Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak
Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe...
Uloženo v:
| Vydáno v: | Resources, conservation and recycling Ročník 158; s. 104814 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.07.2020
|
| Témata: | |
| ISSN: | 0921-3449, 1879-0658 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution.
[Display omitted] |
|---|---|
| AbstractList | Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution.Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution. Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution. [Display omitted] Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM₂.₅ changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM₂.₅. Compared with the case without emission change (Case 1), Case 3 predicted that PM₂.₅ concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m³ in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM₂.₅ greater than 75 μg/m³, the reductions of PM₂.₅ in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m³ in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM₂.₅ precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution. Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution. Image, graphical abstract Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM . Compared with the case without emission change (Case 1), Case 3 predicted that PM concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM greater than 75 μg/m , the reductions of PM in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution. |
| ArticleNumber | 104814 |
| Author | Chen, Kaiyu Zhang, Hongliang Wang, Peng Wang, Pengfei Zhu, Shengqiang |
| Author_xml | – sequence: 1 givenname: Pengfei surname: Wang fullname: Wang, Pengfei organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China – sequence: 2 givenname: Kaiyu surname: Chen fullname: Chen, Kaiyu organization: Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA – sequence: 3 givenname: Shengqiang surname: Zhu fullname: Zhu, Shengqiang organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China – sequence: 4 givenname: Peng surname: Wang fullname: Wang, Peng organization: Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China – sequence: 5 givenname: Hongliang orcidid: 0000-0002-1797-2311 surname: Zhang fullname: Zhang, Hongliang email: zhanghl@fudan.edu.cn organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32300261$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtvEzEUhS1URNPCXwAv2UzwK7ZnAVKV8qhUqQseW8vjuZM6TOxge0bqv8dR2grYlJWt63POPdZ3hk5CDIDQG0qWlFD5brtMkF0MCdySEXaYCk3FM7SgWrUNkSt9ghakZbThQrSn6CznLSGE65a_QKeccUKYpAvUf4UZEmDrE97HcZyKjwHXWSgZh1iwnaPvocfdHU7QT65ebSi3Ke7jBoJ32LriZ188ZNxPyYcNXt_8uLpsaIvjVLoE9udL9HywY4ZX9-c5-v7p47f1l-b65vPV-uK6cSuiS6NBUk0HQjqtOdGgFDjJ6WAHJYVUWnGtFBO266S2nehaYJwqJrl1sueU8XP04Zi7n7od9K5-ItnR7JPf2XRnovXm75fgb80mzkbRFeWa1IC39wEp_pogF7Pz2cE42gBxyoYJTrVgq_Y_pLylraJS8yp9_Wetxz4PFKrg_VHgUsw5wWCcL_ZAorb0o6HEHKibrXmkbg7UzZF69at__A8rnnZeHJ1QscweksnOQ6iUfZUW00f_ZMZv4XXMmQ |
| CitedBy_id | crossref_primary_10_1016_j_scs_2021_103365 crossref_primary_10_3390_ijerph17145124 crossref_primary_10_1007_s11356_023_25757_4 crossref_primary_10_1080_16000889_2021_1971925 crossref_primary_10_1016_j_pce_2024_103811 crossref_primary_10_3390_su12218887 crossref_primary_10_1007_s41324_020_00366_2 crossref_primary_10_1016_j_heliyon_2023_e18918 crossref_primary_10_1016_j_scitotenv_2020_141592 crossref_primary_10_1016_j_atmosenv_2021_118750 crossref_primary_10_1016_j_ocecoaman_2023_106602 crossref_primary_10_1007_s11356_023_27236_2 crossref_primary_10_5194_acp_22_8369_2022 crossref_primary_10_3389_fenvs_2021_784959 crossref_primary_10_1007_s41810_023_00209_1 crossref_primary_10_3390_atmos13050640 crossref_primary_10_3390_atmos12111490 crossref_primary_10_1007_s10668_021_01328_w crossref_primary_10_3389_fenvs_2022_858685 crossref_primary_10_3390_ijerph17155279 crossref_primary_10_1002_adsu_202200166 crossref_primary_10_1016_j_apr_2024_102110 crossref_primary_10_3390_atmos14020400 crossref_primary_10_1109_ACCESS_2020_3008733 crossref_primary_10_5194_acp_21_15199_2021 crossref_primary_10_1016_j_jiph_2021_12_001 crossref_primary_10_1007_s10668_022_02353_z crossref_primary_10_1016_j_scitotenv_2020_140005 crossref_primary_10_1007_s11869_020_00893_9 crossref_primary_10_1016_j_apr_2020_12_001 crossref_primary_10_1016_j_scitotenv_2020_140496 crossref_primary_10_1007_s10668_020_00837_4 crossref_primary_10_3390_su13052873 crossref_primary_10_1016_j_jhazmat_2025_138998 crossref_primary_10_3390_atmos14111670 crossref_primary_10_1016_j_atmosenv_2021_118627 crossref_primary_10_1007_s11356_020_10689_0 crossref_primary_10_1029_2020GL088913 crossref_primary_10_5194_acp_20_15725_2020 crossref_primary_10_1016_j_scs_2021_103388 crossref_primary_10_1016_j_jenvman_2020_111907 crossref_primary_10_1016_j_energy_2020_118701 crossref_primary_10_1016_j_jth_2021_101257 crossref_primary_10_3390_atmos12020250 crossref_primary_10_1016_j_scitotenv_2020_139052 crossref_primary_10_1016_j_apr_2025_102723 crossref_primary_10_3390_su12218984 crossref_primary_10_1016_j_scitotenv_2020_141129 crossref_primary_10_1016_j_jes_2021_10_014 crossref_primary_10_1016_j_rser_2021_111239 crossref_primary_10_1016_j_envpol_2021_117783 crossref_primary_10_1016_j_scitotenv_2020_142226 crossref_primary_10_1029_2022EF002959 crossref_primary_10_1007_s00477_022_02191_5 crossref_primary_10_1016_j_envres_2021_111742 crossref_primary_10_1007_s12517_022_09687_y crossref_primary_10_1007_s11356_022_23984_9 crossref_primary_10_1016_j_jece_2020_104973 crossref_primary_10_1029_2020GL090080 crossref_primary_10_1007_s13280_021_01574_2 crossref_primary_10_3390_ijerph21091171 crossref_primary_10_1007_s10311_022_01464_3 crossref_primary_10_1016_j_gsf_2022_101368 crossref_primary_10_1007_s40201_022_00786_2 crossref_primary_10_1016_j_scitotenv_2023_163190 crossref_primary_10_1016_j_apr_2024_102252 crossref_primary_10_1016_j_jclepro_2022_133938 crossref_primary_10_1007_s11356_021_13098_z crossref_primary_10_1016_j_scitotenv_2020_139281 crossref_primary_10_1007_s11869_020_00894_8 crossref_primary_10_1016_j_scitotenv_2020_139282 crossref_primary_10_1029_2021JD036191 crossref_primary_10_5194_acp_20_14347_2020 crossref_primary_10_1007_s10640_020_00445_w crossref_primary_10_1016_j_envres_2021_111754 crossref_primary_10_1016_j_jes_2021_10_005 crossref_primary_10_1016_j_envint_2021_106818 crossref_primary_10_1016_j_atmosenv_2021_118844 crossref_primary_10_1016_j_atmosenv_2021_118848 crossref_primary_10_1016_j_buildenv_2021_107718 crossref_primary_10_1016_j_chemosphere_2022_135013 crossref_primary_10_1016_j_apenergy_2020_116179 crossref_primary_10_1007_s00267_020_01375_5 crossref_primary_10_3846_jeelm_2023_19472 crossref_primary_10_5194_acp_22_9987_2022 crossref_primary_10_3389_fenvs_2021_654651 crossref_primary_10_1016_j_jes_2020_09_019 crossref_primary_10_1007_s11869_020_00881_z crossref_primary_10_1007_s11869_021_01000_2 crossref_primary_10_1016_j_scitotenv_2020_140101 crossref_primary_10_3390_rs14143336 crossref_primary_10_1007_s10668_021_01324_0 crossref_primary_10_3389_fenvs_2022_877268 crossref_primary_10_1088_1748_9326_ac1014 crossref_primary_10_1016_j_eap_2021_07_012 crossref_primary_10_1029_2023JD038540 crossref_primary_10_1029_2020GL089912 crossref_primary_10_1007_s41810_025_00330_3 crossref_primary_10_5194_acp_21_7723_2021 crossref_primary_10_1016_j_apr_2020_11_005 crossref_primary_10_1007_s11869_020_00892_w crossref_primary_10_5194_acp_22_12207_2022 crossref_primary_10_1007_s11356_021_14159_z crossref_primary_10_1016_j_envres_2021_112624 crossref_primary_10_1016_j_scitotenv_2020_142874 crossref_primary_10_1016_j_heha_2022_100025 crossref_primary_10_1016_j_jenvman_2021_112166 crossref_primary_10_1007_s11356_023_25713_2 crossref_primary_10_5572_ajae_2020_14_4_378 crossref_primary_10_5194_acp_23_4311_2023 crossref_primary_10_1007_s00477_021_02066_1 crossref_primary_10_1016_j_jhazmat_2025_138720 crossref_primary_10_1038_s41598_021_02776_0 crossref_primary_10_1088_1748_9326_ad60df crossref_primary_10_1016_j_jes_2020_09_038 crossref_primary_10_1016_j_scitotenv_2020_143868 crossref_primary_10_3390_atmos13122099 crossref_primary_10_1016_j_scitotenv_2020_139133 crossref_primary_10_1016_j_scitotenv_2020_140244 crossref_primary_10_1093_aje_kwae171 crossref_primary_10_1016_j_scitotenv_2020_140000 crossref_primary_10_5194_acp_22_13183_2022 crossref_primary_10_3390_su15129362 crossref_primary_10_1016_j_scitotenv_2020_141314 crossref_primary_10_1016_j_envres_2020_110048 crossref_primary_10_1016_j_envpol_2021_118783 crossref_primary_10_3390_rs15051295 crossref_primary_10_1016_j_envpol_2021_117450 crossref_primary_10_1016_j_envres_2021_111314 crossref_primary_10_1111_risa_14080 crossref_primary_10_1093_nsr_nwab061 crossref_primary_10_1016_j_scitotenv_2020_141320 crossref_primary_10_1016_j_scitotenv_2022_159435 crossref_primary_10_3390_ijerph18073404 crossref_primary_10_3390_ijerph18073528 crossref_primary_10_1016_j_apenergy_2020_116042 crossref_primary_10_1016_j_scitotenv_2021_151657 crossref_primary_10_1007_s41810_023_00173_w crossref_primary_10_1016_j_scitotenv_2021_148301 crossref_primary_10_1002_jeq2_20192 crossref_primary_10_1016_j_cities_2022_103770 crossref_primary_10_1016_j_jes_2021_01_022 crossref_primary_10_1029_2024JD040834 crossref_primary_10_1016_j_envres_2020_109634 crossref_primary_10_3390_toxics9060122 crossref_primary_10_1016_j_physa_2020_125551 crossref_primary_10_1016_j_envres_2020_110514 crossref_primary_10_1016_j_envres_2022_112818 crossref_primary_10_1016_j_envres_2020_110515 crossref_primary_10_3390_rs13030369 crossref_primary_10_1016_j_scs_2020_102382 crossref_primary_10_3390_atmos12020184 crossref_primary_10_1016_j_jhazmat_2020_124903 crossref_primary_10_1016_j_scitotenv_2020_141621 crossref_primary_10_1016_j_uclim_2021_101013 crossref_primary_10_1057_s41599_021_00920_9 crossref_primary_10_1007_s10874_021_09428_7 crossref_primary_10_1080_00207233_2021_1941662 crossref_primary_10_1016_j_envres_2021_110927 crossref_primary_10_3390_ijerph182413347 crossref_primary_10_1016_j_envpol_2023_123183 crossref_primary_10_1016_j_jes_2021_01_006 crossref_primary_10_1016_j_scitotenv_2020_140556 crossref_primary_10_3389_fenvs_2022_982566 crossref_primary_10_1007_s10661_021_09342_1 crossref_primary_10_1016_j_envres_2020_109652 crossref_primary_10_1016_j_scitotenv_2023_163369 crossref_primary_10_1007_s11356_020_11858_x crossref_primary_10_1029_2020JD034090 crossref_primary_10_1016_j_envpol_2021_118118 crossref_primary_10_1088_1755_1315_534_1_012010 crossref_primary_10_1016_j_scitotenv_2021_146394 crossref_primary_10_1038_s41598_023_50955_y crossref_primary_10_1016_j_jth_2021_101087 crossref_primary_10_1016_j_accre_2021_09_013 crossref_primary_10_1016_j_atmosenv_2024_120734 crossref_primary_10_1007_s00038_020_01394_3 crossref_primary_10_1016_j_atmosres_2021_105657 crossref_primary_10_20473_jkl_v12i1si_2020_51_59 crossref_primary_10_5572_ajae_2021_045 crossref_primary_10_3390_rs15020530 crossref_primary_10_1016_j_scitotenv_2020_140739 crossref_primary_10_1016_j_polymdegradstab_2023_110644 crossref_primary_10_1016_j_sste_2021_100417 crossref_primary_10_1007_s12648_022_02380_6 crossref_primary_10_3390_atmos14010091 crossref_primary_10_1016_j_isci_2025_112195 crossref_primary_10_1007_s11869_021_01039_1 crossref_primary_10_1038_s41612_022_00249_3 crossref_primary_10_1016_j_atmosres_2023_106940 crossref_primary_10_7717_peerj_9642 crossref_primary_10_1007_s10661_023_11377_5 crossref_primary_10_1016_j_envres_2021_110839 crossref_primary_10_1016_j_gr_2022_04_023 crossref_primary_10_1007_s11869_020_00921_8 crossref_primary_10_1088_1748_9326_abf876 crossref_primary_10_3390_su13169312 crossref_primary_10_1016_j_envpol_2025_126505 crossref_primary_10_1016_j_scitotenv_2021_146579 crossref_primary_10_1007_s00376_021_1281_x crossref_primary_10_1016_j_atmosres_2025_108314 crossref_primary_10_1016_j_jclepro_2021_125992 crossref_primary_10_1016_j_atmosenv_2024_120874 crossref_primary_10_1016_j_jth_2021_101061 crossref_primary_10_1016_j_jenvman_2020_111496 crossref_primary_10_1016_j_scitotenv_2023_165114 crossref_primary_10_1007_s11869_020_00956_x crossref_primary_10_1111_ina_13095 crossref_primary_10_1016_j_jclepro_2021_126514 crossref_primary_10_3390_atmos12060788 crossref_primary_10_1016_j_scitotenv_2020_140516 crossref_primary_10_1016_j_scitotenv_2020_140758 crossref_primary_10_1016_j_scitotenv_2020_140879 crossref_primary_10_3390_su16062340 crossref_primary_10_1007_s11869_021_01082_y crossref_primary_10_1016_j_jenvman_2021_112676 crossref_primary_10_1016_j_envres_2021_110854 crossref_primary_10_3389_fenvs_2023_1331536 crossref_primary_10_1016_j_scitotenv_2022_157881 crossref_primary_10_1007_s11869_020_00968_7 crossref_primary_10_1016_j_resconrec_2023_107110 crossref_primary_10_3390_atmos16070768 crossref_primary_10_1007_s41742_025_00863_y crossref_primary_10_1016_j_envres_2023_116887 crossref_primary_10_1007_s10668_020_00878_9 crossref_primary_10_1038_s41598_020_79088_2 crossref_primary_10_3390_ijerph18126274 crossref_primary_10_1007_s10661_024_12567_5 crossref_primary_10_1038_s41598_022_16105_6 crossref_primary_10_1038_s41561_023_01285_1 crossref_primary_10_1002_ep_13672 crossref_primary_10_1109_JSTARS_2021_3119383 crossref_primary_10_1016_j_apr_2021_02_010 crossref_primary_10_1016_j_envres_2021_111164 crossref_primary_10_1175_EI_D_20_0017_1 crossref_primary_10_1007_s11356_021_17889_2 crossref_primary_10_1016_j_scitotenv_2020_140931 crossref_primary_10_1016_j_trd_2023_103773 crossref_primary_10_1029_2020GL090542 crossref_primary_10_1017_S0376892921000369 crossref_primary_10_1007_s10098_024_02749_7 crossref_primary_10_1016_j_envpol_2022_119464 crossref_primary_10_1016_j_jes_2022_08_024 crossref_primary_10_3390_ijerph191912904 crossref_primary_10_7717_peerj_cs_1270 crossref_primary_10_1016_j_energy_2021_120518 crossref_primary_10_3389_fpubh_2021_642630 crossref_primary_10_3390_ijerph19159022 crossref_primary_10_3390_su132112312 crossref_primary_10_1016_j_envres_2021_111052 crossref_primary_10_3390_ijerph191711111 crossref_primary_10_1088_2515_7620_aba425 crossref_primary_10_1016_j_scitotenv_2021_147739 crossref_primary_10_1029_2020GL091883 crossref_primary_10_1007_s10668_020_00898_5 crossref_primary_10_1016_j_atmosenv_2020_117835 crossref_primary_10_3390_su15010642 crossref_primary_10_1007_s11869_020_00845_3 crossref_primary_10_1016_j_rsase_2022_100757 crossref_primary_10_3390_atmos14091390 crossref_primary_10_1016_j_ecolind_2023_109862 crossref_primary_10_1016_j_scitotenv_2022_155970 crossref_primary_10_1088_1748_9326_ac69fe crossref_primary_10_1016_j_envres_2021_111186 crossref_primary_10_3390_su15020892 crossref_primary_10_1007_s00477_023_02620_z crossref_primary_10_1007_s11356_021_15433_w crossref_primary_10_1029_2020GL091611 crossref_primary_10_1016_j_envres_2020_109938 crossref_primary_10_1016_j_scitotenv_2020_140840 crossref_primary_10_1080_15567036_2021_1902431 crossref_primary_10_1016_j_atmosenv_2022_119540 crossref_primary_10_1016_j_atmosenv_2022_119308 crossref_primary_10_1186_s12982_025_00788_z crossref_primary_10_1016_j_apenergy_2020_115835 crossref_primary_10_1016_j_scitotenv_2020_140946 crossref_primary_10_1007_s11600_022_00873_w crossref_primary_10_1088_1748_9326_ac507d crossref_primary_10_1016_j_scitotenv_2023_162424 crossref_primary_10_3390_rs16193618 crossref_primary_10_1016_j_scitotenv_2020_138878 crossref_primary_10_1016_j_accre_2022_10_004 crossref_primary_10_1016_j_heliyon_2024_e39567 crossref_primary_10_1016_j_uclim_2021_101070 crossref_primary_10_5194_acp_21_1581_2021 crossref_primary_10_1007_s11869_020_00888_6 crossref_primary_10_1016_j_envpol_2020_115617 crossref_primary_10_1016_j_envpol_2020_115859 crossref_primary_10_1016_j_scitotenv_2024_170033 crossref_primary_10_1016_j_envres_2020_109835 crossref_primary_10_1007_s13198_024_02315_w crossref_primary_10_1016_j_atmosres_2021_105730 crossref_primary_10_1007_s11869_020_00940_5 crossref_primary_10_5194_acp_21_15431_2021 crossref_primary_10_1080_15567036_2020_1853854 crossref_primary_10_3389_fenvs_2022_910579 crossref_primary_10_1016_j_atmosres_2020_105328 crossref_primary_10_1016_j_apr_2023_101738 crossref_primary_10_1016_j_jes_2022_02_039 crossref_primary_10_12973_ejhbe_9_1_9 crossref_primary_10_1016_j_aosl_2024_100495 crossref_primary_10_1029_2022JD038360 crossref_primary_10_20518_tjph_824083 crossref_primary_10_1029_2020GH000272 crossref_primary_10_5194_acp_21_18333_2021 crossref_primary_10_1016_j_envpol_2022_119027 crossref_primary_10_5194_acp_24_8569_2024 crossref_primary_10_5194_acp_22_641_2022 crossref_primary_10_1007_s00477_021_02071_4 crossref_primary_10_1016_j_apr_2020_08_001 crossref_primary_10_1016_j_chemosphere_2024_142844 crossref_primary_10_1016_j_scitotenv_2021_151088 crossref_primary_10_1016_j_apr_2022_101438 crossref_primary_10_1016_j_uclim_2020_100664 crossref_primary_10_5194_acp_21_2491_2021 crossref_primary_10_1016_j_jclepro_2021_126561 crossref_primary_10_1016_j_scitotenv_2020_144009 crossref_primary_10_1016_j_jes_2023_09_007 crossref_primary_10_1029_2020GL091202 crossref_primary_10_1007_s40201_021_00717_7 crossref_primary_10_1016_j_scitotenv_2020_143161 crossref_primary_10_3390_atmos14040630 crossref_primary_10_1007_s00128_020_02895_w crossref_primary_10_1007_s11356_021_12934_6 crossref_primary_10_1080_27658511_2021_1885185 crossref_primary_10_1016_j_atmosenv_2023_119757 crossref_primary_10_3390_ijerph192316338 crossref_primary_10_1007_s11356_021_13792_y crossref_primary_10_1029_2020GL090444 crossref_primary_10_5194_acp_23_6217_2023 crossref_primary_10_1016_j_atmosenv_2023_119666 crossref_primary_10_1016_j_scitotenv_2021_146618 crossref_primary_10_1016_j_sste_2021_100471 crossref_primary_10_3390_atmos12040422 crossref_primary_10_3390_rs13071351 crossref_primary_10_2478_oszn_2022_0003 crossref_primary_10_5194_acp_21_8693_2021 crossref_primary_10_1016_j_buildenv_2025_112543 crossref_primary_10_1007_s12040_021_01722_y crossref_primary_10_1016_j_apr_2023_101860 crossref_primary_10_5194_acp_23_14481_2023 crossref_primary_10_1016_j_atmosres_2023_106999 crossref_primary_10_1016_j_scitotenv_2021_152191 crossref_primary_10_1007_s41651_020_00064_5 crossref_primary_10_1016_j_apr_2022_101452 crossref_primary_10_3390_su17115185 crossref_primary_10_3390_environments8010002 crossref_primary_10_7189_jogh_13_06027 crossref_primary_10_1016_j_jenvman_2021_112827 crossref_primary_10_24057_2071_9388_2020_42 crossref_primary_10_5194_acp_24_9733_2024 crossref_primary_10_1016_j_envpol_2022_119134 crossref_primary_10_3390_ijerph18063172 crossref_primary_10_1007_s11600_023_01208_z crossref_primary_10_1007_s11869_020_00863_1 crossref_primary_10_1007_s10708_022_10779_1 crossref_primary_10_5194_acp_21_4025_2021 crossref_primary_10_1029_2020GL088070 crossref_primary_10_1016_j_apr_2021_101247 crossref_primary_10_5194_acp_25_73_2025 crossref_primary_10_1029_2020GL090260 crossref_primary_10_1029_2020GL091591 crossref_primary_10_5194_acp_24_6539_2024 crossref_primary_10_1029_2020GL089035 crossref_primary_10_1007_s10661_022_10761_x crossref_primary_10_1007_s10668_020_00883_y crossref_primary_10_3390_rs13173492 crossref_primary_10_1016_j_envres_2021_111208 crossref_primary_10_1016_j_jenvman_2024_122615 crossref_primary_10_1016_j_envres_2022_114662 crossref_primary_10_5194_acp_21_7343_2021 crossref_primary_10_1016_j_biocon_2020_108665 crossref_primary_10_1007_s10453_020_09673_5 crossref_primary_10_1016_j_envint_2021_106887 crossref_primary_10_1016_j_envres_2021_111457 crossref_primary_10_1016_j_envpol_2023_121886 crossref_primary_10_1029_2023GH000975 crossref_primary_10_1016_j_resconrec_2020_105169 crossref_primary_10_3390_su12125064 crossref_primary_10_3390_su14159386 crossref_primary_10_3390_atmos13040569 crossref_primary_10_1155_2022_5677568 crossref_primary_10_1038_s41598_021_90617_5 crossref_primary_10_1016_j_jenvman_2024_123615 crossref_primary_10_5572_KOSAE_2022_38_4_588 crossref_primary_10_3390_su13137470 crossref_primary_10_1080_1331677X_2021_1967772 crossref_primary_10_1016_j_heliyon_2020_e04764 crossref_primary_10_1016_j_aap_2021_106382 crossref_primary_10_1108_MEQ_08_2021_0183 crossref_primary_10_1016_j_jes_2020_07_029 crossref_primary_10_3390_app14104007 crossref_primary_10_24057_2071_9388_2020_74 crossref_primary_10_1016_j_chemosphere_2021_133500 crossref_primary_10_3390_atmos11101045 crossref_primary_10_1016_j_envpol_2021_116975 crossref_primary_10_1038_s43247_025_02487_8 crossref_primary_10_1038_s41561_022_00933_2 crossref_primary_10_1016_j_scitotenv_2024_171951 crossref_primary_10_1038_s41467_021_26348_y crossref_primary_10_1016_j_scitotenv_2024_169998 crossref_primary_10_1029_2022RG000773 crossref_primary_10_1016_j_envint_2021_106426 crossref_primary_10_1016_j_envint_2021_106786 crossref_primary_10_1016_j_apr_2021_101111 crossref_primary_10_1016_j_jes_2021_09_034 crossref_primary_10_1016_j_apr_2021_101231 crossref_primary_10_1007_s12648_023_02802_z crossref_primary_10_1007_s41810_024_00245_5 crossref_primary_10_1016_j_scitotenv_2020_143382 crossref_primary_10_5194_acp_24_8383_2024 crossref_primary_10_20473_jkl_v12i1si_2020_70_78 crossref_primary_10_1016_j_jclepro_2020_123622 crossref_primary_10_5194_acp_21_10065_2021 crossref_primary_10_1016_j_jclepro_2022_135053 crossref_primary_10_3390_atmos12030352 crossref_primary_10_3390_rs12183042 crossref_primary_10_1080_17538947_2024_2365971 crossref_primary_10_4491_eer_2021_197 crossref_primary_10_1029_2021GL093243 crossref_primary_10_1029_2021GL092395 crossref_primary_10_1016_j_envpol_2021_116793 crossref_primary_10_1016_j_atmosenv_2021_118276 crossref_primary_10_15446_esrj_v28n4_114296 crossref_primary_10_1016_j_envpol_2021_117887 crossref_primary_10_5194_acp_21_17167_2021 crossref_primary_10_1016_j_scitotenv_2021_148198 crossref_primary_10_2147_RMHP_S297565 crossref_primary_10_1016_j_worlddev_2020_105120 crossref_primary_10_1016_j_envpol_2021_118716 crossref_primary_10_1016_j_apr_2025_102499 crossref_primary_10_1007_s40710_020_00472_1 crossref_primary_10_1016_j_uclim_2021_100802 crossref_primary_10_1029_2023JD040352 crossref_primary_10_5194_acp_24_9869_2024 crossref_primary_10_1016_j_atmosenv_2021_118270 crossref_primary_10_1016_j_scitotenv_2020_142227 crossref_primary_10_1016_j_jenvman_2022_115460 crossref_primary_10_1016_j_scs_2021_103170 crossref_primary_10_1007_s10311_021_01314_8 crossref_primary_10_1016_j_scitotenv_2021_144947 crossref_primary_10_1007_s11356_021_15631_6 crossref_primary_10_3390_pathogens10081003 crossref_primary_10_32604_cmc_2021_014991 crossref_primary_10_3390_su12093870 crossref_primary_10_1016_j_apr_2024_102160 crossref_primary_10_1029_2020JD034213 crossref_primary_10_3390_su17020394 crossref_primary_10_1016_j_rse_2023_113602 crossref_primary_10_1029_2021GL095560 crossref_primary_10_1134_S1028334X20110069 crossref_primary_10_1007_s11356_021_13980_w crossref_primary_10_3390_su15054064 crossref_primary_10_1016_j_cities_2023_104246 crossref_primary_10_3390_atmos15111374 crossref_primary_10_3389_fevo_2022_885955 crossref_primary_10_3390_atmos13101597 crossref_primary_10_1016_j_glohj_2021_02_010 crossref_primary_10_1029_2020GL090041 crossref_primary_10_1016_j_envres_2021_112597 crossref_primary_10_1016_j_envpol_2021_117988 crossref_primary_10_1016_j_envpol_2020_115368 crossref_primary_10_1038_s41612_022_00276_0 crossref_primary_10_1016_j_jes_2020_06_031 crossref_primary_10_1525_elementa_2021_00176 crossref_primary_10_3390_rs12244112 crossref_primary_10_1016_j_uclim_2021_100908 crossref_primary_10_3390_atmos11101137 crossref_primary_10_1007_s10668_020_01031_2 crossref_primary_10_5572_KOSAE_2022_38_2_304 crossref_primary_10_1007_s13762_022_04466_4 crossref_primary_10_1016_j_envpol_2023_121355 crossref_primary_10_1016_j_uclim_2020_100725 crossref_primary_10_1016_j_scitotenv_2020_139086 crossref_primary_10_1016_j_techfore_2023_122885 crossref_primary_10_3390_atmos14030462 crossref_primary_10_3389_fenvs_2021_764294 crossref_primary_10_3390_atmos15101208 crossref_primary_10_1016_j_envres_2021_112246 crossref_primary_10_3389_frsus_2021_649715 crossref_primary_10_1016_j_scitotenv_2024_170777 crossref_primary_10_3390_atmos14101578 crossref_primary_10_1093_nsr_nwaa137 |
| Cites_doi | 10.1016/j.envpol.2016.09.041 10.1016/j.scitotenv.2016.08.024 10.1016/j.envint.2014.08.016 10.1016/j.atmosenv.2009.04.060 10.1016/j.atmosres.2015.04.018 10.5194/acpd-11-21713-2011 10.1016/j.scitotenv.2018.06.137 10.1016/j.envint.2015.06.014 10.1016/j.atmosenv.2015.10.048 10.1016/j.jes.2017.03.018 10.1016/j.scitotenv.2016.11.188 10.1016/j.apr.2015.09.009 10.1080/16000889.2019.1620079 10.5194/acp-2017-428 10.1016/j.jes.2017.03.035 10.1016/j.jhazmat.2010.12.036 10.1038/484161a 10.1016/j.atmosres.2017.08.023 10.4209/aaqr.2019.08.0392 10.5194/acp-16-10333-2016 10.1016/j.scitotenv.2019.01.227 10.1016/j.scitotenv.2016.02.122 10.1016/j.jes.2015.12.033 10.1016/j.jclepro.2017.08.164 10.1016/j.atmosenv.2012.08.014 10.1016/j.atmosenv.2014.11.038 10.1016/j.envpol.2019.01.124 10.1016/j.atmosenv.2014.10.023 10.4209/aaqr.2017.04.0140 10.1016/j.jes.2019.02.031 10.1016/j.atmosenv.2018.10.001 10.1016/j.envpol.2017.07.029 10.1016/j.atmosenv.2012.12.034 10.5194/acp-15-13681-2015 10.1038/nature04092 10.5194/acp-17-31-2017 10.5194/gmd-5-1471-2012 10.1073/pnas.1907956116 10.1080/16742834.2017.1315631 10.1016/j.envpol.2019.01.056 10.5194/acp-19-5791-2019 10.5194/acp-11-2295-2011 10.1038/srep20668 10.1016/j.atmosenv.2019.05.049 10.5194/gmd-4-625-2011 10.1016/j.envpol.2013.06.043 10.1016/j.scitotenv.2017.03.231 10.1021/es2022347 10.1016/j.scitotenv.2016.07.064 10.1016/S1001-0742(13)60383-6 10.5194/acp-17-2971-2017 10.1039/C6FD00004E |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
| DOI | 10.1016/j.resconrec.2020.104814 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Ecology Environmental Sciences |
| EISSN | 1879-0658 |
| EndPage | 104814 |
| ExternalDocumentID | PMC7151380 32300261 10_1016_j_resconrec_2020_104814 S092134492030135X |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN 9JO AACTN AAEDT AAEDW AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSB SSJ SSO SSR SSZ T5K WUQ ZY4 ~A~ ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c508t-8e6181f00b88308e77ec631faf7646787387724abb68ab4b9e2317263ac6d3123 |
| ISICitedReferencesCount | 549 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540609500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-3449 |
| IngestDate | Tue Sep 30 16:46:58 EDT 2025 Wed Oct 01 14:25:36 EDT 2025 Sat Sep 27 23:40:44 EDT 2025 Wed Feb 19 02:30:26 EST 2025 Sat Nov 29 07:16:37 EST 2025 Tue Nov 18 22:14:20 EST 2025 Fri Feb 23 02:44:55 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | COVID-19 Emission reduction Severe air pollution China Meteorology |
| Language | English |
| License | 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c508t-8e6181f00b88308e77ec631faf7646787387724abb68ab4b9e2317263ac6d3123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1797-2311 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7151380 |
| PMID | 32300261 |
| PQID | 2391971683 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7151380 proquest_miscellaneous_2431842590 proquest_miscellaneous_2391971683 pubmed_primary_32300261 crossref_citationtrail_10_1016_j_resconrec_2020_104814 crossref_primary_10_1016_j_resconrec_2020_104814 elsevier_sciencedirect_doi_10_1016_j_resconrec_2020_104814 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Resources, conservation and recycling |
| PublicationTitleAlternate | Resour Conserv Recycl |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Li, Ying, Yu, Wu, Cheng, He, Jiang (bib0064) 2012; 62 Shi, Yuan, Wu, Meng, Zhang, Zhang, Gong (bib0046) 2018; 642 Zhang, He, Huo (bib0065) 2012; 484 Xu, Sun, Chen, Du, Han, Wang, Fu, Wang, Zhao, Zhou (bib0061) 2015; 15 Richter, Burrows, Nüß, Granier, Niemeier (bib0045) 2005; 437 Zhang, Zheng, Tong, Shao, Wang, Zhang, Xu, Wang, He, Liu, Ding, Lei, Li, Wang, Zhang, Wang, Cheng, Liu, Shi, Yan, Geng, Hong, Li, Liu, Zheng, Cao, Ding, Gao, Fu, Huo, Liu, Liu, Yang, He, Hao (bib0066) 2019; 116 Yang, Ji, Kang, Zhang, Chen, Lee (bib0063) 2019; 254 (bib0013) 2007 Hubei, P. s. G. o.2020d. Notices of Wuhan coronavirus prevention and control headquarters (NO. 6). Lin, Liu, Fang, Xiao, Zeng, Li, Guo, Tian, Schootman, Stamatakis, Qian, Ma (bib0038) 2017; 220 Li, Qiao, Zhu, Shi, Wang (bib0036) 2017; 168 Chai, Gao, Chen, Wang, Zhang, Zhang, Zhang, Yun, Ren (bib0005) 2014; 26 Wei, Li, Wang, Chen, Wu, Li, Wang, Wang (bib0055) 2017; 10 Hubei, P. s. G. o.2020g. Notices of Wuhan Traffic Emergency Control. Huang, Zhang, Lin (bib0021) 2015; 164-165 Wang, Guo, Hu, Kota, Ying, Zhang (bib0052) 2019; 662 Wu, Sun, Zhang, Zhang, Wang, Zhong, Yang (bib0058) 2019; 71 CRAES2020. [Expert's Interpretation] This is a tough battle and a protracted battle—Understanding the causes of pollution during the Spring Festival. Li, Liu, Zhang, Sun, Wu, Xue, Zeng, Qu, An (bib0034) 2018; 63 Li, Liao, Hu, Li (bib0031) 2019; 248 Chen, Sun, Wu, Zhang, Zheng, Gao, Cen (bib0006) 2014; 99 Wang, Li, Peng, Zhang, Che, Zhang (bib0049) 2019; 197 Li, Zhang, Duan, Zheng, He (bib0030) 2016; 189 Li, Ma, Wang, Liu, Hong (bib0035) 2017; 198 . Zheng, Zhang, Che, Zheng, Yin (bib0070) 2009; 43 Hu, Ying, Wang, Zhang (bib0020) 2015; 84 Li, Zhang, Kurokawa, Woo, He, Lu, Ohara, Song, Streets, Carmichael (bib0033) 2017; 17 Wiedinmyer, Akagi, Yokelson, Emmons, Al-Saadi, Orlando, Soja (bib0057) 2011; 4 Hubei, P. s. G. o.2020c. Notices of Wuhan coronavirus prevention and control headquarters (NO. 5). Cai, Jiang, Chen, Jiang, Wang (bib0002) 2018; 18 Liu, Gong, He, Yu, Wang, Li, Liu, Zhang, Li, Wang (bib0039) 2017; 17 Cao, Yang, Li, Chen, Chen, Gu, Kan (bib0003) 2011; 186 Hubei, P. s. G. o.2020b. Notices of Wuhan coronavirus prevention and control headquarters (NO. 1). Chen, Zhang, Huang, Song, Zhang, Qian, Trevathan, Mao, Han, Vaughn (bib0007) 2016; 571 Sun, Wang, Wild, Xu, Chen, Fu, Du, Zhou, Zhang, Han, Wang, Pan, Zheng, Li, Guo, Liu, Worsnop (bib0047) 2016; 6 Zhao, B., W. Wu, S. Wang, J. Xing, X. Chang, K.-N. Liou, J. H. Jiang, Y. Gu, C. Jang, and J. Fu. 2017. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region. Ma, Xiao, Zhang, Wang, Shao (bib0040) 2020; 20 Wang, Zhao, Xie, Hu (bib0050) 2016; 553 CCTV. 2020. [News 30 minutes] Experts interpretation: the recent heavy pollution in Beijing-Tianjin-Hebei and surrounding areas are due to emissions and low environmental capacity. Hubei, P. s. G. o.2020e. Notices of Wuhan coronavirus prevention and control headquarters (NO. 8). Han, Zhang, Zhu, Skorokhod (bib0018) 2016; 7 Zhao, Zhao, Xu, Meng, Pu, Dong, He, Shi (bib0068) 2013; 13 Guenther, Jiang, Heald, Sakulyanontvittaya, Duhl, Emmons, Wang (bib0015) 2012; 5 Li, Zhang, Zhang, Zheng, Wang, Chen, Wallington, Han, Shen, Zhang (bib0037) 2015; 123 Zhao, Nielsen, Lei, McElroy, Hao (bib0069) 2011 Xu, Chang, Qu, Yan, Wang, Fu (bib0059) 2016; 572 Hubei, P. s. G. o.2020f. Notices of Wuhan coronavirus prevention and control headquarters (NO. 9). Cheng, Wang, Jiang, Fu, Chen, Xu, Yu, Fu, Hao (bib0008) 2013; 182 Hu, Chen, Ying, Zhang (bib0019) 2016; 16 Qiao, Guo, Tang, Wang, Deng, Zhao, Hu, Ying, Zhang (bib0043) 2019; 19 Wang, Xing, Jang, Zhu, Fu, Hao (bib0053) 2011; 45 Xu, Song, Zhang, Liu, Zhang, Zhao, Liu, Tang, Yang, Wang, Wen, Pan, Fowler, Collett Jr, Erisman, Goulding, Li, Zhang (bib0060) 2017; 17 Wang, Ying, Hu, Zhang (bib0054) 2014; 73 Daily, E.2020. Spring farming is busy at villages without epidemic. Fu, Wang, Zhao, Xing, Cheng, Liu, Hao (bib0014) 2013; 70 Rahman, Luo, Khan, Ke, Thilakanayaka, Kumar (bib0044) 2019; 212 WHO. 2020. Coronavirus disease 2019 (COVID-19): situation report, 36. China, S. C. o. t. P. s. R. o.2019b. Notice of the general office of the state council on issuing the air pollution prevention and control action plan. NCEP, F.2000. National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce. 2000, updated daily. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Han, Wang, Shen, Wang, Wu, Ren, Feng (bib0017) 2016; 46 China, M. o. E. a. E. o. t. P. s. R. o.2019a. 2017 Report on the state of the ecology and environment in China. Gui, Che, Wang, Wang, Zhang, Zhao, Zheng, Sun, Zhang (bib0016) 2019; 247 Huang, K., G. Zhuang, J. S. Fu, Q. Wang, T. Liu, R. Zhang, Y. Jiang, C. Deng, Q. Fu, and N. Hsu. 2012. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai. Cai, Wang, Zhao, Wang, Chang, Hao (bib0001) 2017; 580 Hubei, P. s. G. o.2020a. Notices of Wuhan coronavirus prevention and control headquarters. Wang, Cao, Li, Singh (bib0051) 2015; 102 Li, Tan, Zhang, Feng, Qu, An, Liu (bib0032) 2017; 230 Xue, Wang, Li, Tian, Nie, Wu, Zhou, Zhou (bib0062) 2018; 65 Ma, Duan, He, Qin, Tong, Geng, Liu, Li, Yang, Ye, Xu, Zhang, Ma (bib0041) 2019; 83 Wang, Cheng, Wei, Yang, Wang, Jia, Lang, Lv (bib0048) 2017; 595 Li (10.1016/j.resconrec.2020.104814_bib0035) 2017; 198 Zhang (10.1016/j.resconrec.2020.104814_bib0064) 2012; 62 Li (10.1016/j.resconrec.2020.104814_bib0032) 2017; 230 Han (10.1016/j.resconrec.2020.104814_bib0018) 2016; 7 Ma (10.1016/j.resconrec.2020.104814_bib0041) 2019; 83 Qiao (10.1016/j.resconrec.2020.104814_bib0043) 2019; 19 Huang (10.1016/j.resconrec.2020.104814_bib0021) 2015; 164-165 Lin (10.1016/j.resconrec.2020.104814_bib0038) 2017; 220 Yang (10.1016/j.resconrec.2020.104814_bib0063) 2019; 254 10.1016/j.resconrec.2020.104814_bib0012 10.1016/j.resconrec.2020.104814_bib0056 10.1016/j.resconrec.2020.104814_bib0011 10.1016/j.resconrec.2020.104814_bib0010 Wang (10.1016/j.resconrec.2020.104814_bib0048) 2017; 595 Han (10.1016/j.resconrec.2020.104814_bib0017) 2016; 46 Cai (10.1016/j.resconrec.2020.104814_bib0002) 2018; 18 Wang (10.1016/j.resconrec.2020.104814_bib0054) 2014; 73 Hu (10.1016/j.resconrec.2020.104814_bib0020) 2015; 84 Wiedinmyer (10.1016/j.resconrec.2020.104814_bib0057) 2011; 4 Li (10.1016/j.resconrec.2020.104814_bib0036) 2017; 168 Zhang (10.1016/j.resconrec.2020.104814_bib0066) 2019; 116 Chai (10.1016/j.resconrec.2020.104814_bib0005) 2014; 26 10.1016/j.resconrec.2020.104814_bib0042 Li (10.1016/j.resconrec.2020.104814_bib0030) 2016; 189 10.1016/j.resconrec.2020.104814_bib0009 Li (10.1016/j.resconrec.2020.104814_bib0034) 2018; 63 10.1016/j.resconrec.2020.104814_bib0004 Xu (10.1016/j.resconrec.2020.104814_bib0059) 2016; 572 Guenther (10.1016/j.resconrec.2020.104814_bib0015) 2012; 5 Wang (10.1016/j.resconrec.2020.104814_bib0051) 2015; 102 Chen (10.1016/j.resconrec.2020.104814_bib0006) 2014; 99 Ma (10.1016/j.resconrec.2020.104814_bib0040) 2020; 20 Xu (10.1016/j.resconrec.2020.104814_bib0060) 2017; 17 Li (10.1016/j.resconrec.2020.104814_bib0031) 2019; 248 Li (10.1016/j.resconrec.2020.104814_bib0033) 2017; 17 Wu (10.1016/j.resconrec.2020.104814_bib0058) 2019; 71 Hu (10.1016/j.resconrec.2020.104814_bib0019) 2016; 16 Liu (10.1016/j.resconrec.2020.104814_bib0039) 2017; 17 Sun (10.1016/j.resconrec.2020.104814_bib0047) 2016; 6 Zhao (10.1016/j.resconrec.2020.104814_bib0068) 2013; 13 Chen (10.1016/j.resconrec.2020.104814_bib0007) 2016; 571 Fu (10.1016/j.resconrec.2020.104814_bib0014) 2013; 70 Shi (10.1016/j.resconrec.2020.104814_bib0046) 2018; 642 Xu (10.1016/j.resconrec.2020.104814_bib0061) 2015; 15 Li (10.1016/j.resconrec.2020.104814_bib0037) 2015; 123 Zheng (10.1016/j.resconrec.2020.104814_bib0070) 2009; 43 Zhao (10.1016/j.resconrec.2020.104814_bib0069) 2011 Gui (10.1016/j.resconrec.2020.104814_bib0016) 2019; 247 Richter (10.1016/j.resconrec.2020.104814_bib0045) 2005; 437 Wang (10.1016/j.resconrec.2020.104814_bib0050) 2016; 553 Rahman (10.1016/j.resconrec.2020.104814_bib0044) 2019; 212 Cai (10.1016/j.resconrec.2020.104814_bib0001) 2017; 580 Cheng (10.1016/j.resconrec.2020.104814_bib0008) 2013; 182 Wei (10.1016/j.resconrec.2020.104814_bib0055) 2017; 10 (10.1016/j.resconrec.2020.104814_bib0013) 2007 10.1016/j.resconrec.2020.104814_bib0025 10.1016/j.resconrec.2020.104814_bib0024 Wang (10.1016/j.resconrec.2020.104814_bib0049) 2019; 197 10.1016/j.resconrec.2020.104814_bib0023 10.1016/j.resconrec.2020.104814_bib0067 10.1016/j.resconrec.2020.104814_bib0022 Xue (10.1016/j.resconrec.2020.104814_bib0062) 2018; 65 Zhang (10.1016/j.resconrec.2020.104814_bib0065) 2012; 484 Wang (10.1016/j.resconrec.2020.104814_bib0053) 2011; 45 10.1016/j.resconrec.2020.104814_bib0029 10.1016/j.resconrec.2020.104814_bib0028 Cao (10.1016/j.resconrec.2020.104814_bib0003) 2011; 186 10.1016/j.resconrec.2020.104814_bib0027 10.1016/j.resconrec.2020.104814_bib0026 Wang (10.1016/j.resconrec.2020.104814_bib0052) 2019; 662 |
| References_xml | – volume: 247 start-page: 1125 year: 2019 end-page: 1133 ident: bib0016 article-title: Satellite-derived PM2.5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters publication-title: Environ. Pollut. – reference: Hubei, P. s. G. o.2020f. Notices of Wuhan coronavirus prevention and control headquarters (NO. 9). – volume: 17 start-page: 2971 year: 2017 end-page: 2980 ident: bib0039 article-title: Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area publication-title: Atmos. Chem. Phys. – volume: 212 start-page: 290 year: 2019 end-page: 304 ident: bib0044 article-title: Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China publication-title: Atmos. Environ. – volume: 17 year: 2017 ident: bib0033 article-title: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP publication-title: Atmosp. Chem. Phys. (Online) – volume: 18 start-page: 969 year: 2018 end-page: 980 ident: bib0002 article-title: Weather condition dominates regional PM2.5 Pollutions in the Eastern Coastal Provinces of China during Winter publication-title: Aerosol Air Qual. Res. – volume: 116 start-page: 24463 year: 2019 end-page: 24469 ident: bib0066 article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017 publication-title: Proc Natl Acad Sci U S A – year: 2007 ident: bib0013 article-title: Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM2. 5, and regional haze. US Environmental Protection Agency publication-title: Office Air Qual. Plan. Stand. – volume: 83 start-page: 8 year: 2019 end-page: 20 ident: bib0041 article-title: Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014-2016 publication-title: J. Environ. Sci. (China) – reference: Hubei, P. s. G. o.2020b. Notices of Wuhan coronavirus prevention and control headquarters (NO. 1). – volume: 168 start-page: 1381 year: 2017 end-page: 1388 ident: bib0036 article-title: The “APEC blue” endeavor: causal effects of air pollution regulation on air quality in China publication-title: J. Cleaner Prod. – volume: 553 start-page: 429 year: 2016 end-page: 438 ident: bib0050 article-title: "APEC blue"–The effects and implications of joint pollution prevention and control program publication-title: Sci. Total Environ. – volume: 20 start-page: 26 year: 2020 end-page: 42 ident: bib0040 article-title: Assessment of Meteorological Impact and Emergency Plan for a Heavy Haze Pollution Episode in a Core City of the North China Plain publication-title: Aerosol Air Qual. Res. – volume: 4 start-page: 625 year: 2011 ident: bib0057 article-title: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning publication-title: Geoscientific Model Devel. – volume: 84 start-page: 17 year: 2015 end-page: 25 ident: bib0020 article-title: Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices publication-title: Environ. Int. – volume: 189 start-page: 317 year: 2016 end-page: 335 ident: bib0030 article-title: The "Parade Blue": effects of short-term emission control on aerosol chemistry publication-title: Faraday Discuss – reference: China, S. C. o. t. P. s. R. o.2019b. Notice of the general office of the state council on issuing the air pollution prevention and control action plan. – volume: 6 start-page: 20668 year: 2016 ident: bib0047 article-title: "APEC Blue": secondary aerosol reductions from emission controls in Beijing publication-title: Sci. Rep. – reference: Hubei, P. s. G. o.2020e. Notices of Wuhan coronavirus prevention and control headquarters (NO. 8). – volume: 198 start-page: 185 year: 2017 end-page: 193 ident: bib0035 article-title: Temporal and spatial analyses of particulate matter (PM 10 and PM 2.5) and its relationship with meteorological parameters over an urban city in northeast China publication-title: Atmos. Res. – volume: 62 start-page: 228 year: 2012 end-page: 242 ident: bib0064 article-title: Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model publication-title: Atmos. Environ. – year: 2011 ident: bib0069 article-title: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China publication-title: Atmos. Chem. Phys. – volume: 484 start-page: 161 year: 2012 end-page: 162 ident: bib0065 article-title: Cleaning China's air publication-title: Nature – volume: 15 start-page: 13681 year: 2015 end-page: 13698 ident: bib0061 article-title: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study publication-title: Atmos. Chem. Phys – volume: 254 year: 2019 ident: bib0063 article-title: Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources publication-title: Environ. Pollut. – volume: 19 start-page: 5791 year: 2019 end-page: 5803 ident: bib0043 article-title: Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China publication-title: Atmos. Chem. Phys. – volume: 437 start-page: 129 year: 2005 end-page: 132 ident: bib0045 article-title: Increase in tropospheric nitrogen dioxide over China observed from space publication-title: Nature – volume: 5 start-page: 1471 year: 2012 end-page: 1492 ident: bib0015 article-title: The model of emissions of gases and aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions publication-title: Geosci. Model Develop. – volume: 230 start-page: 718 year: 2017 end-page: 729 ident: bib0032 article-title: Characteristics and source apportionment of PM2. 5 during persistent extreme haze events in Chengdu, southwest China publication-title: Environ. Pollut. – reference: China, M. o. E. a. E. o. t. P. s. R. o.2019a. 2017 Report on the state of the ecology and environment in China. – volume: 63 start-page: 236 year: 2018 end-page: 249 ident: bib0034 article-title: Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China publication-title: J Environ Sci – volume: 186 start-page: 1594 year: 2011 end-page: 1600 ident: bib0003 article-title: Association between long-term exposure to outdoor air pollution and mortality in China: a cohort study publication-title: J. Hazard. Mater. – volume: 182 start-page: 101 year: 2013 end-page: 110 ident: bib0008 article-title: Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China publication-title: Environ. Pollut. – volume: 220 start-page: 222 year: 2017 end-page: 227 ident: bib0038 article-title: Mortality benefits of vigorous air quality improvement interventions during the periods of APEC Blue and Parade Blue in Beijing, China publication-title: Environ. Pollut. – reference: NCEP, F.2000. National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce. 2000, updated daily. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. – volume: 662 start-page: 297 year: 2019 end-page: 306 ident: bib0052 article-title: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China publication-title: Sci. Total Environ. – reference: Hubei, P. s. G. o.2020a. Notices of Wuhan coronavirus prevention and control headquarters. – reference: Hubei, P. s. G. o.2020c. Notices of Wuhan coronavirus prevention and control headquarters (NO. 5). – reference: Huang, K., G. Zhuang, J. S. Fu, Q. Wang, T. Liu, R. Zhang, Y. Jiang, C. Deng, Q. Fu, and N. Hsu. 2012. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai. – reference: WHO. 2020. Coronavirus disease 2019 (COVID-19): situation report, 36. – reference: Daily, E.2020. Spring farming is busy at villages without epidemic. – reference: CRAES2020. [Expert's Interpretation] This is a tough battle and a protracted battle—Understanding the causes of pollution during the Spring Festival. – volume: 71 year: 2019 ident: bib0058 article-title: Aqueous-phase reactions occurred in the PM2.5 cumulative explosive growth during the heavy pollution episode (HPE) in 2016 Beijing wintertime publication-title: Tellus B – volume: 571 start-page: 855 year: 2016 end-page: 861 ident: bib0007 article-title: Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China publication-title: Sci. Total Environ. – volume: 595 start-page: 81 year: 2017 end-page: 92 ident: bib0048 article-title: Characteristics and emission-reduction measures evaluation of PM2.5 during the two major events: APEC and Parade publication-title: Sci. Total Environ. – volume: 13 year: 2013 ident: bib0068 article-title: Analysis of a winter regional haze event and its formation mechanism in the North China Plain publication-title: Atmosph. Chem. Phys. Discuss. – reference: Hubei, P. s. G. o.2020d. Notices of Wuhan coronavirus prevention and control headquarters (NO. 6). – volume: 10 start-page: 276 year: 2017 end-page: 283 ident: bib0055 article-title: Trends of surface PM2. 5 over Beijing–Tianjin–Hebei in 2013–2015 and their causes: emission controls vs. meteorological conditions publication-title: Atmosph. Ocean. Sci. Lett. – volume: 73 start-page: 413 year: 2014 end-page: 422 ident: bib0054 article-title: Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014 publication-title: Environ. Int. – volume: 248 start-page: 74 year: 2019 end-page: 81 ident: bib0031 article-title: Severe particulate pollution days in China during 2013-2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions publication-title: Environ. Pollut. – reference: CCTV. 2020. [News 30 minutes] Experts interpretation: the recent heavy pollution in Beijing-Tianjin-Hebei and surrounding areas are due to emissions and low environmental capacity. – volume: 197 start-page: 177 year: 2019 end-page: 189 ident: bib0049 article-title: The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China publication-title: Atmos. Environ. – volume: 17 start-page: 31 year: 2017 end-page: 46 ident: bib0060 article-title: Air quality improvement in a megacity: implications from 2015 Beijing Parade Blue pollution control actions publication-title: Atmos. Chem. Phys. – volume: 43 start-page: 5112 year: 2009 end-page: 5122 ident: bib0070 article-title: A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment publication-title: Atmos. Environ. – volume: 70 start-page: 39 year: 2013 end-page: 50 ident: bib0014 article-title: Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China publication-title: Atmos. Environ. – volume: 102 start-page: 112 year: 2015 end-page: 121 ident: bib0051 article-title: Analysis of a severe prolonged regional haze episode in the Yangtze River Delta, China publication-title: Atmos. Environ. – reference: . – volume: 26 start-page: 75 year: 2014 end-page: 82 ident: bib0005 article-title: Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China publication-title: J. Environ. Sci. – volume: 99 start-page: 527 year: 2014 end-page: 535 ident: bib0006 article-title: Unit-based emission inventory and uncertainty assessment of coal-fired power plants publication-title: Atmos. Environ. – volume: 46 start-page: 134 year: 2016 end-page: 146 ident: bib0017 article-title: Spatial and temporal variation of haze in China from 1961 to 2012 publication-title: J. Environ. Sci. – volume: 572 start-page: 1138 year: 2016 end-page: 1149 ident: bib0059 article-title: The meteorological modulation on PM2.5 interannual oscillation during 2013 to 2015 in Shanghai, China publication-title: Sci. Total Environ. – volume: 16 start-page: 10333 year: 2016 end-page: 10350 ident: bib0019 article-title: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system publication-title: Atmos. Chem. Phys. – volume: 45 start-page: 9293 year: 2011 end-page: 9300 ident: bib0053 article-title: Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique publication-title: Environ. Sci. Technol. – volume: 164-165 start-page: 65 year: 2015 end-page: 75 ident: bib0021 article-title: The “APEC Blue” phenomenon: Regional emission control effects observed from space publication-title: Atmos. Res. – volume: 642 start-page: 1221 year: 2018 end-page: 1232 ident: bib0046 article-title: Meteorological conditions conducive to PM2.5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China publication-title: Sci. Total Environ. – volume: 123 start-page: 229 year: 2015 end-page: 239 ident: bib0037 article-title: Source contributions of urban PM2. 5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology publication-title: Atmos. Environ. – volume: 65 start-page: 29 year: 2018 end-page: 42 ident: bib0062 article-title: Multi-dimension apportionment of clean air "parade blue" phenomenon in Beijing publication-title: J Environ Sci (China) – volume: 580 start-page: 197 year: 2017 end-page: 209 ident: bib0001 article-title: The impact of the “air pollution prevention and control action plan” on PM2. 5 concentrations in Jing-Jin-Ji region during 2012–2020 publication-title: Sci. Total Environ. – reference: Hubei, P. s. G. o.2020g. Notices of Wuhan Traffic Emergency Control. – volume: 7 start-page: 249 year: 2016 end-page: 259 ident: bib0018 article-title: Assessment of the impact of emissions reductions on air quality over North China Plain publication-title: Atmosp. Pollut. Res. – reference: Zhao, B., W. Wu, S. Wang, J. Xing, X. Chang, K.-N. Liou, J. H. Jiang, Y. Gu, C. Jang, and J. Fu. 2017. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region. – volume: 220 start-page: 222 issue: Pt A year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0038 article-title: Mortality benefits of vigorous air quality improvement interventions during the periods of APEC Blue and Parade Blue in Beijing, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.09.041 – volume: 572 start-page: 1138 year: 2016 ident: 10.1016/j.resconrec.2020.104814_bib0059 article-title: The meteorological modulation on PM2.5 interannual oscillation during 2013 to 2015 in Shanghai, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.08.024 – volume: 73 start-page: 413 year: 2014 ident: 10.1016/j.resconrec.2020.104814_bib0054 article-title: Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014 publication-title: Environ. Int. doi: 10.1016/j.envint.2014.08.016 – volume: 43 start-page: 5112 issue: 32 year: 2009 ident: 10.1016/j.resconrec.2020.104814_bib0070 article-title: A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.04.060 – volume: 164-165 start-page: 65 year: 2015 ident: 10.1016/j.resconrec.2020.104814_bib0021 article-title: The “APEC Blue” phenomenon: Regional emission control effects observed from space publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.04.018 – ident: 10.1016/j.resconrec.2020.104814_bib0022 doi: 10.5194/acpd-11-21713-2011 – volume: 642 start-page: 1221 year: 2018 ident: 10.1016/j.resconrec.2020.104814_bib0046 article-title: Meteorological conditions conducive to PM2.5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.137 – volume: 84 start-page: 17 year: 2015 ident: 10.1016/j.resconrec.2020.104814_bib0020 article-title: Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices publication-title: Environ. Int. doi: 10.1016/j.envint.2015.06.014 – ident: 10.1016/j.resconrec.2020.104814_bib0011 – volume: 17 issue: 2 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0033 article-title: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP publication-title: Atmosp. Chem. Phys. (Online) – volume: 123 start-page: 229 year: 2015 ident: 10.1016/j.resconrec.2020.104814_bib0037 article-title: Source contributions of urban PM2. 5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.10.048 – volume: 63 start-page: 236 year: 2018 ident: 10.1016/j.resconrec.2020.104814_bib0034 article-title: Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China publication-title: J Environ Sci doi: 10.1016/j.jes.2017.03.018 – volume: 580 start-page: 197 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0001 article-title: The impact of the “air pollution prevention and control action plan” on PM2. 5 concentrations in Jing-Jin-Ji region during 2012–2020 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.188 – volume: 7 start-page: 249 issue: 2 year: 2016 ident: 10.1016/j.resconrec.2020.104814_bib0018 article-title: Assessment of the impact of emissions reductions on air quality over North China Plain publication-title: Atmosp. Pollut. Res. doi: 10.1016/j.apr.2015.09.009 – ident: 10.1016/j.resconrec.2020.104814_bib0027 – volume: 71 issue: 1 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0058 article-title: Aqueous-phase reactions occurred in the PM2.5 cumulative explosive growth during the heavy pollution episode (HPE) in 2016 Beijing wintertime publication-title: Tellus B doi: 10.1080/16000889.2019.1620079 – ident: 10.1016/j.resconrec.2020.104814_bib0067 doi: 10.5194/acp-2017-428 – ident: 10.1016/j.resconrec.2020.104814_bib0004 – volume: 65 start-page: 29 year: 2018 ident: 10.1016/j.resconrec.2020.104814_bib0062 article-title: Multi-dimension apportionment of clean air "parade blue" phenomenon in Beijing publication-title: J Environ Sci (China) doi: 10.1016/j.jes.2017.03.035 – volume: 186 start-page: 1594 issue: 2-3 year: 2011 ident: 10.1016/j.resconrec.2020.104814_bib0003 article-title: Association between long-term exposure to outdoor air pollution and mortality in China: a cohort study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.12.036 – volume: 484 start-page: 161 issue: 7393 year: 2012 ident: 10.1016/j.resconrec.2020.104814_bib0065 article-title: Cleaning China's air publication-title: Nature doi: 10.1038/484161a – volume: 13 issue: 1 year: 2013 ident: 10.1016/j.resconrec.2020.104814_bib0068 article-title: Analysis of a winter regional haze event and its formation mechanism in the North China Plain publication-title: Atmosph. Chem. Phys. Discuss. – volume: 198 start-page: 185 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0035 article-title: Temporal and spatial analyses of particulate matter (PM 10 and PM 2.5) and its relationship with meteorological parameters over an urban city in northeast China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.08.023 – year: 2007 ident: 10.1016/j.resconrec.2020.104814_bib0013 article-title: Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM2. 5, and regional haze. US Environmental Protection Agency publication-title: Office Air Qual. Plan. Stand. – volume: 20 start-page: 26 issue: 1 year: 2020 ident: 10.1016/j.resconrec.2020.104814_bib0040 article-title: Assessment of Meteorological Impact and Emergency Plan for a Heavy Haze Pollution Episode in a Core City of the North China Plain publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2019.08.0392 – ident: 10.1016/j.resconrec.2020.104814_bib0056 – volume: 16 start-page: 10333 issue: 16 year: 2016 ident: 10.1016/j.resconrec.2020.104814_bib0019 article-title: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-10333-2016 – ident: 10.1016/j.resconrec.2020.104814_bib0010 – volume: 662 start-page: 297 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0052 article-title: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.227 – volume: 553 start-page: 429 year: 2016 ident: 10.1016/j.resconrec.2020.104814_bib0050 article-title: "APEC blue"–The effects and implications of joint pollution prevention and control program publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.02.122 – volume: 46 start-page: 134 year: 2016 ident: 10.1016/j.resconrec.2020.104814_bib0017 article-title: Spatial and temporal variation of haze in China from 1961 to 2012 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2015.12.033 – volume: 168 start-page: 1381 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0036 article-title: The “APEC blue” endeavor: causal effects of air pollution regulation on air quality in China publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.08.164 – volume: 254 issue: Pt A year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0063 article-title: Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources publication-title: Environ. Pollut. – ident: 10.1016/j.resconrec.2020.104814_bib0024 – ident: 10.1016/j.resconrec.2020.104814_bib0028 – volume: 62 start-page: 228 year: 2012 ident: 10.1016/j.resconrec.2020.104814_bib0064 article-title: Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.08.014 – volume: 102 start-page: 112 year: 2015 ident: 10.1016/j.resconrec.2020.104814_bib0051 article-title: Analysis of a severe prolonged regional haze episode in the Yangtze River Delta, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.11.038 – volume: 248 start-page: 74 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0031 article-title: Severe particulate pollution days in China during 2013-2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.01.124 – volume: 99 start-page: 527 year: 2014 ident: 10.1016/j.resconrec.2020.104814_bib0006 article-title: Unit-based emission inventory and uncertainty assessment of coal-fired power plants publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.10.023 – volume: 18 start-page: 969 issue: 4 year: 2018 ident: 10.1016/j.resconrec.2020.104814_bib0002 article-title: Weather condition dominates regional PM2.5 Pollutions in the Eastern Coastal Provinces of China during Winter publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2017.04.0140 – volume: 83 start-page: 8 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0041 article-title: Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014-2016 publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2019.02.031 – volume: 197 start-page: 177 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0049 article-title: The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.10.001 – volume: 230 start-page: 718 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0032 article-title: Characteristics and source apportionment of PM2. 5 during persistent extreme haze events in Chengdu, southwest China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.029 – volume: 70 start-page: 39 year: 2013 ident: 10.1016/j.resconrec.2020.104814_bib0014 article-title: Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.12.034 – volume: 15 start-page: 13681 issue: 23 year: 2015 ident: 10.1016/j.resconrec.2020.104814_bib0061 article-title: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study publication-title: Atmos. Chem. Phys doi: 10.5194/acp-15-13681-2015 – volume: 437 start-page: 129 issue: 7055 year: 2005 ident: 10.1016/j.resconrec.2020.104814_bib0045 article-title: Increase in tropospheric nitrogen dioxide over China observed from space publication-title: Nature doi: 10.1038/nature04092 – volume: 17 start-page: 31 issue: 1 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0060 article-title: Air quality improvement in a megacity: implications from 2015 Beijing Parade Blue pollution control actions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-31-2017 – volume: 5 start-page: 1471 issue: 6 year: 2012 ident: 10.1016/j.resconrec.2020.104814_bib0015 article-title: The model of emissions of gases and aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions publication-title: Geosci. Model Develop. doi: 10.5194/gmd-5-1471-2012 – ident: 10.1016/j.resconrec.2020.104814_bib0025 – ident: 10.1016/j.resconrec.2020.104814_bib0042 – ident: 10.1016/j.resconrec.2020.104814_bib0029 – ident: 10.1016/j.resconrec.2020.104814_bib0023 – volume: 116 start-page: 24463 issue: 49 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0066 article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1907956116 – volume: 10 start-page: 276 issue: 4 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0055 article-title: Trends of surface PM2. 5 over Beijing–Tianjin–Hebei in 2013–2015 and their causes: emission controls vs. meteorological conditions publication-title: Atmosph. Ocean. Sci. Lett. doi: 10.1080/16742834.2017.1315631 – volume: 247 start-page: 1125 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0016 article-title: Satellite-derived PM2.5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.01.056 – volume: 19 start-page: 5791 issue: 9 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0043 article-title: Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-5791-2019 – year: 2011 ident: 10.1016/j.resconrec.2020.104814_bib0069 article-title: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-2295-2011 – volume: 6 start-page: 20668 year: 2016 ident: 10.1016/j.resconrec.2020.104814_bib0047 article-title: "APEC Blue": secondary aerosol reductions from emission controls in Beijing publication-title: Sci. Rep. doi: 10.1038/srep20668 – ident: 10.1016/j.resconrec.2020.104814_bib0009 – volume: 212 start-page: 290 year: 2019 ident: 10.1016/j.resconrec.2020.104814_bib0044 article-title: Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.05.049 – volume: 4 start-page: 625 issue: 3 year: 2011 ident: 10.1016/j.resconrec.2020.104814_bib0057 article-title: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning publication-title: Geoscientific Model Devel. doi: 10.5194/gmd-4-625-2011 – volume: 182 start-page: 101 year: 2013 ident: 10.1016/j.resconrec.2020.104814_bib0008 article-title: Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.06.043 – ident: 10.1016/j.resconrec.2020.104814_bib0012 – volume: 595 start-page: 81 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0048 article-title: Characteristics and emission-reduction measures evaluation of PM2.5 during the two major events: APEC and Parade publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.231 – volume: 45 start-page: 9293 issue: 21 year: 2011 ident: 10.1016/j.resconrec.2020.104814_bib0053 article-title: Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique publication-title: Environ. Sci. Technol. doi: 10.1021/es2022347 – volume: 571 start-page: 855 year: 2016 ident: 10.1016/j.resconrec.2020.104814_bib0007 article-title: Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.064 – volume: 26 start-page: 75 issue: 1 year: 2014 ident: 10.1016/j.resconrec.2020.104814_bib0005 article-title: Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(13)60383-6 – volume: 17 start-page: 2971 issue: 4 year: 2017 ident: 10.1016/j.resconrec.2020.104814_bib0039 article-title: Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-2971-2017 – volume: 189 start-page: 317 year: 2016 ident: 10.1016/j.resconrec.2020.104814_bib0030 article-title: The "Parade Blue": effects of short-term emission control on aerosol chemistry publication-title: Faraday Discuss doi: 10.1039/C6FD00004E – ident: 10.1016/j.resconrec.2020.104814_bib0026 |
| SSID | ssj0003893 |
| Score | 2.7041965 |
| Snippet | Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23,... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104814 |
| SubjectTerms | air pollution air quality anthropogenic activities China Coronavirus infections COVID-19 Emission reduction emissions Meteorology Orthocoronavirinae pandemic particulates Severe air pollution transportation |
| Title | Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak |
| URI | https://dx.doi.org/10.1016/j.resconrec.2020.104814 https://www.ncbi.nlm.nih.gov/pubmed/32300261 https://www.proquest.com/docview/2391971683 https://www.proquest.com/docview/2431842590 https://pubmed.ncbi.nlm.nih.gov/PMC7151380 |
| Volume | 158 |
| WOSCitedRecordID | wos000540609500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003893 issn: 0921-3449 databaseCode: AIEXJ dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSR4QFAYlMtkJMRL5CmJ09jhbRqdGFTdJDpUniI7cbqMKe16U_vvOY5zaaGw8cBLVCWxnfR8sc_N30HonRNTCWZHTDw_ksQTbUlEpBKS6JiYrWvvRTmJa5f1enwwCM4bjWW5F2ZxzbKML5fB-L-KGs6BsPXW2X8Qd9UpnIDfIHQ4gtjheCfBf1XwyMoS6URXYDAjWTlP09TKRjNLLEZpbPTOieZtVZqs1VRLgD41fWuUV5QAE7rcxHh89u30I3ECazSfgQktfqyrtGUAIAdEpJOzCzevSV1X0UrvvhzWnnszu5yrbJiotE4vMPPfF5GS7_PanT3P3bNwcXgDQN7ay7rjAqzUMsm18kC6DqGeYSytJuM2t8Y68Mwdj2yd4o234epwoqbwTvAWh7rzokm9qpWR_N5ZeHLR7Yb9zqD_fnxDdL0xHZcviq_soD2XtQOYD_eOTjuDz9UqrhW5nKexeMiN3MCtY_9Js_ndcvk1AXdNo-k_Ro8KUwQfGQg9QQ2VNdH9Tk5jvmqih2tUlU2036l3REKjYkmYPkWxwRsGvOEKb9jgDQPecIE3LFe4wBvewBuu8YYN3nCJN1zi7Rm6OOn0jz-RonQHiUDjnxGufFAdE9uWnFObK8ZU5FMnEQnzYWnmjHIw6zwhpc-F9GSgwM5grk9F5McUtKl9tJuNMvUCYS7jOEhiT8JS6AnmS6Fcv53EEZNUBlS1kF_-7WFU8Nrr8irXYZnAeBVW8gq1vEIjrxayq4ZjQ-1ye5MPpVzDQkM1mmcI6Ly98dsSCSHM4TowJzI1mk9DlwaOpnLj9C_3gKavQ-aB3ULPDXqqp6YuzX0pLcQ2cFXdoDnkN69k6WXOJc9A46fcfnmHcV-hB_Vn_BrtziZz9QbdixazdDo5QDtswA-Kr-gncubsYw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Severe+air+pollution+events+not+avoided+by+reduced+anthropogenic+activities+during+COVID-19+outbreak&rft.jtitle=Resources%2C+conservation+and+recycling&rft.au=Wang%2C+Pengfei&rft.au=Chen%2C+Kai-Yu&rft.au=Zhu%2C+Shengqiang&rft.au=Wang%2C+Peng&rft.date=2020-07-01&rft.issn=0921-3449&rft.volume=158+p.104814-&rft_id=info:doi/10.1016%2Fj.resconrec.2020.104814&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-3449&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-3449&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-3449&client=summon |