1007_s11042_023_16769_w
crossref_primary_10_1109_ACCESS_2024_3485895
crossref_primary_10_3892_ol_2025_15080
crossref_primary_10_3389_fonc_2023_1290112
crossref_primary_10_1007_s11760_024_03357_0
crossref_primary_10_1007_s12597_024_00835_4
crossref_primary_10_3390_info15100653
crossref_primary_10_1007_s00521_025_11084_x
crossref_primary_10_1038_s41598_025_00509_1
crossref_primary_10_3390_a17030096
crossref_primary_10_1007_s00521_024_10453_2
crossref_primary_10_1007_s12652_023_04659_w
crossref_primary_10_1016_j_imavis_2025_105417
crossref_primary_10_3390_bioengineering10121435
crossref_primary_10_1177_21925682241261342
crossref_primary_10_1186_s12911_024_02419_0
crossref_primary_10_1007_s00521_023_08681_z
crossref_primary_10_54392_irjmt2536
crossref_primary_10_3390_diagnostics13050864
crossref_primary_10_1007_s00521_023_09310_5
crossref_primary_10_3390_diagnostics15151863
crossref_primary_10_1016_j_chemolab_2025_105414
crossref_primary_10_3389_fonc_2025_1512739
crossref_primary_10_1007_s11042_024_19652_4
crossref_primary_10_1016_j_eswa_2025_126633
crossref_primary_10_1186_s43067_025_00207_y
crossref_primary_10_1007_s11760_025_04250_0
crossref_primary_10_1007_s13198_025_02762_z
crossref_primary_10_1007_s41870_024_02216_y
crossref_primary_10_1016_j_ymeth_2025_04_016
crossref_primary_10_3390_biomedinformatics5020030
crossref_primary_10_1007_s00521_023_09232_2
crossref_primary_10_1007_s11042_024_20141_x
crossref_primary_10_3390_diagnostics13071282
crossref_primary_10_3390_diagnostics14161714
crossref_primary_10_3390_cancers15164172
crossref_primary_10_3390_math13071117
crossref_primary_10_1007_s13042_025_02727_5
crossref_primary_10_1038_s41598_025_99544_1
crossref_primary_10_3390_info16060456
crossref_primary_10_1016_j_brainres_2025_149704
crossref_primary_10_1108_ACI_09_2023_0022
crossref_primary_10_3390_eng6050082
crossref_primary_10_7759_cureus_66157
crossref_primary_10_1007_s11042_025_20633_4
Cites_doi 10.1109/ICAICT51780.2020.9333528
10.1007/978-3-319-24574-4_28
10.1109/ICOEI53556.2022.9777114
10.1109/CVPR.2016.90
10.1109/ICD.2018.8514789
10.3390/curroncol29100590
10.3389/fnins.2018.00804
10.1007/s12553-020-00514-6
10.1109/ACCESS.2022.3196660
10.1109/TST.2014.6961028
10.1109/TDEI.2017.006841
10.1109/TMI.2021.3077079
10.1007/s00371-020-02005-1
10.3233/AIC-170729
10.1016/j.bspc.2021.103356
10.1007/s11063-020-10398-2
10.1109/ICBSII51839.2021.9445122
10.1109/ACCESS.2022.3166901
10.1109/ACCESS.2022.3190508
10.3390/math10173144
10.1007/978-981-15-0751-9_7
10.1109/CVPR.2015.7298594
10.1007/s40747-021-00563-y
10.1109/ACCESS.2021.3111408
10.1109/ICACAT.2018.8933603
10.1109/ACCESS.2022.3172954
10.1109/ICITAET47105.2019.9170144
10.1016/j.compbiomed.2020.103804
10.1016/j.matpr.2021.01.601
10.1007/s40998-021-00426-9
10.1016/j.compbiomed.2019.103345
10.1016/j.asoc.2020.106580
10.1007/s00500-021-05748-8
10.1007/s11227-020-03572-9
10.1016/j.compmedimag.2021.101940
10.1016/j.irbm.2021.06.003
10.1038/s41598-018-37769-z
10.3390/math10162912
10.1109/TNNLS.2021.3077188
10.3390/diagnostics10080565
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering10010018
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_db3b6c9ac4c14a9aac81b327666fe242
PMC9854739
36671591
10_3390_bioengineering10010018
Genre Journal Article
GrantInformation_xml – fundername: Princess Nourah bint Abdulrahman University
  grantid: PNURSP2022R120
– fundername: Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
  grantid: PNURSP2022R120
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-a42778539e51fb4feef86b81b08e37f101c2d9ba72d8775154a25cbbdaf6c6763
IEDL.DBID DOA
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000914412900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2306-5354
