Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization
Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a...
Saved in:
| Published in: | Bioengineering (Basel) Vol. 10; no. 1; p. 18 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
22.12.2022
MDPI |
| Subjects: | |
| ISSN: | 2306-5354, 2306-5354 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms’ strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN’s performance by the CNN optimization’s hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset. |
|---|---|
| AbstractList | Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms' strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN's performance by the CNN optimization's hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset.Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms' strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN's performance by the CNN optimization's hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset. Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms’ strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN’s performance by the CNN optimization’s hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset. |
| Author | Alharbi, Amal H. Ibrahim, Abdelhameed Gamel, Samah A. Khafaga, Doaa Sami ZainEldin, Hanaa El-Kenawy, El-Sayed M. Talaat, Fatma M. |
| AuthorAffiliation | 3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia 1 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt 2 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt 4 Machine Learning & Information Retrieval Department, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33511, Egypt |
| AuthorAffiliation_xml | – name: 4 Machine Learning & Information Retrieval Department, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33511, Egypt – name: 1 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt – name: 2 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt – name: 3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| Author_xml | – sequence: 1 givenname: Hanaa surname: ZainEldin fullname: ZainEldin, Hanaa – sequence: 2 givenname: Samah A. orcidid: 0000-0003-1753-030X surname: Gamel fullname: Gamel, Samah A. – sequence: 3 givenname: El-Sayed M. orcidid: 0000-0002-9221-7658 surname: El-Kenawy fullname: El-Kenawy, El-Sayed M. – sequence: 4 givenname: Amal H. surname: Alharbi fullname: Alharbi, Amal H. – sequence: 5 givenname: Doaa Sami orcidid: 0000-0002-9843-6392 surname: Khafaga fullname: Khafaga, Doaa Sami – sequence: 6 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed – sequence: 7 givenname: Fatma M. orcidid: 0000-0001-6116-2191 surname: Talaat fullname: Talaat, Fatma M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36671591$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl1rFDEUhgep2Fr7F8qAN96M5jszIIJdbS0s9MIWL0OSOVmzziZrMiPUX29mt5W2CEIgyclz3veQc15WByEGqKpTjN5S2qF3xkcIKx8Akg8rjNC82mfVEaFINJxydvDgfFid5LxGBaGEE8FeVIdUCIl5h4-qH2dJ-1BfT5uY6k8wgh19DLUOfb0YdM7eeat3oZtcvAoC23oJOoX5NmNfSx3NIpZXqM_9GCDn-iLBbf0tDq6-2o5-43_vJF5Vz50eMpzc7cfVzfnn68WXZnl1cbn4uGwsR-3YaEakbDntgGNnmANwrTAtNqgFKh1G2JK-M1qSvpWSY8404daYXjthhRT0uLrc6_ZRr9U2-Y1Otypqr3aBmFZKp9HbAVRvqBG205ZZzHSntS0-lEghhAPCSNH6sNfaTmYDvYUwJj08En38Evx3tYq_VNdyJmlXBN7cCaT4c4I8qo3PFoZBB4hTVsWrJQxjiQr6-gm6jlMK5atmSmIhCJqp04cV_S3lvqcFeL8HbIo5J3DK-nHXgFKgHxRGap4i9e8pKuniSfq9w38S_wBAHtIa |
| CitedBy_id | crossref_primary_10_1007_s11518_025_5671_y crossref_primary_10_1007_s00521_023_09391_2 crossref_primary_10_1007_s42979_024_03228_y crossref_primary_10_1155_acis_9991264 crossref_primary_10_1038_s41598_025_99228_w crossref_primary_10_3390_biomimetics9060331 crossref_primary_10_1016_j_bspc_2025_107942 crossref_primary_10_1007_s11042_023_17587_w crossref_primary_10_1016_j_seta_2025_104348 crossref_primary_10_3389_fonc_2025_1508326 crossref_primary_10_1038_s41598_025_06455_2 crossref_primary_10_1088_2057_1976_acebf1 crossref_primary_10_1109_ACCESS_2024_3403902 crossref_primary_10_3390_biomimetics8020141 crossref_primary_10_1038_s41598_025_11754_9 crossref_primary_10_1080_0954898X_2024_2343342 crossref_primary_10_1186_s40537_025_01207_5 crossref_primary_10_1007_s00521_025_11278_3 crossref_primary_10_1051_matecconf_202439201110 crossref_primary_10_1051_epjconf_202532801052 crossref_primary_10_12720_jait_16_6_884_892 crossref_primary_10_3390_en17215417 crossref_primary_10_4018_IJSKD_352848 crossref_primary_10_1007_s12559_025_10446_w crossref_primary_10_1016_j_procs_2024_03_259 crossref_primary_10_3390_a18020089 crossref_primary_10_1002_adhm_202303563 crossref_primary_10_1007_s00521_023_08962_7 crossref_primary_10_1109_ACCESS_2023_3343126 crossref_primary_10_1007_s11042_023_15923_8 crossref_primary_10_1007_s11831_025_10238_3 crossref_primary_10_1007_s00521_023_08809_1 crossref_primary_10_3389_fonc_2025_1596718 crossref_primary_10_1016_j_bspc_2024_107365 crossref_primary_10_1007_s11042_023_16769_w crossref_primary_10_1109_ACCESS_2024_3485895 crossref_primary_10_3892_ol_2025_15080 crossref_primary_10_3389_fonc_2023_1290112 crossref_primary_10_1007_s11760_024_03357_0 crossref_primary_10_1007_s12597_024_00835_4 crossref_primary_10_3390_info15100653 crossref_primary_10_1007_s00521_025_11084_x crossref_primary_10_1038_s41598_025_00509_1 crossref_primary_10_3390_a17030096 crossref_primary_10_1007_s00521_024_10453_2 crossref_primary_10_1007_s12652_023_04659_w crossref_primary_10_1016_j_imavis_2025_105417 crossref_primary_10_3390_bioengineering10121435 crossref_primary_10_1177_21925682241261342 crossref_primary_10_1186_s12911_024_02419_0 crossref_primary_10_1007_s00521_023_08681_z crossref_primary_10_54392_irjmt2536 crossref_primary_10_3390_diagnostics13050864 crossref_primary_10_1007_s00521_023_09310_5 crossref_primary_10_3390_diagnostics15151863 crossref_primary_10_1016_j_chemolab_2025_105414 crossref_primary_10_3389_fonc_2025_1512739 crossref_primary_10_1007_s11042_024_19652_4 crossref_primary_10_1016_j_eswa_2025_126633 crossref_primary_10_1186_s43067_025_00207_y crossref_primary_10_1007_s11760_025_04250_0 crossref_primary_10_1007_s13198_025_02762_z crossref_primary_10_1007_s41870_024_02216_y crossref_primary_10_1016_j_ymeth_2025_04_016 crossref_primary_10_3390_biomedinformatics5020030 crossref_primary_10_1007_s00521_023_09232_2 crossref_primary_10_1007_s11042_024_20141_x crossref_primary_10_3390_diagnostics13071282 crossref_primary_10_3390_diagnostics14161714 crossref_primary_10_3390_cancers15164172 crossref_primary_10_3390_math13071117 crossref_primary_10_1007_s13042_025_02727_5 crossref_primary_10_1038_s41598_025_99544_1 crossref_primary_10_3390_info16060456 crossref_primary_10_1016_j_brainres_2025_149704 crossref_primary_10_1108_ACI_09_2023_0022 crossref_primary_10_3390_eng6050082 crossref_primary_10_7759_cureus_66157 crossref_primary_10_1007_s11042_025_20633_4 |
| Cites_doi | 10.1109/ICAICT51780.2020.9333528 10.1007/978-3-319-24574-4_28 10.1109/ICOEI53556.2022.9777114 10.1109/CVPR.2016.90 10.1109/ICD.2018.8514789 10.3390/curroncol29100590 10.3389/fnins.2018.00804 10.1007/s12553-020-00514-6 10.1109/ACCESS.2022.3196660 10.1109/TST.2014.6961028 10.1109/TDEI.2017.006841 10.1109/TMI.2021.3077079 10.1007/s00371-020-02005-1 10.3233/AIC-170729 10.1016/j.bspc.2021.103356 10.1007/s11063-020-10398-2 10.1109/ICBSII51839.2021.9445122 10.1109/ACCESS.2022.3166901 10.1109/ACCESS.2022.3190508 10.3390/math10173144 10.1007/978-981-15-0751-9_7 10.1109/CVPR.2015.7298594 10.1007/s40747-021-00563-y 10.1109/ACCESS.2021.3111408 10.1109/ICACAT.2018.8933603 10.1109/ACCESS.2022.3172954 10.1109/ICITAET47105.2019.9170144 10.1016/j.compbiomed.2020.103804 10.1016/j.matpr.2021.01.601 10.1007/s40998-021-00426-9 10.1016/j.compbiomed.2019.103345 10.1016/j.asoc.2020.106580 10.1007/s00500-021-05748-8 10.1007/s11227-020-03572-9 10.1016/j.compmedimag.2021.101940 10.1016/j.irbm.2021.06.003 10.1038/s41598-018-37769-z 10.3390/math10162912 10.1109/TNNLS.2021.3077188 10.3390/diagnostics10080565 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/bioengineering10010018 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2306-5354 |
| ExternalDocumentID | oai_doaj_org_article_db3b6c9ac4c14a9aac81b327666fe242 PMC9854739 36671591 10_3390_bioengineering10010018 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Princess Nourah bint Abdulrahman University grantid: PNURSP2022R120 – fundername: Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia grantid: PNURSP2022R120 |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c508t-a42778539e51fb4feef86b81b08e37f101c2d9ba72d8775154a25cbbdaf6c6763 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000914412900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2306-5354 |
| IngestDate | Mon Nov 10 04:32:56 EST 2025 Tue Nov 04 02:06:40 EST 2025 Wed Oct 01 13:11:58 EDT 2025 Fri Jul 25 11:40:03 EDT 2025 Thu Jan 02 22:53:11 EST 2025 Sat Nov 29 07:16:14 EST 2025 Tue Nov 18 21:57:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | deep learning technique brain tumor hyperparameters optimization convolutional neural network diagnosing |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-a42778539e51fb4feef86b81b08e37f101c2d9ba72d8775154a25cbbdaf6c6763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9843-6392 0000-0002-9221-7658 0000-0003-1753-030X 0000-0002-8352-6731 0000-0001-6116-2191 |
| OpenAccessLink | https://doaj.org/article/db3b6c9ac4c14a9aac81b327666fe242 |
| PMID | 36671591 |
| PQID | 2767166200 |
| PQPubID | 2055440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_db3b6c9ac4c14a9aac81b327666fe242 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9854739 proquest_miscellaneous_2768241170 proquest_journals_2767166200 pubmed_primary_36671591 crossref_citationtrail_10_3390_bioengineering10010018 crossref_primary_10_3390_bioengineering10010018 |
| PublicationCentury | 2000 |
| PublicationDate | 20221222 |
| PublicationDateYYYYMMDD | 2022-12-22 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221222 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Bioengineering (Basel) |
| PublicationTitleAlternate | Bioengineering (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | (ref_30) 2021; 77 Nour (ref_45) 2020; 97 Ibrahim (ref_13) 2021; 9 Deepak (ref_28) 2019; 111 Alshaikhli (ref_1) 2021; 11 Amin (ref_6) 2021; 8 Nazir (ref_9) 2021; 91 ref_11 ref_33 Irmak (ref_40) 2021; 45 Khafaga (ref_41) 2022; 10 ref_10 Kesav (ref_31) 2022; 34 Tummala (ref_32) 2022; 29 Tharwat (ref_46) 2017; 30 Samee (ref_15) 2022; 73 Zhu (ref_21) 2021; 40 ref_19 ref_18 ref_39 Abdelhamid (ref_22) 2022; 10 ref_38 Mirjalili (ref_12) 2022; 10 Sharma (ref_17) 2014; 103 Kokkalla (ref_29) 2021; 25 Tandel (ref_27) 2020; 122 Urhan (ref_37) 2022; 72 Ayadi (ref_34) 2020; 38 Khairandish (ref_36) 2022; 43 ref_24 Abutarboush (ref_14) 2021; 69 ref_23 ref_44 ref_43 ref_20 ref_42 Lee (ref_16) 2019; 9 Konar (ref_35) 2022; 33 Benmahamed (ref_47) 2017; 24 ref_3 Liu (ref_5) 2014; 19 Alhussan (ref_25) 2022; 10 Yang (ref_8) 2018; 12 Ayadi (ref_4) 2021; 53 ref_26 ref_48 Rahman (ref_2) 2022; 25 ref_7 |
| References_xml | – ident: ref_19 doi: 10.1109/ICAICT51780.2020.9333528 – ident: ref_42 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_18 doi: 10.1109/ICOEI53556.2022.9777114 – ident: ref_3 – ident: ref_24 doi: 10.1109/CVPR.2016.90 – ident: ref_48 doi: 10.1109/ICD.2018.8514789 – volume: 25 start-page: 214 year: 2022 ident: ref_2 article-title: An internet of things-based automatic brain tumor detection system publication-title: Indones. J. Electr. Eng. Comput. Sci. – volume: 103 start-page: 7 year: 2014 ident: ref_17 article-title: Brain Tumor Detection based on Machine Learning Algorithms publication-title: Int. J. Comput. Appl. – volume: 29 start-page: 7498 year: 2022 ident: ref_32 article-title: Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling publication-title: Curr. Oncol. doi: 10.3390/curroncol29100590 – volume: 12 start-page: 804 year: 2018 ident: ref_8 article-title: Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00804 – volume: 11 start-page: 267 year: 2021 ident: ref_1 article-title: MRI brain tumor medical images analysis using deep learning techniques: A systematic review publication-title: Health Technol. doi: 10.1007/s12553-020-00514-6 – volume: 10 start-page: 84188 year: 2022 ident: ref_25 article-title: Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3196660 – volume: 73 start-page: 4193 year: 2022 ident: ref_15 article-title: Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images publication-title: Comput. Mater. Contin. – volume: 19 start-page: 578 year: 2014 ident: ref_5 article-title: A survey of MRI-based brain tumor segmentation methods publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2014.6961028 – ident: ref_44 – volume: 24 start-page: 3443 year: 2017 ident: ref_47 article-title: Application of SVM and KNN to Duval Pentagon 1 for transformer oil diagnosis publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2017.006841 – volume: 40 start-page: 2354 year: 2021 ident: ref_21 article-title: Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI publication-title: IEEE Trans. Med Imaging doi: 10.1109/TMI.2021.3077079 – volume: 38 start-page: 107 year: 2020 ident: ref_34 article-title: Brain tumor classification based on hybrid approach publication-title: Vis. Comput. doi: 10.1007/s00371-020-02005-1 – volume: 30 start-page: 169 year: 2017 ident: ref_46 article-title: Linear discriminant analysis: A detailed tutorial publication-title: AI Commun. doi: 10.3233/AIC-170729 – volume: 72 start-page: 103356 year: 2022 ident: ref_37 article-title: Brain tumor classification using the fused features extracted from expanded tumor region publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103356 – volume: 53 start-page: 671 year: 2021 ident: ref_4 article-title: Deep CNN for Brain Tumor Classification publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10398-2 – ident: ref_39 doi: 10.1109/ICBSII51839.2021.9445122 – volume: 10 start-page: 40536 year: 2022 ident: ref_12 article-title: Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering Problems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166901 – volume: 10 start-page: 74449 year: 2022 ident: ref_41 article-title: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190508 – ident: ref_11 doi: 10.3390/math10173144 – ident: ref_33 doi: 10.1007/978-981-15-0751-9_7 – ident: ref_23 doi: 10.1109/CVPR.2015.7298594 – volume: 8 start-page: 3161 year: 2021 ident: ref_6 article-title: Brain tumor detection and classification using machine learning: A comprehensive survey publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00563-y – volume: 9 start-page: 125787 year: 2021 ident: ref_13 article-title: Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3111408 – ident: ref_20 doi: 10.1109/ICACAT.2018.8933603 – volume: 10 start-page: 49265 year: 2022 ident: ref_22 article-title: Robust Speech Emotion Recognition Using CNN+LSTM Based on Stochastic Fractal Search Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3172954 – ident: ref_7 doi: 10.1109/ICITAET47105.2019.9170144 – volume: 69 start-page: 2983 year: 2021 ident: ref_14 article-title: Advance Artificial Intelligence Technique for Designing Double T-shaped Monopole Antenna publication-title: Comput. Mater. Contin. – volume: 122 start-page: 103804 year: 2020 ident: ref_27 article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103804 – ident: ref_26 doi: 10.1016/j.matpr.2021.01.601 – volume: 45 start-page: 1015 year: 2021 ident: ref_40 article-title: Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework publication-title: Iran. J. Sci. Technol. Trans. Electr. Eng. doi: 10.1007/s40998-021-00426-9 – volume: 111 start-page: 103345 year: 2019 ident: ref_28 article-title: Brain tumor classification using deep CNN features via transfer learning publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103345 – volume: 97 start-page: 106580 year: 2020 ident: ref_45 article-title: A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and Bayesian Optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106580 – volume: 25 start-page: 8721 year: 2021 ident: ref_29 article-title: Three-class brain tumor classification using deep dense inception residual network publication-title: Soft Comput. doi: 10.1007/s00500-021-05748-8 – volume: 77 start-page: 7236 year: 2021 ident: ref_30 article-title: Classification of brain tumors from MR images using deep transfer learning publication-title: J. Supercomput. doi: 10.1007/s11227-020-03572-9 – volume: 91 start-page: 101940 year: 2021 ident: ref_9 article-title: Role of deep learning in brain tumor detection and classification (2015 to 2020): A review publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2021.101940 – volume: 43 start-page: 290 year: 2022 ident: ref_36 article-title: A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images publication-title: IRBM doi: 10.1016/j.irbm.2021.06.003 – ident: ref_43 – volume: 34 start-page: 6229 year: 2022 ident: ref_31 article-title: Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 9 start-page: 1952 year: 2019 ident: ref_16 article-title: Predicting Alzheimer’s disease progression using multi-modal deep learning approach publication-title: Sci. Rep. doi: 10.1038/s41598-018-37769-z – ident: ref_10 doi: 10.3390/math10162912 – volume: 33 start-page: 6331 year: 2022 ident: ref_35 article-title: Qutrit-Inspired Fully Self-Supervised Shallow Quantum Learning Network for Brain Tumor Segmentation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3077188 – ident: ref_38 doi: 10.3390/diagnostics10080565 |
| SSID | ssj0001325264 |
| Score | 2.4972842 |
| Snippet | Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities and experience. The amount of data that must be handled has... Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 18 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Bioengineering Brain Brain cancer brain tumor Brain tumors Classification convolutional neural network Deep learning deep learning technique diagnosing Fitness hyperparameters Image classification Machine learning Medical imaging Medical research Neural networks Optimization Training Trigonometric functions Tumors |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BwgEOvB-BBRmJq9XGSfw4IXahcEDLSixib5GfS8VuUtqU38_YddstWsGBSw7JOLI19vizPf4-gNfK4RrAl5pKGzStbeOoEQIfYxlKhwsS4ZJqySdxdCRPT9Vx3nBb5LTKdUxMgdr1Nu6Rj5jgCO05OvXN7CeNqlHxdDVLaFyHG5EloUqpe8fbPZaKNTjhry4GV7i6H5lp77c8f5F_KKrS7cxJibr_Krz5Z9rkpXlocvd_W3AP7mQESt6uusx9uOa7B3D7Ei_hQ_hxEIUjyMnyop-Td35I6Vod0Z0jSUQzphclj5KUcYAmfkYyU-tZMvuCP6OHfUyqJ5PpEOMp-YC9hnzrzwP5jHHqIl8AfQRfJ-9PDj_SrMpALYK5geqaCYGTvPJNGUwdvA-SG0S_Y-krEXCIW-aU0YI5KQTCpVqzxhrjdOCWYzh7DHtd3_mnQBBdybE0VemsqgMXSmsEeOOAmMFxrU0Bzdovrc2U5VE547zFpUv0Z3u1PwsYbcrNVqQd_yxxEN2-sY6k2-lFPz9r8xhunakMt0rb2pa1xspabHWFbuU8eIQ6BeyvHd_mSLBot14v4NXmM47heDCjO98vk41EJFUKtHmy6mObmlQcyzeqLEDs9L6dqu5-6abfE0-4klFYWj37e7Wewy0Wr3SUjDK2D3vDfOlfwE37a5gu5i_TgPoNcY4vYQ priority: 102 providerName: ProQuest |
| Title | Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36671591 https://www.proquest.com/docview/2767166200 https://www.proquest.com/docview/2768241170 https://pubmed.ncbi.nlm.nih.gov/PMC9854739 https://doaj.org/article/db3b6c9ac4c14a9aac81b327666fe242 |
| Volume | 10 |
| WOSCitedRecordID | wos000914412900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7P dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7S dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: PIMPY dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5B4UAPiDcLbWQkrqtkvQ_bx6YkBQnCihYRTis_S0S7W6WbHvvbGXu3IUGVeuHiw3q8cjxjzzeb8TcA74XBGMAmMubayTjTuYkVY9iMuEsMBiTMhKoln9lsxudzUW6U-vI5YR09cLdwQ6NSVWghdaaTTAopNQKtlDKE3c6if_GnL6KejWAqfF1JaY6uvrsSnGJcP1SLxv5l-PPMQ74e3ZY3CqT9tyHNfxMmNzzQ9Ak87qEjOeim_BTu2foZ7G4QCj6H32Nf8YGcrM6bJflg25BnVRNZGxKqX_q8oKAKElIFUMRekJ5i9TSIHePL4sPGZ8OT6aL1ByE5QnWTH82ZI1_xgDnvb26-gO_Tycnhx7gvpxBrRGFtLDPKGHpnYfPEqcxZ63ihcDVH3KbM4d7U1AglGTWcMcQ5maS5VspIV-gCz6GXsFM3tX0NBGERH3GVJkaLzBUM1YLIbOTQ2ZtCShVBfrOsle65xn3Ji7MKYw6vjup2dUQwXI-76Ng27hwx9lpbS3u27PAAbajqbai6y4Yi2LvRedVv4csKuzGWLPAUieDduhs3n_9HRda2WQUZjhAoYSjzqjOR9UzSAsfnIomAbRnP1lS3e-rFr0DwLbivCC3e_I_f9hYeUX9jI6ExpXuw0y5Xdh8e6qt2cbkcwH025wN4MJ7Mym-DsIcGPv21DO2xb68n2F9--lL-_AOvHSlt |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8CBRYJjlbitb2PA0K0JbRqCJUoojd3nyWitUMeIP4Uv5HZjZM0qIJTD1xyiGettf3NzLf27HwAL6TFNYBLVSKMV0luCptozvGnI3xqcUHCbVQt6fF-Xxweyv01-DXfCxPKKucxMQZqW5vwjrxNOUNqz_Chvh5-S4JqVPi6OpfQmMFiz_38gUu28avdbXy-Lyntvj3Y2kkaVYHEIBmZJCqnnGOSkq5Ivc69c14wjeytI1zGPULUUCu14tQKzjHd54oWRmurPDMM3RHPewkuI42gIpYK7i_f6WS0QIIx24icZbLT1oPaLfsKhn5HQQVvJQdGqYDz-O2fZZpn8l735v92x27BjYZhkzczl7gNa666A9fP9F28C183gzAGOZie1iOy7SaxHK0iqrIkioSG8qmIWBIrKtDEDUnTifY4mn3EkyVbddg0QLqDScgX5B16Bflcn3jyAePwabPB9R58upCrvQ_rVV25h0CQPYqO0Flqjcw941IpJLAdj5zIMqV0C4o5DkrTtGQPyiAnJS7NAn7K8_HTgvZi3HDWlOSfIzYDzBbWoal4_KMeHZdNjCqtzjQzUpncpLnCyRq86gxhxJh3SOVasDEHWtlEunG5RFkLni8OY4wKH55U5epptBHIFFOONg9mmF7MJGM4vpBpC_gK2lemunqkGnyJfdClCMLZ8tHfp_UMru4cvO-Vvd3-3mO4RsP2lZQmlG7A-mQ0dU_givk-GYxHT6MzEzi6aF_4DeDkjLs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceD8CBRYJjlbitb3rPSBEGwJVqxCJInpz91kiWjskDoi_xq9jdmMnDarg1AOXHOJZa21_M_OtPTsfwAthcA1gYxnl2sko1ZmJFOf408tdbHBBwk1QLdnnw2F-eChGG_Cr3QvjyyrbmBgCtam0f0fepZwhtWf4ULuuKYsY9QevJ98iryDlv7S2choLiOzZnz9w-TZ7tdvHZ_2S0sHbg533UaMwEGkkJnUkU8o5Jixhs9ip1FnrcqaQyfVym3CHcNXUCCU5NTnnmPpTSTOtlJGOaYauiee9BJe5b1oeygZHq_c7Cc2QbCw2JSeJ6HXVuLKrHoO-95FXxFvLh0E24Dyu-2fJ5pkcOLj5P9-9W3CjYd7kzcJVbsOGLe_A9TP9GO_C120vmEEO5qfVlPRtHcrUSiJLQ4J4qC-rCkgmodICTeyENB1qj4PZRzxZtFP5zQRkMK59HiHv0FvI5-rEkQ8Yn0-bja_34NOFXO192Cyr0j4Egqwy7-UqiY0WqWNcSInEtueQKxkmpepA1mKi0E2rdq8YclLgks1jqTgfSx3oLsdNFs1K_jli20Nuae2bjYc_qulx0cSuwqhEMS2kTnWcSpysxqtOEFKMOYsUrwNbLeiKJgLOihXiOvB8eRhjl_8gJUtbzYNNjgwy5mjzYIHv5UwShuMzEXeAryF_barrR8rxl9AfXeReUFs8-vu0nsFVdIFif3e49xiuUb-rJaYRpVuwWU_n9glc0d_r8Wz6NPg1gaOLdoXfO_-VeA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Detection+and+Classification+Using+Deep+Learning+and+Sine-Cosine+Fitness+Grey+Wolf+Optimization&rft.jtitle=Bioengineering+%28Basel%29&rft.au=ZainEldin%2C+Hanaa&rft.au=Gamel%2C+Samah+A.&rft.au=El-Kenawy%2C+El-Sayed+M.&rft.au=Alharbi%2C+Amal+H.&rft.date=2022-12-22&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=10&rft.issue=1&rft.spage=18&rft_id=info:doi/10.3390%2Fbioengineering10010018&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering10010018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |