Efficient 3D Lidar Odometry Based on Planar Patches

In this paper we present a new way to compute the odometry of a 3D lidar in real-time. Due to the significant relation between these sensors and the rapidly increasing sector of autonomous vehicles, 3D lidars have improved in recent years, with modern models producing data in the form of range image...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 18; p. 6976
Main Authors: Galeote-Luque, Andres, Ruiz-Sarmiento, Jose-Raul, Gonzalez-Jimenez, Javier
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 15.09.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we present a new way to compute the odometry of a 3D lidar in real-time. Due to the significant relation between these sensors and the rapidly increasing sector of autonomous vehicles, 3D lidars have improved in recent years, with modern models producing data in the form of range images. We take advantage of this ordered format to efficiently estimate the trajectory of the sensor as it moves in 3D space. The proposed method creates and leverages a flatness image in order to exploit the information found in flat surfaces of the scene. This allows for an efficient selection of planar patches from a first range image. Then, from a second image, keypoints related to said patches are extracted. This way, our proposal computes the ego-motion by imposing a coplanarity constraint between pairs <point, plane> whose correspondences are iteratively updated. The proposed algorithm is tested and compared with state-of-the-art ICP algorithms. Experiments show that our proposal, running on a single thread, can run 5× faster than a multi-threaded implementation of GICP, while providing a more accurate localization. A second version of the algorithm is also presented, which reduces the drift even further while needing less than half of the computation time of GICP. Both configurations of the algorithm run at frame rates common for most 3D lidars, 10 and 20 Hz on a standard CPU.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22186976