IngestDate Mon Nov 10 04:32:56 EST 2025
Tue Nov 04 02:06:40 EST 2025
Wed Oct 01 13:11:58 EDT 2025
Fri Jul 25 11:40:03 EDT 2025
Thu Jan 02 22:53:11 EST 2025
Sat Nov 29 07:16:14 EST 2025
Tue Nov 18 21:57:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning technique
brain tumor
hyperparameters
optimization
convolutional neural network
diagnosing
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-a42778539e51fb4feef86b81b08e37f101c2d9ba72d8775154a25cbbdaf6c6763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9843-6392
0000-0002-9221-7658
0000-0003-1753-030X
0000-0002-8352-6731
0000-0001-6116-2191
OpenAccessLink https://doaj.org/article/db3b6c9ac4c14a9aac81b327666fe242
PMID 36671591
PQID 2767166200
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_db3b6c9ac4c14a9aac81b327666fe242
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9854739
proquest_miscellaneous_2768241170
proquest_journals_2767166200
pubmed_primary_36671591
crossref_citationtrail_10_3390_bioengineering10010018
crossref_primary_10_3390_bioengineering10010018
PublicationCentury 2000
PublicationDate 20221222
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 20221222
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References (ref_30) 2021; 77
Nour (ref_45) 2020; 97
Ibrahim (ref_13) 2021; 9
Deepak (ref_28) 2019; 111
Alshaikhli (ref_1) 2021; 11
Amin (ref_6) 2021; 8
Nazir (ref_9) 2021; 91
ref_11
ref_33
Irmak (ref_40) 2021; 45
Khafaga (ref_41) 2022; 10
ref_10
Kesav (ref_31) 2022; 34
Tummala (ref_32) 2022; 29
Tharwat (ref_46) 2017; 30
Samee (ref_15) 2022; 73
Zhu (ref_21) 2021; 40
ref_19
ref_18
ref_39
Abdelhamid (ref_22) 2022; 10
ref_38
Mirjalili (ref_12) 2022; 10
Sharma (ref_17) 2014; 103
Kokkalla (ref_29) 2021; 25
Tandel (ref_27) 2020; 122
Urhan (ref_37) 2022; 72
Ayadi (ref_34) 2020; 38
Khairandish (ref_36) 2022; 43
ref_24
Abutarboush (ref_14) 2021; 69
ref_23
ref_44
ref_43
ref_20
ref_42
Lee (ref_16) 2019; 9
Konar (ref_35) 2022; 33
Benmahamed (ref_47) 2017; 24
ref_3
Liu (ref_5) 2014; 19
Alhussan (ref_25) 2022; 10
Yang (ref_8) 2018; 12
Ayadi (ref_4) 2021; 53
ref_26
ref_48
Rahman (ref_2) 2022; 25
ref_7
References_xml – ident: ref_19
  doi: 10.1109/ICAICT51780.2020.9333528
– ident: ref_42
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_18
  doi: 10.1109/ICOEI53556.2022.9777114
– ident: ref_3
– ident: ref_24
  doi: 10.1109/CVPR.2016.90
– ident: ref_48
  doi: 10.1109/ICD.2018.8514789
– volume: 25
  start-page: 214
  year: 2022
  ident: ref_2
  article-title: An internet of things-based automatic brain tumor detection system
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: 103
  start-page: 7
  year: 2014
  ident: ref_17
  article-title: Brain Tumor Detection based on Machine Learning Algorithms
  publication-title: Int. J. Comput. Appl.
– volume: 29
  start-page: 7498
  year: 2022
  ident: ref_32
  article-title: Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling
  publication-title: Curr. Oncol.
  doi: 10.3390/curroncol29100590
– volume: 12
  start-page: 804
  year: 2018
  ident: ref_8
  article-title: Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00804
– volume: 11
  start-page: 267
  year: 2021
  ident: ref_1
  article-title: MRI brain tumor medical images analysis using deep learning techniques: A systematic review
  publication-title: Health Technol.
  doi: 10.1007/s12553-020-00514-6
– volume: 10
  start-page: 84188
  year: 2022
  ident: ref_25
  article-title: Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196660
– volume: 73
  start-page: 4193
  year: 2022
  ident: ref_15
  article-title: Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images
  publication-title: Comput. Mater. Contin.
– volume: 19
  start-page: 578
  year: 2014
  ident: ref_5
  article-title: A survey of MRI-based brain tumor segmentation methods
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2014.6961028
– ident: ref_44
– volume: 24
  start-page: 3443
  year: 2017
  ident: ref_47
  article-title: Application of SVM and KNN to Duval Pentagon 1 for transformer oil diagnosis
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2017.006841
– volume: 40
  start-page: 2354
  year: 2021
  ident: ref_21
  article-title: Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI
  publication-title: IEEE Trans. Med Imaging
  doi: 10.1109/TMI.2021.3077079
– volume: 38
  start-page: 107
  year: 2020
  ident: ref_34
  article-title: Brain tumor classification based on hybrid approach
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-02005-1
– volume: 30
  start-page: 169
  year: 2017
  ident: ref_46
  article-title: Linear discriminant analysis: A detailed tutorial
  publication-title: AI Commun.
  doi: 10.3233/AIC-170729
– volume: 72
  start-page: 103356
  year: 2022
  ident: ref_37
  article-title: Brain tumor classification using the fused features extracted from expanded tumor region
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103356
– volume: 53
  start-page: 671
  year: 2021
  ident: ref_4
  article-title: Deep CNN for Brain Tumor Classification
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10398-2
– ident: ref_39
  doi: 10.1109/ICBSII51839.2021.9445122
– volume: 10
  start-page: 40536
  year: 2022
  ident: ref_12
  article-title: Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering Problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166901
– volume: 10
  start-page: 74449
  year: 2022
  ident: ref_41
  article-title: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190508
– ident: ref_11
  doi: 10.3390/math10173144
– ident: ref_33
  doi: 10.1007/978-981-15-0751-9_7
– ident: ref_23
  doi: 10.1109/CVPR.2015.7298594
– volume: 8
  start-page: 3161
  year: 2021
  ident: ref_6
  article-title: Brain tumor detection and classification using machine learning: A comprehensive survey
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00563-y
– volume: 9
  start-page: 125787
  year: 2021
  ident: ref_13
  article-title: Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111408
– ident: ref_20
  doi: 10.1109/ICACAT.2018.8933603
– volume: 10
  start-page: 49265
  year: 2022
  ident: ref_22
  article-title: Robust Speech Emotion Recognition Using CNN+LSTM Based on Stochastic Fractal Search Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172954
– ident: ref_7
  doi: 10.1109/ICITAET47105.2019.9170144
– volume: 69
  start-page: 2983
  year: 2021
  ident: ref_14
  article-title: Advance Artificial Intelligence Technique for Designing Double T-shaped Monopole Antenna
  publication-title: Comput. Mater. Contin.
– volume: 122
  start-page: 103804
  year: 2020
  ident: ref_27
  article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103804
– ident: ref_26
  doi: 10.1016/j.matpr.2021.01.601
– volume: 45
  start-page: 1015
  year: 2021
  ident: ref_40
  article-title: Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework
  publication-title: Iran. J. Sci. Technol. Trans. Electr. Eng.
  doi: 10.1007/s40998-021-00426-9
– volume: 111
  start-page: 103345
  year: 2019
  ident: ref_28
  article-title: Brain tumor classification using deep CNN features via transfer learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103345
– volume: 97
  start-page: 106580
  year: 2020
  ident: ref_45
  article-title: A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and Bayesian Optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106580
– volume: 25
  start-page: 8721
  year: 2021
  ident: ref_29
  article-title: Three-class brain tumor classification using deep dense inception residual network
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05748-8
– volume: 77
  start-page: 7236
  year: 2021
  ident: ref_30
  article-title: Classification of brain tumors from MR images using deep transfer learning
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03572-9
– volume: 91
  start-page: 101940
  year: 2021
  ident: ref_9
  article-title: Role of deep learning in brain tumor detection and classification (2015 to 2020): A review
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2021.101940
– volume: 43
  start-page: 290
  year: 2022
  ident: ref_36
  article-title: A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images
  publication-title: IRBM
  doi: 10.1016/j.irbm.2021.06.003
– ident: ref_43
– volume: 34
  start-page: 6229
  year: 2022
  ident: ref_31
  article-title: Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 9
  start-page: 1952
  year: 2019
  ident: ref_16
  article-title: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37769-z
– ident: ref_10
  doi: 10.3390/math10162912
– volume: 33
  start-page: 6331
  year: 2022
  ident: ref_35
  article-title: Qutrit-Inspired Fully Self-Supervised Shallow Quantum Learning Network for Brain Tumor Segmentation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3077188
– ident: ref_38
  doi: 10.3390/diagnostics10080565
SSID ssj0001325264
Score 2.4972842
Snippet Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities and experience. The amount of data that must be handled has...
Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 18
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Bioengineering
Brain
Brain cancer
brain tumor
Brain tumors
Classification
convolutional neural network
Deep learning
deep learning technique
diagnosing
Fitness
hyperparameters
Image classification
Machine learning
Medical imaging
Medical research
Neural networks
Optimization
Training
Trigonometric functions
Tumors
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BwgEOvB-BBRmJq9XGSfw4IXahcEDLSixib5GfS8VuUtqU38_YddstWsGBSw7JOLI19vizPf4-gNfK4RrAl5pKGzStbeOoEQIfYxlKhwsS4ZJqySdxdCRPT9Vx3nBb5LTKdUxMgdr1Nu6Rj5jgCO05OvXN7CeNqlHxdDVLaFyHG5EloUqpe8fbPZaKNTjhry4GV7i6H5lp77c8f5F_KKrS7cxJibr_Krz5Z9rkpXlocvd_W3AP7mQESt6uusx9uOa7B3D7Ei_hQ_hxEIUjyMnyop-Td35I6Vod0Z0jSUQzphclj5KUcYAmfkYyU-tZMvuCP6OHfUyqJ5PpEOMp-YC9hnzrzwP5jHHqIl8AfQRfJ-9PDj_SrMpALYK5geqaCYGTvPJNGUwdvA-SG0S_Y-krEXCIW-aU0YI5KQTCpVqzxhrjdOCWYzh7DHtd3_mnQBBdybE0VemsqgMXSmsEeOOAmMFxrU0Bzdovrc2U5VE547zFpUv0Z3u1PwsYbcrNVqQd_yxxEN2-sY6k2-lFPz9r8xhunakMt0rb2pa1xspabHWFbuU8eIQ6BeyvHd_mSLBot14v4NXmM47heDCjO98vk41EJFUKtHmy6mObmlQcyzeqLEDs9L6dqu5-6abfE0-4klFYWj37e7Wewy0Wr3SUjDK2D3vDfOlfwE37a5gu5i_TgPoNcY4vYQ
  priority: 102
  providerName: ProQuest
Title Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/36671591
https://www.proquest.com/docview/2767166200
https://www.proquest.com/docview/2768241170
https://pubmed.ncbi.nlm.nih.gov/PMC9854739
https://doaj.org/article/db3b6c9ac4c14a9aac81b327666fe242
Volume 10
WOSCitedRecordID wos000914412900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7S
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5B4UAPiDcLbWQkrqtkvQ_bx6YkBQnCihYRTis_S0S7W6WbHvvbGXu3IUGVeuHiw3q8cjxjzzeb8TcA74XBGMAmMubayTjTuYkVY9iMuEsMBiTMhKoln9lsxudzUW6U-vI5YR09cLdwQ6NSVWghdaaTTAopNQKtlDKE3c6if_GnL6KejWAqfF1JaY6uvrsSnGJcP1SLxv5l-PPMQ74e3ZY3CqT9tyHNfxMmNzzQ9Ak87qEjOeim_BTu2foZ7G4QCj6H32Nf8YGcrM6bJflg25BnVRNZGxKqX_q8oKAKElIFUMRekJ5i9TSIHePL4sPGZ8OT6aL1ByE5QnWTH82ZI1_xgDnvb26-gO_Tycnhx7gvpxBrRGFtLDPKGHpnYfPEqcxZ63ihcDVH3KbM4d7U1AglGTWcMcQ5maS5VspIV-gCz6GXsFM3tX0NBGERH3GVJkaLzBUM1YLIbOTQ2ZtCShVBfrOsle65xn3Ji7MKYw6vjup2dUQwXI-76Ng27hwx9lpbS3u27PAAbajqbai6y4Yi2LvRedVv4csKuzGWLPAUieDduhs3n_9HRda2WQUZjhAoYSjzqjOR9UzSAsfnIomAbRnP1lS3e-rFr0DwLbivCC3e_I_f9hYeUX9jI6ExpXuw0y5Xdh8e6qt2cbkcwH025wN4MJ7Mym-DsIcGPv21DO2xb68n2F9--lL-_AOvHSlt
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8CBRYJjlbitb2PA0K0JbRqCJUoojd3nyWitUMeIP4Uv5HZjZM0qIJTD1xyiGettf3NzLf27HwAL6TFNYBLVSKMV0luCptozvGnI3xqcUHCbVQt6fF-Xxweyv01-DXfCxPKKucxMQZqW5vwjrxNOUNqz_Chvh5-S4JqVPi6OpfQmMFiz_38gUu28avdbXy-Lyntvj3Y2kkaVYHEIBmZJCqnnGOSkq5Ivc69c14wjeytI1zGPULUUCu14tQKzjHd54oWRmurPDMM3RHPewkuI42gIpYK7i_f6WS0QIIx24icZbLT1oPaLfsKhn5HQQVvJQdGqYDz-O2fZZpn8l735v92x27BjYZhkzczl7gNa666A9fP9F28C183gzAGOZie1iOy7SaxHK0iqrIkioSG8qmIWBIrKtDEDUnTifY4mn3EkyVbddg0QLqDScgX5B16Bflcn3jyAePwabPB9R58upCrvQ_rVV25h0CQPYqO0Flqjcw941IpJLAdj5zIMqV0C4o5DkrTtGQPyiAnJS7NAn7K8_HTgvZi3HDWlOSfIzYDzBbWoal4_KMeHZdNjCqtzjQzUpncpLnCyRq86gxhxJh3SOVasDEHWtlEunG5RFkLni8OY4wKH55U5epptBHIFFOONg9mmF7MJGM4vpBpC_gK2lemunqkGnyJfdClCMLZ8tHfp_UMru4cvO-Vvd3-3mO4RsP2lZQmlG7A-mQ0dU_givk-GYxHT6MzEzi6aF_4DeDkjLs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceD8CBRYJjlbitb3rPSBEGwJVqxCJInpz91kiWjskDoi_xq9jdmMnDarg1AOXHOJZa21_M_OtPTsfwAthcA1gYxnl2sko1ZmJFOf408tdbHBBwk1QLdnnw2F-eChGG_Cr3QvjyyrbmBgCtam0f0fepZwhtWf4ULuuKYsY9QevJ98iryDlv7S2choLiOzZnz9w-TZ7tdvHZ_2S0sHbg533UaMwEGkkJnUkU8o5Jixhs9ip1FnrcqaQyfVym3CHcNXUCCU5NTnnmPpTSTOtlJGOaYauiee9BJe5b1oeygZHq_c7Cc2QbCw2JSeJ6HXVuLKrHoO-95FXxFvLh0E24Dyu-2fJ5pkcOLj5P9-9W3CjYd7kzcJVbsOGLe_A9TP9GO_C120vmEEO5qfVlPRtHcrUSiJLQ4J4qC-rCkgmodICTeyENB1qj4PZRzxZtFP5zQRkMK59HiHv0FvI5-rEkQ8Yn0-bja_34NOFXO192Cyr0j4Egqwy7-UqiY0WqWNcSInEtueQKxkmpepA1mKi0E2rdq8YclLgks1jqTgfSx3oLsdNFs1K_jli20Nuae2bjYc_qulx0cSuwqhEMS2kTnWcSpysxqtOEFKMOYsUrwNbLeiKJgLOihXiOvB8eRhjl_8gJUtbzYNNjgwy5mjzYIHv5UwShuMzEXeAryF_barrR8rxl9AfXeReUFs8-vu0nsFVdIFif3e49xiuUb-rJaYRpVuwWU_n9glc0d_r8Wz6NPg1gaOLdoXfO_-VeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Detection+and+Classification+Using+Deep+Learning+and+Sine-Cosine+Fitness+Grey+Wolf+Optimization&rft.jtitle=Bioengineering+%28Basel%29&rft.au=ZainEldin%2C+Hanaa&rft.au=Gamel%2C+Samah+A.&rft.au=El-Kenawy%2C+El-Sayed+M.&rft.au=Alharbi%2C+Amal+H.&rft.date=2022-12-22&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=10&rft.issue=1&rft.spage=18&rft_id=info:doi/10.3390%2Fbioengineering10010018&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering10010018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon