Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak

Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resources, conservation and recycling Ročník 158; s. 104814
Hlavní autoři: Wang, Pengfei, Chen, Kaiyu, Zhu, Shengqiang, Wang, Peng, Zhang, Hongliang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.07.2020
Témata:
ISSN:0921-3449, 1879-0658
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution. [Display omitted]
AbstractList Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM . Compared with the case without emission change (Case 1), Case 3 predicted that PM concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM greater than 75 μg/m , the reductions of PM in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution.
Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM₂.₅ changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM₂.₅. Compared with the case without emission change (Case 1), Case 3 predicted that PM₂.₅ concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m³ in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM₂.₅ greater than 75 μg/m³, the reductions of PM₂.₅ in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m³ in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM₂.₅ precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution.
Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution. Image, graphical abstract
Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution.Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution.
Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23, 2020. With reduced activities, severe air pollution events still occurred in the North China Plain, causing discussions regarding why severe air pollution was not avoided. The Community Multi-scale Air Quality model was applied during January 01 to February 12, 2020 to study PM2.5 changes under emission reduction scenarios. The estimated emission reduction case (Case 3) better reproduced PM2.5. Compared with the case without emission change (Case 1), Case 3 predicted that PM2.5 concentrations decreased by up to 20% with absolute decreases of 5.35, 6.37, 9.23, 10.25, 10.30, 12.14, 12.75, 14.41, 18.00 and 30.79 μg/m3 in Guangzhou, Shanghai, Beijing, Shijiazhuang, Tianjin, Jinan, Taiyuan, Xi'an, Zhengzhou, Wuhan, respectively. In high-pollution days with PM2.5 greater than 75 μg/m3, the reductions of PM2.5 in Case 3 were 7.78, 9.51, 11.38, 13.42, 13.64, 14.15, 14.42, 16.95 and 22.08 μg/m3 in Shanghai, Jinan, Shijiazhuang, Beijing, Taiyuan, Xi'an, Tianjin, Zhengzhou and Wuhan, respectively. The reductions in emissions of PM2.5 precursors were ~2 times of that in concentrations, indicating that meteorology was unfavorable during simulation episode. A further analysis shows that benefits of emission reductions were overwhelmed by adverse meteorology and severe air pollution events were not avoided. This study highlights that large emissions reduction in transportation and slight reduction in industrial would not help avoid severe air pollution in China, especially when meteorology is unfavorable. More efforts should be made to completely avoid severe air pollution. [Display omitted]
ArticleNumber 104814
Author Chen, Kaiyu
Zhang, Hongliang
Wang, Peng
Wang, Pengfei
Zhu, Shengqiang
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Wang
  fullname: Wang, Pengfei
  organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
– sequence: 2
  givenname: Kaiyu
  surname: Chen
  fullname: Chen, Kaiyu
  organization: Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
– sequence: 3
  givenname: Shengqiang
  surname: Zhu
  fullname: Zhu, Shengqiang
  organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
– sequence: 4
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China
– sequence: 5
  givenname: Hongliang
  orcidid: 0000-0002-1797-2311
  surname: Zhang
  fullname: Zhang, Hongliang
  email: zhanghl@fudan.edu.cn
  organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32300261$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URNPCXwAv2UzwK7ZnAVKV8qhUqQseW8vjuZM6TOxge0bqv8dR2grYlJWt63POPdZ3hk5CDIDQG0qWlFD5brtMkF0MCdySEXaYCk3FM7SgWrUNkSt9ghakZbThQrSn6CznLSGE65a_QKeccUKYpAvUf4UZEmDrE97HcZyKjwHXWSgZh1iwnaPvocfdHU7QT65ebSi3Ke7jBoJ32LriZ188ZNxPyYcNXt_8uLpsaIvjVLoE9udL9HywY4ZX9-c5-v7p47f1l-b65vPV-uK6cSuiS6NBUk0HQjqtOdGgFDjJ6WAHJYVUWnGtFBO266S2nehaYJwqJrl1sueU8XP04Zi7n7od9K5-ItnR7JPf2XRnovXm75fgb80mzkbRFeWa1IC39wEp_pogF7Pz2cE42gBxyoYJTrVgq_Y_pLylraJS8yp9_Wetxz4PFKrg_VHgUsw5wWCcL_ZAorb0o6HEHKibrXmkbg7UzZF69at__A8rnnZeHJ1QscweksnOQ6iUfZUW00f_ZMZv4XXMmQ
CitedBy_id crossref_primary_10_1016_j_scs_2021_103365
crossref_primary_10_3390_ijerph17145124
crossref_primary_10_1007_s11356_023_25757_4
crossref_primary_10_1080_16000889_2021_1971925
crossref_primary_10_1016_j_pce_2024_103811
crossref_primary_10_3390_su12218887
crossref_primary_10_1007_s41324_020_00366_2
crossref_primary_10_1016_j_heliyon_2023_e18918
crossref_primary_10_1016_j_scitotenv_2020_141592
crossref_primary_10_1016_j_atmosenv_2021_118750
crossref_primary_10_1016_j_ocecoaman_2023_106602
crossref_primary_10_1007_s11356_023_27236_2
crossref_primary_10_5194_acp_22_8369_2022
crossref_primary_10_3389_fenvs_2021_784959
crossref_primary_10_1007_s41810_023_00209_1
crossref_primary_10_3390_atmos13050640
crossref_primary_10_3390_atmos12111490
crossref_primary_10_1007_s10668_021_01328_w
crossref_primary_10_3389_fenvs_2022_858685
crossref_primary_10_3390_ijerph17155279
crossref_primary_10_1002_adsu_202200166
crossref_primary_10_1016_j_apr_2024_102110
crossref_primary_10_3390_atmos14020400
crossref_primary_10_1109_ACCESS_2020_3008733
crossref_primary_10_5194_acp_21_15199_2021
crossref_primary_10_1016_j_jiph_2021_12_001
crossref_primary_10_1007_s10668_022_02353_z
crossref_primary_10_1016_j_scitotenv_2020_140005
crossref_primary_10_1007_s11869_020_00893_9
crossref_primary_10_1016_j_apr_2020_12_001
crossref_primary_10_1016_j_scitotenv_2020_140496
crossref_primary_10_1007_s10668_020_00837_4
crossref_primary_10_3390_su13052873
crossref_primary_10_1016_j_jhazmat_2025_138998
crossref_primary_10_3390_atmos14111670
crossref_primary_10_1016_j_atmosenv_2021_118627
crossref_primary_10_1007_s11356_020_10689_0
crossref_primary_10_1029_2020GL088913
crossref_primary_10_5194_acp_20_15725_2020
crossref_primary_10_1016_j_scs_2021_103388
crossref_primary_10_1016_j_jenvman_2020_111907
crossref_primary_10_1016_j_energy_2020_118701
crossref_primary_10_1016_j_jth_2021_101257
crossref_primary_10_3390_atmos12020250
crossref_primary_10_1016_j_scitotenv_2020_139052
crossref_primary_10_1016_j_apr_2025_102723
crossref_primary_10_3390_su12218984
crossref_primary_10_1016_j_scitotenv_2020_141129
crossref_primary_10_1016_j_jes_2021_10_014
crossref_primary_10_1016_j_rser_2021_111239
crossref_primary_10_1016_j_envpol_2021_117783
crossref_primary_10_1016_j_scitotenv_2020_142226
crossref_primary_10_1029_2022EF002959
crossref_primary_10_1007_s00477_022_02191_5
crossref_primary_10_1016_j_envres_2021_111742
crossref_primary_10_1007_s12517_022_09687_y
crossref_primary_10_1007_s11356_022_23984_9
crossref_primary_10_1016_j_jece_2020_104973
crossref_primary_10_1029_2020GL090080
crossref_primary_10_1007_s13280_021_01574_2
crossref_primary_10_3390_ijerph21091171
crossref_primary_10_1007_s10311_022_01464_3
crossref_primary_10_1016_j_gsf_2022_101368
crossref_primary_10_1007_s40201_022_00786_2
crossref_primary_10_1016_j_scitotenv_2023_163190
crossref_primary_10_1016_j_apr_2024_102252
crossref_primary_10_1016_j_jclepro_2022_133938
crossref_primary_10_1007_s11356_021_13098_z
crossref_primary_10_1016_j_scitotenv_2020_139281
crossref_primary_10_1007_s11869_020_00894_8
crossref_primary_10_1016_j_scitotenv_2020_139282
crossref_primary_10_1029_2021JD036191
crossref_primary_10_5194_acp_20_14347_2020
crossref_primary_10_1007_s10640_020_00445_w
crossref_primary_10_1016_j_envres_2021_111754
crossref_primary_10_1016_j_jes_2021_10_005
crossref_primary_10_1016_j_envint_2021_106818
crossref_primary_10_1016_j_atmosenv_2021_118844
crossref_primary_10_1016_j_atmosenv_2021_118848
crossref_primary_10_1016_j_buildenv_2021_107718
crossref_primary_10_1016_j_chemosphere_2022_135013
crossref_primary_10_1016_j_apenergy_2020_116179
crossref_primary_10_1007_s00267_020_01375_5
crossref_primary_10_3846_jeelm_2023_19472
crossref_primary_10_5194_acp_22_9987_2022
crossref_primary_10_3389_fenvs_2021_654651
crossref_primary_10_1016_j_jes_2020_09_019
crossref_primary_10_1007_s11869_020_00881_z
crossref_primary_10_1007_s11869_021_01000_2
crossref_primary_10_1016_j_scitotenv_2020_140101
crossref_primary_10_3390_rs14143336
crossref_primary_10_1007_s10668_021_01324_0
crossref_primary_10_3389_fenvs_2022_877268
crossref_primary_10_1088_1748_9326_ac1014
crossref_primary_10_1016_j_eap_2021_07_012
crossref_primary_10_1029_2023JD038540
crossref_primary_10_1029_2020GL089912
crossref_primary_10_1007_s41810_025_00330_3
crossref_primary_10_5194_acp_21_7723_2021
crossref_primary_10_1016_j_apr_2020_11_005
crossref_primary_10_1007_s11869_020_00892_w
crossref_primary_10_5194_acp_22_12207_2022
crossref_primary_10_1007_s11356_021_14159_z
crossref_primary_10_1016_j_envres_2021_112624
crossref_primary_10_1016_j_scitotenv_2020_142874
crossref_primary_10_1016_j_heha_2022_100025
crossref_primary_10_1016_j_jenvman_2021_112166
crossref_primary_10_1007_s11356_023_25713_2
crossref_primary_10_5572_ajae_2020_14_4_378
crossref_primary_10_5194_acp_23_4311_2023
crossref_primary_10_1007_s00477_021_02066_1
crossref_primary_10_1016_j_jhazmat_2025_138720
crossref_primary_10_1038_s41598_021_02776_0
crossref_primary_10_1088_1748_9326_ad60df
crossref_primary_10_1016_j_jes_2020_09_038
crossref_primary_10_1016_j_scitotenv_2020_143868
crossref_primary_10_3390_atmos13122099
crossref_primary_10_1016_j_scitotenv_2020_139133
crossref_primary_10_1016_j_scitotenv_2020_140244
crossref_primary_10_1093_aje_kwae171
crossref_primary_10_1016_j_scitotenv_2020_140000
crossref_primary_10_5194_acp_22_13183_2022
crossref_primary_10_3390_su15129362
crossref_primary_10_1016_j_scitotenv_2020_141314
crossref_primary_10_1016_j_envres_2020_110048
crossref_primary_10_1016_j_envpol_2021_118783
crossref_primary_10_3390_rs15051295
crossref_primary_10_1016_j_envpol_2021_117450
crossref_primary_10_1016_j_envres_2021_111314
crossref_primary_10_1111_risa_14080
crossref_primary_10_1093_nsr_nwab061
crossref_primary_10_1016_j_scitotenv_2020_141320
crossref_primary_10_1016_j_scitotenv_2022_159435
crossref_primary_10_3390_ijerph18073404
crossref_primary_10_3390_ijerph18073528
crossref_primary_10_1016_j_apenergy_2020_116042
crossref_primary_10_1016_j_scitotenv_2021_151657
crossref_primary_10_1007_s41810_023_00173_w
crossref_primary_10_1016_j_scitotenv_2021_148301
crossref_primary_10_1002_jeq2_20192
crossref_primary_10_1016_j_cities_2022_103770
crossref_primary_10_1016_j_jes_2021_01_022
crossref_primary_10_1029_2024JD040834
crossref_primary_10_1016_j_envres_2020_109634
crossref_primary_10_3390_toxics9060122
crossref_primary_10_1016_j_physa_2020_125551
crossref_primary_10_1016_j_envres_2020_110514
crossref_primary_10_1016_j_envres_2022_112818
crossref_primary_10_1016_j_envres_2020_110515
crossref_primary_10_3390_rs13030369
crossref_primary_10_1016_j_scs_2020_102382
crossref_primary_10_3390_atmos12020184
crossref_primary_10_1016_j_jhazmat_2020_124903
crossref_primary_10_1016_j_scitotenv_2020_141621
crossref_primary_10_1016_j_uclim_2021_101013
crossref_primary_10_1057_s41599_021_00920_9
crossref_primary_10_1007_s10874_021_09428_7
crossref_primary_10_1080_00207233_2021_1941662
crossref_primary_10_1016_j_envres_2021_110927
crossref_primary_10_3390_ijerph182413347
crossref_primary_10_1016_j_envpol_2023_123183
crossref_primary_10_1016_j_jes_2021_01_006
crossref_primary_10_1016_j_scitotenv_2020_140556
crossref_primary_10_3389_fenvs_2022_982566
crossref_primary_10_1007_s10661_021_09342_1
crossref_primary_10_1016_j_envres_2020_109652
crossref_primary_10_1016_j_scitotenv_2023_163369
crossref_primary_10_1007_s11356_020_11858_x
crossref_primary_10_1029_2020JD034090
crossref_primary_10_1016_j_envpol_2021_118118
crossref_primary_10_1088_1755_1315_534_1_012010
crossref_primary_10_1016_j_scitotenv_2021_146394
crossref_primary_10_1038_s41598_023_50955_y
crossref_primary_10_1016_j_jth_2021_101087
crossref_primary_10_1016_j_accre_2021_09_013
crossref_primary_10_1016_j_atmosenv_2024_120734
crossref_primary_10_1007_s00038_020_01394_3
crossref_primary_10_1016_j_atmosres_2021_105657
crossref_primary_10_20473_jkl_v12i1si_2020_51_59
crossref_primary_10_5572_ajae_2021_045
crossref_primary_10_3390_rs15020530
crossref_primary_10_1016_j_scitotenv_2020_140739
crossref_primary_10_1016_j_polymdegradstab_2023_110644
crossref_primary_10_1016_j_sste_2021_100417
crossref_primary_10_1007_s12648_022_02380_6
crossref_primary_10_3390_atmos14010091
crossref_primary_10_1016_j_isci_2025_112195
crossref_primary_10_1007_s11869_021_01039_1
crossref_primary_10_1038_s41612_022_00249_3
crossref_primary_10_1016_j_atmosres_2023_106940
crossref_primary_10_7717_peerj_9642
crossref_primary_10_1007_s10661_023_11377_5
crossref_primary_10_1016_j_envres_2021_110839
crossref_primary_10_1016_j_gr_2022_04_023
crossref_primary_10_1007_s11869_020_00921_8
crossref_primary_10_1088_1748_9326_abf876
crossref_primary_10_3390_su13169312
crossref_primary_10_1016_j_envpol_2025_126505
crossref_primary_10_1016_j_scitotenv_2021_146579
crossref_primary_10_1007_s00376_021_1281_x
crossref_primary_10_1016_j_atmosres_2025_108314
crossref_primary_10_1016_j_jclepro_2021_125992
crossref_primary_10_1016_j_atmosenv_2024_120874
crossref_primary_10_1016_j_jth_2021_101061
crossref_primary_10_1016_j_jenvman_2020_111496
crossref_primary_10_1016_j_scitotenv_2023_165114
crossref_primary_10_1007_s11869_020_00956_x
crossref_primary_10_1111_ina_13095
crossref_primary_10_1016_j_jclepro_2021_126514
crossref_primary_10_3390_atmos12060788
crossref_primary_10_1016_j_scitotenv_2020_140516
crossref_primary_10_1016_j_scitotenv_2020_140758
crossref_primary_10_1016_j_scitotenv_2020_140879
crossref_primary_10_3390_su16062340
crossref_primary_10_1007_s11869_021_01082_y
crossref_primary_10_1016_j_jenvman_2021_112676
crossref_primary_10_1016_j_envres_2021_110854
crossref_primary_10_3389_fenvs_2023_1331536
crossref_primary_10_1016_j_scitotenv_2022_157881
crossref_primary_10_1007_s11869_020_00968_7
crossref_primary_10_1016_j_resconrec_2023_107110
crossref_primary_10_3390_atmos16070768
crossref_primary_10_1007_s41742_025_00863_y
crossref_primary_10_1016_j_envres_2023_116887
crossref_primary_10_1007_s10668_020_00878_9
crossref_primary_10_1038_s41598_020_79088_2
crossref_primary_10_3390_ijerph18126274
crossref_primary_10_1007_s10661_024_12567_5
crossref_primary_10_1038_s41598_022_16105_6
crossref_primary_10_1038_s41561_023_01285_1
crossref_primary_10_1002_ep_13672
crossref_primary_10_1109_JSTARS_2021_3119383
crossref_primary_10_1016_j_apr_2021_02_010
crossref_primary_10_1016_j_envres_2021_111164
crossref_primary_10_1175_EI_D_20_0017_1
crossref_primary_10_1007_s11356_021_17889_2
crossref_primary_10_1016_j_scitotenv_2020_140931
crossref_primary_10_1016_j_trd_2023_103773
crossref_primary_10_1029_2020GL090542
crossref_primary_10_1017_S0376892921000369
crossref_primary_10_1007_s10098_024_02749_7
crossref_primary_10_1016_j_envpol_2022_119464
crossref_primary_10_1016_j_jes_2022_08_024
crossref_primary_10_3390_ijerph191912904
crossref_primary_10_7717_peerj_cs_1270
crossref_primary_10_1016_j_energy_2021_120518
crossref_primary_10_3389_fpubh_2021_642630
crossref_primary_10_3390_ijerph19159022
crossref_primary_10_3390_su132112312
crossref_primary_10_1016_j_envres_2021_111052
crossref_primary_10_3390_ijerph191711111
crossref_primary_10_1088_2515_7620_aba425
crossref_primary_10_1016_j_scitotenv_2021_147739
crossref_primary_10_1029_2020GL091883
crossref_primary_10_1007_s10668_020_00898_5
crossref_primary_10_1016_j_atmosenv_2020_117835
crossref_primary_10_3390_su15010642
crossref_primary_10_1007_s11869_020_00845_3
crossref_primary_10_1016_j_rsase_2022_100757
crossref_primary_10_3390_atmos14091390
crossref_primary_10_1016_j_ecolind_2023_109862
crossref_primary_10_1016_j_scitotenv_2022_155970
crossref_primary_10_1088_1748_9326_ac69fe
crossref_primary_10_1016_j_envres_2021_111186
crossref_primary_10_3390_su15020892
crossref_primary_10_1007_s00477_023_02620_z
crossref_primary_10_1007_s11356_021_15433_w
crossref_primary_10_1029_2020GL091611
crossref_primary_10_1016_j_envres_2020_109938
crossref_primary_10_1016_j_scitotenv_2020_140840
crossref_primary_10_1080_15567036_2021_1902431
crossref_primary_10_1016_j_atmosenv_2022_119540
crossref_primary_10_1016_j_atmosenv_2022_119308
crossref_primary_10_1186_s12982_025_00788_z
crossref_primary_10_1016_j_apenergy_2020_115835
crossref_primary_10_1016_j_scitotenv_2020_140946
crossref_primary_10_1007_s11600_022_00873_w
crossref_primary_10_1088_1748_9326_ac507d
crossref_primary_10_1016_j_scitotenv_2023_162424
crossref_primary_10_3390_rs16193618
crossref_primary_10_1016_j_scitotenv_2020_138878
crossref_primary_10_1016_j_accre_2022_10_004
crossref_primary_10_1016_j_heliyon_2024_e39567
crossref_primary_10_1016_j_uclim_2021_101070
crossref_primary_10_5194_acp_21_1581_2021
crossref_primary_10_1007_s11869_020_00888_6
crossref_primary_10_1016_j_envpol_2020_115617
crossref_primary_10_1016_j_envpol_2020_115859
crossref_primary_10_1016_j_scitotenv_2024_170033
crossref_primary_10_1016_j_envres_2020_109835
crossref_primary_10_1007_s13198_024_02315_w
crossref_primary_10_1016_j_atmosres_2021_105730
crossref_primary_10_1007_s11869_020_00940_5
crossref_primary_10_5194_acp_21_15431_2021
crossref_primary_10_1080_15567036_2020_1853854
crossref_primary_10_3389_fenvs_2022_910579
crossref_primary_10_1016_j_atmosres_2020_105328
crossref_primary_10_1016_j_apr_2023_101738
crossref_primary_10_1016_j_jes_2022_02_039
crossref_primary_10_12973_ejhbe_9_1_9
crossref_primary_10_1016_j_aosl_2024_100495
crossref_primary_10_1029_2022JD038360
crossref_primary_10_20518_tjph_824083
crossref_primary_10_1029_2020GH000272
crossref_primary_10_5194_acp_21_18333_2021
crossref_primary_10_1016_j_envpol_2022_119027
crossref_primary_10_5194_acp_24_8569_2024
crossref_primary_10_5194_acp_22_641_2022
crossref_primary_10_1007_s00477_021_02071_4
crossref_primary_10_1016_j_apr_2020_08_001
crossref_primary_10_1016_j_chemosphere_2024_142844
crossref_primary_10_1016_j_scitotenv_2021_151088
crossref_primary_10_1016_j_apr_2022_101438
crossref_primary_10_1016_j_uclim_2020_100664
crossref_primary_10_5194_acp_21_2491_2021
crossref_primary_10_1016_j_jclepro_2021_126561
crossref_primary_10_1016_j_scitotenv_2020_144009
crossref_primary_10_1016_j_jes_2023_09_007
crossref_primary_10_1029_2020GL091202
crossref_primary_10_1007_s40201_021_00717_7
crossref_primary_10_1016_j_scitotenv_2020_143161
crossref_primary_10_3390_atmos14040630
crossref_primary_10_1007_s00128_020_02895_w
crossref_primary_10_1007_s11356_021_12934_6
crossref_primary_10_1080_27658511_2021_1885185
crossref_primary_10_1016_j_atmosenv_2023_119757
crossref_primary_10_3390_ijerph192316338
crossref_primary_10_1007_s11356_021_13792_y
crossref_primary_10_1029_2020GL090444
crossref_primary_10_5194_acp_23_6217_2023
crossref_primary_10_1016_j_atmosenv_2023_119666
crossref_primary_10_1016_j_scitotenv_2021_146618
crossref_primary_10_1016_j_sste_2021_100471
crossref_primary_10_3390_atmos12040422
crossref_primary_10_3390_rs13071351
crossref_primary_10_2478_oszn_2022_0003
crossref_primary_10_5194_acp_21_8693_2021
crossref_primary_10_1016_j_buildenv_2025_112543
crossref_primary_10_1007_s12040_021_01722_y
crossref_primary_10_1016_j_apr_2023_101860
crossref_primary_10_5194_acp_23_14481_2023
crossref_primary_10_1016_j_atmosres_2023_106999
crossref_primary_10_1016_j_scitotenv_2021_152191
crossref_primary_10_1007_s41651_020_00064_5
crossref_primary_10_1016_j_apr_2022_101452
crossref_primary_10_3390_su17115185
crossref_primary_10_3390_environments8010002
crossref_primary_10_7189_jogh_13_06027
crossref_primary_10_1016_j_jenvman_2021_112827
crossref_primary_10_24057_2071_9388_2020_42
crossref_primary_10_5194_acp_24_9733_2024
crossref_primary_10_1016_j_envpol_2022_119134
crossref_primary_10_3390_ijerph18063172
crossref_primary_10_1007_s11600_023_01208_z
crossref_primary_10_1007_s11869_020_00863_1
crossref_primary_10_1007_s10708_022_10779_1
crossref_primary_10_5194_acp_21_4025_2021
crossref_primary_10_1029_2020GL088070
crossref_primary_10_1016_j_apr_2021_101247
crossref_primary_10_5194_acp_25_73_2025
crossref_primary_10_1029_2020GL090260
crossref_primary_10_1029_2020GL091591
crossref_primary_10_5194_acp_24_6539_2024
crossref_primary_10_1029_2020GL089035
crossref_primary_10_1007_s10661_022_10761_x
crossref_primary_10_1007_s10668_020_00883_y
crossref_primary_10_3390_rs13173492
crossref_primary_10_1016_j_envres_2021_111208
crossref_primary_10_1016_j_jenvman_2024_122615
crossref_primary_10_1016_j_envres_2022_114662
crossref_primary_10_5194_acp_21_7343_2021
crossref_primary_10_1016_j_biocon_2020_108665
crossref_primary_10_1007_s10453_020_09673_5
crossref_primary_10_1016_j_envint_2021_106887
crossref_primary_10_1016_j_envres_2021_111457
crossref_primary_10_1016_j_envpol_2023_121886
crossref_primary_10_1029_2023GH000975
crossref_primary_10_1016_j_resconrec_2020_105169
crossref_primary_10_3390_su12125064
crossref_primary_10_3390_su14159386
crossref_primary_10_3390_atmos13040569
crossref_primary_10_1155_2022_5677568
crossref_primary_10_1038_s41598_021_90617_5
crossref_primary_10_1016_j_jenvman_2024_123615
crossref_primary_10_5572_KOSAE_2022_38_4_588
crossref_primary_10_3390_su13137470
crossref_primary_10_1080_1331677X_2021_1967772
crossref_primary_10_1016_j_heliyon_2020_e04764
crossref_primary_10_1016_j_aap_2021_106382
crossref_primary_10_1108_MEQ_08_2021_0183
crossref_primary_10_1016_j_jes_2020_07_029
crossref_primary_10_3390_app14104007
crossref_primary_10_24057_2071_9388_2020_74
crossref_primary_10_1016_j_chemosphere_2021_133500
crossref_primary_10_3390_atmos11101045
crossref_primary_10_1016_j_envpol_2021_116975
crossref_primary_10_1038_s43247_025_02487_8
crossref_primary_10_1038_s41561_022_00933_2
crossref_primary_10_1016_j_scitotenv_2024_171951
crossref_primary_10_1038_s41467_021_26348_y
crossref_primary_10_1016_j_scitotenv_2024_169998
crossref_primary_10_1029_2022RG000773
crossref_primary_10_1016_j_envint_2021_106426
crossref_primary_10_1016_j_envint_2021_106786
crossref_primary_10_1016_j_apr_2021_101111
crossref_primary_10_1016_j_jes_2021_09_034
crossref_primary_10_1016_j_apr_2021_101231
crossref_primary_10_1007_s12648_023_02802_z
crossref_primary_10_1007_s41810_024_00245_5
crossref_primary_10_1016_j_scitotenv_2020_143382
crossref_primary_10_5194_acp_24_8383_2024
crossref_primary_10_20473_jkl_v12i1si_2020_70_78
crossref_primary_10_1016_j_jclepro_2020_123622
crossref_primary_10_5194_acp_21_10065_2021
crossref_primary_10_1016_j_jclepro_2022_135053
crossref_primary_10_3390_atmos12030352
crossref_primary_10_3390_rs12183042
crossref_primary_10_1080_17538947_2024_2365971
crossref_primary_10_4491_eer_2021_197
crossref_primary_10_1029_2021GL093243
crossref_primary_10_1029_2021GL092395
crossref_primary_10_1016_j_envpol_2021_116793
crossref_primary_10_1016_j_atmosenv_2021_118276
crossref_primary_10_15446_esrj_v28n4_114296
crossref_primary_10_1016_j_envpol_2021_117887
crossref_primary_10_5194_acp_21_17167_2021
crossref_primary_10_1016_j_scitotenv_2021_148198
crossref_primary_10_2147_RMHP_S297565
crossref_primary_10_1016_j_worlddev_2020_105120
crossref_primary_10_1016_j_envpol_2021_118716
crossref_primary_10_1016_j_apr_2025_102499
crossref_primary_10_1007_s40710_020_00472_1
crossref_primary_10_1016_j_uclim_2021_100802
crossref_primary_10_1029_2023JD040352
crossref_primary_10_5194_acp_24_9869_2024
crossref_primary_10_1016_j_atmosenv_2021_118270
crossref_primary_10_1016_j_scitotenv_2020_142227
crossref_primary_10_1016_j_jenvman_2022_115460
crossref_primary_10_1016_j_scs_2021_103170
crossref_primary_10_1007_s10311_021_01314_8
crossref_primary_10_1016_j_scitotenv_2021_144947
crossref_primary_10_1007_s11356_021_15631_6
crossref_primary_10_3390_pathogens10081003
crossref_primary_10_32604_cmc_2021_014991
crossref_primary_10_3390_su12093870
crossref_primary_10_1016_j_apr_2024_102160
crossref_primary_10_1029_2020JD034213
crossref_primary_10_3390_su17020394
crossref_primary_10_1016_j_rse_2023_113602
crossref_primary_10_1029_2021GL095560
crossref_primary_10_1134_S1028334X20110069
crossref_primary_10_1007_s11356_021_13980_w
crossref_primary_10_3390_su15054064
crossref_primary_10_1016_j_cities_2023_104246
crossref_primary_10_3390_atmos15111374
crossref_primary_10_3389_fevo_2022_885955
crossref_primary_10_3390_atmos13101597
crossref_primary_10_1016_j_glohj_2021_02_010
crossref_primary_10_1029_2020GL090041
crossref_primary_10_1016_j_envres_2021_112597
crossref_primary_10_1016_j_envpol_2021_117988
crossref_primary_10_1016_j_envpol_2020_115368
crossref_primary_10_1038_s41612_022_00276_0
crossref_primary_10_1016_j_jes_2020_06_031
crossref_primary_10_1525_elementa_2021_00176
crossref_primary_10_3390_rs12244112
crossref_primary_10_1016_j_uclim_2021_100908
crossref_primary_10_3390_atmos11101137
crossref_primary_10_1007_s10668_020_01031_2
crossref_primary_10_5572_KOSAE_2022_38_2_304
crossref_primary_10_1007_s13762_022_04466_4
crossref_primary_10_1016_j_envpol_2023_121355
crossref_primary_10_1016_j_uclim_2020_100725
crossref_primary_10_1016_j_scitotenv_2020_139086
crossref_primary_10_1016_j_techfore_2023_122885
crossref_primary_10_3390_atmos14030462
crossref_primary_10_3389_fenvs_2021_764294
crossref_primary_10_3390_atmos15101208
crossref_primary_10_1016_j_envres_2021_112246
crossref_primary_10_3389_frsus_2021_649715
crossref_primary_10_1016_j_scitotenv_2024_170777
crossref_primary_10_3390_atmos14101578
crossref_primary_10_1093_nsr_nwaa137
Cites_doi 10.1016/j.envpol.2016.09.041
10.1016/j.scitotenv.2016.08.024
10.1016/j.envint.2014.08.016
10.1016/j.atmosenv.2009.04.060
10.1016/j.atmosres.2015.04.018
10.5194/acpd-11-21713-2011
10.1016/j.scitotenv.2018.06.137
10.1016/j.envint.2015.06.014
10.1016/j.atmosenv.2015.10.048
10.1016/j.jes.2017.03.018
10.1016/j.scitotenv.2016.11.188
10.1016/j.apr.2015.09.009
10.1080/16000889.2019.1620079
10.5194/acp-2017-428
10.1016/j.jes.2017.03.035
10.1016/j.jhazmat.2010.12.036
10.1038/484161a
10.1016/j.atmosres.2017.08.023
10.4209/aaqr.2019.08.0392
10.5194/acp-16-10333-2016
10.1016/j.scitotenv.2019.01.227
10.1016/j.scitotenv.2016.02.122
10.1016/j.jes.2015.12.033
10.1016/j.jclepro.2017.08.164
10.1016/j.atmosenv.2012.08.014
10.1016/j.atmosenv.2014.11.038
10.1016/j.envpol.2019.01.124
10.1016/j.atmosenv.2014.10.023
10.4209/aaqr.2017.04.0140
10.1016/j.jes.2019.02.031
10.1016/j.atmosenv.2018.10.001
10.1016/j.envpol.2017.07.029
10.1016/j.atmosenv.2012.12.034
10.5194/acp-15-13681-2015
10.1038/nature04092
10.5194/acp-17-31-2017
10.5194/gmd-5-1471-2012
10.1073/pnas.1907956116
10.1080/16742834.2017.1315631
10.1016/j.envpol.2019.01.056
10.5194/acp-19-5791-2019
10.5194/acp-11-2295-2011
10.1038/srep20668
10.1016/j.atmosenv.2019.05.049
10.5194/gmd-4-625-2011
10.1016/j.envpol.2013.06.043
10.1016/j.scitotenv.2017.03.231
10.1021/es2022347
10.1016/j.scitotenv.2016.07.064
10.1016/S1001-0742(13)60383-6
10.5194/acp-17-2971-2017
10.1039/C6FD00004E
ContentType Journal Article
Copyright 2020 Elsevier B.V.
2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.resconrec.2020.104814
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Environmental Sciences
EISSN 1879-0658
EndPage 104814
ExternalDocumentID PMC7151380
32300261
10_1016_j_resconrec_2020_104814
S092134492030135X
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
9JO
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
WUQ
ZY4
~A~
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c508t-8e6181f00b88308e77ec631faf7646787387724abb68ab4b9e2317263ac6d3123
ISICitedReferencesCount 549
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540609500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-3449
IngestDate Tue Sep 30 16:46:58 EDT 2025
Wed Oct 01 14:25:36 EDT 2025
Sat Sep 27 23:40:44 EDT 2025
Wed Feb 19 02:30:26 EST 2025
Sat Nov 29 07:16:37 EST 2025
Tue Nov 18 22:14:20 EST 2025
Fri Feb 23 02:44:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Emission reduction
Severe air pollution
China
Meteorology
Language English
License 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-8e6181f00b88308e77ec631faf7646787387724abb68ab4b9e2317263ac6d3123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1797-2311
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7151380
PMID 32300261
PQID 2391971683
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7151380
proquest_miscellaneous_2431842590
proquest_miscellaneous_2391971683
pubmed_primary_32300261
crossref_citationtrail_10_1016_j_resconrec_2020_104814
crossref_primary_10_1016_j_resconrec_2020_104814
elsevier_sciencedirect_doi_10_1016_j_resconrec_2020_104814
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Resources, conservation and recycling
PublicationTitleAlternate Resour Conserv Recycl
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Li, Ying, Yu, Wu, Cheng, He, Jiang (bib0064) 2012; 62
Shi, Yuan, Wu, Meng, Zhang, Zhang, Gong (bib0046) 2018; 642
Zhang, He, Huo (bib0065) 2012; 484
Xu, Sun, Chen, Du, Han, Wang, Fu, Wang, Zhao, Zhou (bib0061) 2015; 15
Richter, Burrows, Nüß, Granier, Niemeier (bib0045) 2005; 437
Zhang, Zheng, Tong, Shao, Wang, Zhang, Xu, Wang, He, Liu, Ding, Lei, Li, Wang, Zhang, Wang, Cheng, Liu, Shi, Yan, Geng, Hong, Li, Liu, Zheng, Cao, Ding, Gao, Fu, Huo, Liu, Liu, Yang, He, Hao (bib0066) 2019; 116
Yang, Ji, Kang, Zhang, Chen, Lee (bib0063) 2019; 254
(bib0013) 2007
Hubei, P. s. G. o.2020d. Notices of Wuhan coronavirus prevention and control headquarters (NO. 6).
Lin, Liu, Fang, Xiao, Zeng, Li, Guo, Tian, Schootman, Stamatakis, Qian, Ma (bib0038) 2017; 220
Li, Qiao, Zhu, Shi, Wang (bib0036) 2017; 168
Chai, Gao, Chen, Wang, Zhang, Zhang, Zhang, Yun, Ren (bib0005) 2014; 26
Wei, Li, Wang, Chen, Wu, Li, Wang, Wang (bib0055) 2017; 10
Hubei, P. s. G. o.2020g. Notices of Wuhan Traffic Emergency Control.
Huang, Zhang, Lin (bib0021) 2015; 164-165
Wang, Guo, Hu, Kota, Ying, Zhang (bib0052) 2019; 662
Wu, Sun, Zhang, Zhang, Wang, Zhong, Yang (bib0058) 2019; 71
CRAES2020. [Expert's Interpretation] This is a tough battle and a protracted battle—Understanding the causes of pollution during the Spring Festival.
Li, Liu, Zhang, Sun, Wu, Xue, Zeng, Qu, An (bib0034) 2018; 63
Li, Liao, Hu, Li (bib0031) 2019; 248
Chen, Sun, Wu, Zhang, Zheng, Gao, Cen (bib0006) 2014; 99
Wang, Li, Peng, Zhang, Che, Zhang (bib0049) 2019; 197
Li, Zhang, Duan, Zheng, He (bib0030) 2016; 189
Li, Ma, Wang, Liu, Hong (bib0035) 2017; 198
.
Zheng, Zhang, Che, Zheng, Yin (bib0070) 2009; 43
Hu, Ying, Wang, Zhang (bib0020) 2015; 84
Li, Zhang, Kurokawa, Woo, He, Lu, Ohara, Song, Streets, Carmichael (bib0033) 2017; 17
Wiedinmyer, Akagi, Yokelson, Emmons, Al-Saadi, Orlando, Soja (bib0057) 2011; 4
Hubei, P. s. G. o.2020c. Notices of Wuhan coronavirus prevention and control headquarters (NO. 5).
Cai, Jiang, Chen, Jiang, Wang (bib0002) 2018; 18
Liu, Gong, He, Yu, Wang, Li, Liu, Zhang, Li, Wang (bib0039) 2017; 17
Cao, Yang, Li, Chen, Chen, Gu, Kan (bib0003) 2011; 186
Hubei, P. s. G. o.2020b. Notices of Wuhan coronavirus prevention and control headquarters (NO. 1).
Chen, Zhang, Huang, Song, Zhang, Qian, Trevathan, Mao, Han, Vaughn (bib0007) 2016; 571
Sun, Wang, Wild, Xu, Chen, Fu, Du, Zhou, Zhang, Han, Wang, Pan, Zheng, Li, Guo, Liu, Worsnop (bib0047) 2016; 6
Zhao, B., W. Wu, S. Wang, J. Xing, X. Chang, K.-N. Liou, J. H. Jiang, Y. Gu, C. Jang, and J. Fu. 2017. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region.
Ma, Xiao, Zhang, Wang, Shao (bib0040) 2020; 20
Wang, Zhao, Xie, Hu (bib0050) 2016; 553
CCTV. 2020. [News 30 minutes] Experts interpretation: the recent heavy pollution in Beijing-Tianjin-Hebei and surrounding areas are due to emissions and low environmental capacity.
Hubei, P. s. G. o.2020e. Notices of Wuhan coronavirus prevention and control headquarters (NO. 8).
Han, Zhang, Zhu, Skorokhod (bib0018) 2016; 7
Zhao, Zhao, Xu, Meng, Pu, Dong, He, Shi (bib0068) 2013; 13
Guenther, Jiang, Heald, Sakulyanontvittaya, Duhl, Emmons, Wang (bib0015) 2012; 5
Li, Zhang, Zhang, Zheng, Wang, Chen, Wallington, Han, Shen, Zhang (bib0037) 2015; 123
Zhao, Nielsen, Lei, McElroy, Hao (bib0069) 2011
Xu, Chang, Qu, Yan, Wang, Fu (bib0059) 2016; 572
Hubei, P. s. G. o.2020f. Notices of Wuhan coronavirus prevention and control headquarters (NO. 9).
Cheng, Wang, Jiang, Fu, Chen, Xu, Yu, Fu, Hao (bib0008) 2013; 182
Hu, Chen, Ying, Zhang (bib0019) 2016; 16
Qiao, Guo, Tang, Wang, Deng, Zhao, Hu, Ying, Zhang (bib0043) 2019; 19
Wang, Xing, Jang, Zhu, Fu, Hao (bib0053) 2011; 45
Xu, Song, Zhang, Liu, Zhang, Zhao, Liu, Tang, Yang, Wang, Wen, Pan, Fowler, Collett Jr, Erisman, Goulding, Li, Zhang (bib0060) 2017; 17
Wang, Ying, Hu, Zhang (bib0054) 2014; 73
Daily, E.2020. Spring farming is busy at villages without epidemic.
Fu, Wang, Zhao, Xing, Cheng, Liu, Hao (bib0014) 2013; 70
Rahman, Luo, Khan, Ke, Thilakanayaka, Kumar (bib0044) 2019; 212
WHO. 2020. Coronavirus disease 2019 (COVID-19): situation report, 36.
China, S. C. o. t. P. s. R. o.2019b. Notice of the general office of the state council on issuing the air pollution prevention and control action plan.
NCEP, F.2000. National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce. 2000, updated daily. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.
Han, Wang, Shen, Wang, Wu, Ren, Feng (bib0017) 2016; 46
China, M. o. E. a. E. o. t. P. s. R. o.2019a. 2017 Report on the state of the ecology and environment in China.
Gui, Che, Wang, Wang, Zhang, Zhao, Zheng, Sun, Zhang (bib0016) 2019; 247
Huang, K., G. Zhuang, J. S. Fu, Q. Wang, T. Liu, R. Zhang, Y. Jiang, C. Deng, Q. Fu, and N. Hsu. 2012. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai.
Cai, Wang, Zhao, Wang, Chang, Hao (bib0001) 2017; 580
Hubei, P. s. G. o.2020a. Notices of Wuhan coronavirus prevention and control headquarters.
Wang, Cao, Li, Singh (bib0051) 2015; 102
Li, Tan, Zhang, Feng, Qu, An, Liu (bib0032) 2017; 230
Xue, Wang, Li, Tian, Nie, Wu, Zhou, Zhou (bib0062) 2018; 65
Ma, Duan, He, Qin, Tong, Geng, Liu, Li, Yang, Ye, Xu, Zhang, Ma (bib0041) 2019; 83
Wang, Cheng, Wei, Yang, Wang, Jia, Lang, Lv (bib0048) 2017; 595
Li (10.1016/j.resconrec.2020.104814_bib0035) 2017; 198
Zhang (10.1016/j.resconrec.2020.104814_bib0064) 2012; 62
Li (10.1016/j.resconrec.2020.104814_bib0032) 2017; 230
Han (10.1016/j.resconrec.2020.104814_bib0018) 2016; 7
Ma (10.1016/j.resconrec.2020.104814_bib0041) 2019; 83
Qiao (10.1016/j.resconrec.2020.104814_bib0043) 2019; 19
Huang (10.1016/j.resconrec.2020.104814_bib0021) 2015; 164-165
Lin (10.1016/j.resconrec.2020.104814_bib0038) 2017; 220
Yang (10.1016/j.resconrec.2020.104814_bib0063) 2019; 254
10.1016/j.resconrec.2020.104814_bib0012
10.1016/j.resconrec.2020.104814_bib0056
10.1016/j.resconrec.2020.104814_bib0011
10.1016/j.resconrec.2020.104814_bib0010
Wang (10.1016/j.resconrec.2020.104814_bib0048) 2017; 595
Han (10.1016/j.resconrec.2020.104814_bib0017) 2016; 46
Cai (10.1016/j.resconrec.2020.104814_bib0002) 2018; 18
Wang (10.1016/j.resconrec.2020.104814_bib0054) 2014; 73
Hu (10.1016/j.resconrec.2020.104814_bib0020) 2015; 84
Wiedinmyer (10.1016/j.resconrec.2020.104814_bib0057) 2011; 4
Li (10.1016/j.resconrec.2020.104814_bib0036) 2017; 168
Zhang (10.1016/j.resconrec.2020.104814_bib0066) 2019; 116
Chai (10.1016/j.resconrec.2020.104814_bib0005) 2014; 26
10.1016/j.resconrec.2020.104814_bib0042
Li (10.1016/j.resconrec.2020.104814_bib0030) 2016; 189
10.1016/j.resconrec.2020.104814_bib0009
Li (10.1016/j.resconrec.2020.104814_bib0034) 2018; 63
10.1016/j.resconrec.2020.104814_bib0004
Xu (10.1016/j.resconrec.2020.104814_bib0059) 2016; 572
Guenther (10.1016/j.resconrec.2020.104814_bib0015) 2012; 5
Wang (10.1016/j.resconrec.2020.104814_bib0051) 2015; 102
Chen (10.1016/j.resconrec.2020.104814_bib0006) 2014; 99
Ma (10.1016/j.resconrec.2020.104814_bib0040) 2020; 20
Xu (10.1016/j.resconrec.2020.104814_bib0060) 2017; 17
Li (10.1016/j.resconrec.2020.104814_bib0031) 2019; 248
Li (10.1016/j.resconrec.2020.104814_bib0033) 2017; 17
Wu (10.1016/j.resconrec.2020.104814_bib0058) 2019; 71
Hu (10.1016/j.resconrec.2020.104814_bib0019) 2016; 16
Liu (10.1016/j.resconrec.2020.104814_bib0039) 2017; 17
Sun (10.1016/j.resconrec.2020.104814_bib0047) 2016; 6
Zhao (10.1016/j.resconrec.2020.104814_bib0068) 2013; 13
Chen (10.1016/j.resconrec.2020.104814_bib0007) 2016; 571
Fu (10.1016/j.resconrec.2020.104814_bib0014) 2013; 70
Shi (10.1016/j.resconrec.2020.104814_bib0046) 2018; 642
Xu (10.1016/j.resconrec.2020.104814_bib0061) 2015; 15
Li (10.1016/j.resconrec.2020.104814_bib0037) 2015; 123
Zheng (10.1016/j.resconrec.2020.104814_bib0070) 2009; 43
Zhao (10.1016/j.resconrec.2020.104814_bib0069) 2011
Gui (10.1016/j.resconrec.2020.104814_bib0016) 2019; 247
Richter (10.1016/j.resconrec.2020.104814_bib0045) 2005; 437
Wang (10.1016/j.resconrec.2020.104814_bib0050) 2016; 553
Rahman (10.1016/j.resconrec.2020.104814_bib0044) 2019; 212
Cai (10.1016/j.resconrec.2020.104814_bib0001) 2017; 580
Cheng (10.1016/j.resconrec.2020.104814_bib0008) 2013; 182
Wei (10.1016/j.resconrec.2020.104814_bib0055) 2017; 10
(10.1016/j.resconrec.2020.104814_bib0013) 2007
10.1016/j.resconrec.2020.104814_bib0025
10.1016/j.resconrec.2020.104814_bib0024
Wang (10.1016/j.resconrec.2020.104814_bib0049) 2019; 197
10.1016/j.resconrec.2020.104814_bib0023
10.1016/j.resconrec.2020.104814_bib0067
10.1016/j.resconrec.2020.104814_bib0022
Xue (10.1016/j.resconrec.2020.104814_bib0062) 2018; 65
Zhang (10.1016/j.resconrec.2020.104814_bib0065) 2012; 484
Wang (10.1016/j.resconrec.2020.104814_bib0053) 2011; 45
10.1016/j.resconrec.2020.104814_bib0029
10.1016/j.resconrec.2020.104814_bib0028
Cao (10.1016/j.resconrec.2020.104814_bib0003) 2011; 186
10.1016/j.resconrec.2020.104814_bib0027
10.1016/j.resconrec.2020.104814_bib0026
Wang (10.1016/j.resconrec.2020.104814_bib0052) 2019; 662
References_xml – volume: 247
  start-page: 1125
  year: 2019
  end-page: 1133
  ident: bib0016
  article-title: Satellite-derived PM2.5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters
  publication-title: Environ. Pollut.
– reference: Hubei, P. s. G. o.2020f. Notices of Wuhan coronavirus prevention and control headquarters (NO. 9).
– volume: 17
  start-page: 2971
  year: 2017
  end-page: 2980
  ident: bib0039
  article-title: Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area
  publication-title: Atmos. Chem. Phys.
– volume: 212
  start-page: 290
  year: 2019
  end-page: 304
  ident: bib0044
  article-title: Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China
  publication-title: Atmos. Environ.
– volume: 17
  year: 2017
  ident: bib0033
  article-title: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP
  publication-title: Atmosp. Chem. Phys. (Online)
– volume: 18
  start-page: 969
  year: 2018
  end-page: 980
  ident: bib0002
  article-title: Weather condition dominates regional PM2.5 Pollutions in the Eastern Coastal Provinces of China during Winter
  publication-title: Aerosol Air Qual. Res.
– volume: 116
  start-page: 24463
  year: 2019
  end-page: 24469
  ident: bib0066
  article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017
  publication-title: Proc Natl Acad Sci U S A
– year: 2007
  ident: bib0013
  article-title: Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM2. 5, and regional haze. US Environmental Protection Agency
  publication-title: Office Air Qual. Plan. Stand.
– volume: 83
  start-page: 8
  year: 2019
  end-page: 20
  ident: bib0041
  article-title: Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014-2016
  publication-title: J. Environ. Sci. (China)
– reference: Hubei, P. s. G. o.2020b. Notices of Wuhan coronavirus prevention and control headquarters (NO. 1).
– volume: 168
  start-page: 1381
  year: 2017
  end-page: 1388
  ident: bib0036
  article-title: The “APEC blue” endeavor: causal effects of air pollution regulation on air quality in China
  publication-title: J. Cleaner Prod.
– volume: 553
  start-page: 429
  year: 2016
  end-page: 438
  ident: bib0050
  article-title: "APEC blue"–The effects and implications of joint pollution prevention and control program
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 26
  year: 2020
  end-page: 42
  ident: bib0040
  article-title: Assessment of Meteorological Impact and Emergency Plan for a Heavy Haze Pollution Episode in a Core City of the North China Plain
  publication-title: Aerosol Air Qual. Res.
– volume: 4
  start-page: 625
  year: 2011
  ident: bib0057
  article-title: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning
  publication-title: Geoscientific Model Devel.
– volume: 84
  start-page: 17
  year: 2015
  end-page: 25
  ident: bib0020
  article-title: Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices
  publication-title: Environ. Int.
– volume: 189
  start-page: 317
  year: 2016
  end-page: 335
  ident: bib0030
  article-title: The "Parade Blue": effects of short-term emission control on aerosol chemistry
  publication-title: Faraday Discuss
– reference: China, S. C. o. t. P. s. R. o.2019b. Notice of the general office of the state council on issuing the air pollution prevention and control action plan.
– volume: 6
  start-page: 20668
  year: 2016
  ident: bib0047
  article-title: "APEC Blue": secondary aerosol reductions from emission controls in Beijing
  publication-title: Sci. Rep.
– reference: Hubei, P. s. G. o.2020e. Notices of Wuhan coronavirus prevention and control headquarters (NO. 8).
– volume: 198
  start-page: 185
  year: 2017
  end-page: 193
  ident: bib0035
  article-title: Temporal and spatial analyses of particulate matter (PM 10 and PM 2.5) and its relationship with meteorological parameters over an urban city in northeast China
  publication-title: Atmos. Res.
– volume: 62
  start-page: 228
  year: 2012
  end-page: 242
  ident: bib0064
  article-title: Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model
  publication-title: Atmos. Environ.
– year: 2011
  ident: bib0069
  article-title: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China
  publication-title: Atmos. Chem. Phys.
– volume: 484
  start-page: 161
  year: 2012
  end-page: 162
  ident: bib0065
  article-title: Cleaning China's air
  publication-title: Nature
– volume: 15
  start-page: 13681
  year: 2015
  end-page: 13698
  ident: bib0061
  article-title: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study
  publication-title: Atmos. Chem. Phys
– volume: 254
  year: 2019
  ident: bib0063
  article-title: Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources
  publication-title: Environ. Pollut.
– volume: 19
  start-page: 5791
  year: 2019
  end-page: 5803
  ident: bib0043
  article-title: Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China
  publication-title: Atmos. Chem. Phys.
– volume: 437
  start-page: 129
  year: 2005
  end-page: 132
  ident: bib0045
  article-title: Increase in tropospheric nitrogen dioxide over China observed from space
  publication-title: Nature
– volume: 5
  start-page: 1471
  year: 2012
  end-page: 1492
  ident: bib0015
  article-title: The model of emissions of gases and aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions
  publication-title: Geosci. Model Develop.
– volume: 230
  start-page: 718
  year: 2017
  end-page: 729
  ident: bib0032
  article-title: Characteristics and source apportionment of PM2. 5 during persistent extreme haze events in Chengdu, southwest China
  publication-title: Environ. Pollut.
– reference: China, M. o. E. a. E. o. t. P. s. R. o.2019a. 2017 Report on the state of the ecology and environment in China.
– volume: 63
  start-page: 236
  year: 2018
  end-page: 249
  ident: bib0034
  article-title: Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China
  publication-title: J Environ Sci
– volume: 186
  start-page: 1594
  year: 2011
  end-page: 1600
  ident: bib0003
  article-title: Association between long-term exposure to outdoor air pollution and mortality in China: a cohort study
  publication-title: J. Hazard. Mater.
– volume: 182
  start-page: 101
  year: 2013
  end-page: 110
  ident: bib0008
  article-title: Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China
  publication-title: Environ. Pollut.
– volume: 220
  start-page: 222
  year: 2017
  end-page: 227
  ident: bib0038
  article-title: Mortality benefits of vigorous air quality improvement interventions during the periods of APEC Blue and Parade Blue in Beijing, China
  publication-title: Environ. Pollut.
– reference: NCEP, F.2000. National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce. 2000, updated daily. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.
– volume: 662
  start-page: 297
  year: 2019
  end-page: 306
  ident: bib0052
  article-title: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China
  publication-title: Sci. Total Environ.
– reference: Hubei, P. s. G. o.2020a. Notices of Wuhan coronavirus prevention and control headquarters.
– reference: Hubei, P. s. G. o.2020c. Notices of Wuhan coronavirus prevention and control headquarters (NO. 5).
– reference: Huang, K., G. Zhuang, J. S. Fu, Q. Wang, T. Liu, R. Zhang, Y. Jiang, C. Deng, Q. Fu, and N. Hsu. 2012. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai.
– reference: WHO. 2020. Coronavirus disease 2019 (COVID-19): situation report, 36.
– reference: Daily, E.2020. Spring farming is busy at villages without epidemic.
– reference: CRAES2020. [Expert's Interpretation] This is a tough battle and a protracted battle—Understanding the causes of pollution during the Spring Festival.
– volume: 71
  year: 2019
  ident: bib0058
  article-title: Aqueous-phase reactions occurred in the PM2.5 cumulative explosive growth during the heavy pollution episode (HPE) in 2016 Beijing wintertime
  publication-title: Tellus B
– volume: 571
  start-page: 855
  year: 2016
  end-page: 861
  ident: bib0007
  article-title: Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China
  publication-title: Sci. Total Environ.
– volume: 595
  start-page: 81
  year: 2017
  end-page: 92
  ident: bib0048
  article-title: Characteristics and emission-reduction measures evaluation of PM2.5 during the two major events: APEC and Parade
  publication-title: Sci. Total Environ.
– volume: 13
  year: 2013
  ident: bib0068
  article-title: Analysis of a winter regional haze event and its formation mechanism in the North China Plain
  publication-title: Atmosph. Chem. Phys. Discuss.
– reference: Hubei, P. s. G. o.2020d. Notices of Wuhan coronavirus prevention and control headquarters (NO. 6).
– volume: 10
  start-page: 276
  year: 2017
  end-page: 283
  ident: bib0055
  article-title: Trends of surface PM2. 5 over Beijing–Tianjin–Hebei in 2013–2015 and their causes: emission controls vs. meteorological conditions
  publication-title: Atmosph. Ocean. Sci. Lett.
– volume: 73
  start-page: 413
  year: 2014
  end-page: 422
  ident: bib0054
  article-title: Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014
  publication-title: Environ. Int.
– volume: 248
  start-page: 74
  year: 2019
  end-page: 81
  ident: bib0031
  article-title: Severe particulate pollution days in China during 2013-2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions
  publication-title: Environ. Pollut.
– reference: CCTV. 2020. [News 30 minutes] Experts interpretation: the recent heavy pollution in Beijing-Tianjin-Hebei and surrounding areas are due to emissions and low environmental capacity.
– volume: 197
  start-page: 177
  year: 2019
  end-page: 189
  ident: bib0049
  article-title: The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China
  publication-title: Atmos. Environ.
– volume: 17
  start-page: 31
  year: 2017
  end-page: 46
  ident: bib0060
  article-title: Air quality improvement in a megacity: implications from 2015 Beijing Parade Blue pollution control actions
  publication-title: Atmos. Chem. Phys.
– volume: 43
  start-page: 5112
  year: 2009
  end-page: 5122
  ident: bib0070
  article-title: A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment
  publication-title: Atmos. Environ.
– volume: 70
  start-page: 39
  year: 2013
  end-page: 50
  ident: bib0014
  article-title: Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China
  publication-title: Atmos. Environ.
– volume: 102
  start-page: 112
  year: 2015
  end-page: 121
  ident: bib0051
  article-title: Analysis of a severe prolonged regional haze episode in the Yangtze River Delta, China
  publication-title: Atmos. Environ.
– reference: .
– volume: 26
  start-page: 75
  year: 2014
  end-page: 82
  ident: bib0005
  article-title: Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China
  publication-title: J. Environ. Sci.
– volume: 99
  start-page: 527
  year: 2014
  end-page: 535
  ident: bib0006
  article-title: Unit-based emission inventory and uncertainty assessment of coal-fired power plants
  publication-title: Atmos. Environ.
– volume: 46
  start-page: 134
  year: 2016
  end-page: 146
  ident: bib0017
  article-title: Spatial and temporal variation of haze in China from 1961 to 2012
  publication-title: J. Environ. Sci.
– volume: 572
  start-page: 1138
  year: 2016
  end-page: 1149
  ident: bib0059
  article-title: The meteorological modulation on PM2.5 interannual oscillation during 2013 to 2015 in Shanghai, China
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 10333
  year: 2016
  end-page: 10350
  ident: bib0019
  article-title: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system
  publication-title: Atmos. Chem. Phys.
– volume: 45
  start-page: 9293
  year: 2011
  end-page: 9300
  ident: bib0053
  article-title: Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique
  publication-title: Environ. Sci. Technol.
– volume: 164-165
  start-page: 65
  year: 2015
  end-page: 75
  ident: bib0021
  article-title: The “APEC Blue” phenomenon: Regional emission control effects observed from space
  publication-title: Atmos. Res.
– volume: 642
  start-page: 1221
  year: 2018
  end-page: 1232
  ident: bib0046
  article-title: Meteorological conditions conducive to PM2.5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China
  publication-title: Sci. Total Environ.
– volume: 123
  start-page: 229
  year: 2015
  end-page: 239
  ident: bib0037
  article-title: Source contributions of urban PM2. 5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology
  publication-title: Atmos. Environ.
– volume: 65
  start-page: 29
  year: 2018
  end-page: 42
  ident: bib0062
  article-title: Multi-dimension apportionment of clean air "parade blue" phenomenon in Beijing
  publication-title: J Environ Sci (China)
– volume: 580
  start-page: 197
  year: 2017
  end-page: 209
  ident: bib0001
  article-title: The impact of the “air pollution prevention and control action plan” on PM2. 5 concentrations in Jing-Jin-Ji region during 2012–2020
  publication-title: Sci. Total Environ.
– reference: Hubei, P. s. G. o.2020g. Notices of Wuhan Traffic Emergency Control.
– volume: 7
  start-page: 249
  year: 2016
  end-page: 259
  ident: bib0018
  article-title: Assessment of the impact of emissions reductions on air quality over North China Plain
  publication-title: Atmosp. Pollut. Res.
– reference: Zhao, B., W. Wu, S. Wang, J. Xing, X. Chang, K.-N. Liou, J. H. Jiang, Y. Gu, C. Jang, and J. Fu. 2017. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region.
– volume: 220
  start-page: 222
  issue: Pt A
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0038
  article-title: Mortality benefits of vigorous air quality improvement interventions during the periods of APEC Blue and Parade Blue in Beijing, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.09.041
– volume: 572
  start-page: 1138
  year: 2016
  ident: 10.1016/j.resconrec.2020.104814_bib0059
  article-title: The meteorological modulation on PM2.5 interannual oscillation during 2013 to 2015 in Shanghai, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.08.024
– volume: 73
  start-page: 413
  year: 2014
  ident: 10.1016/j.resconrec.2020.104814_bib0054
  article-title: Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.08.016
– volume: 43
  start-page: 5112
  issue: 32
  year: 2009
  ident: 10.1016/j.resconrec.2020.104814_bib0070
  article-title: A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.04.060
– volume: 164-165
  start-page: 65
  year: 2015
  ident: 10.1016/j.resconrec.2020.104814_bib0021
  article-title: The “APEC Blue” phenomenon: Regional emission control effects observed from space
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.04.018
– ident: 10.1016/j.resconrec.2020.104814_bib0022
  doi: 10.5194/acpd-11-21713-2011
– volume: 642
  start-page: 1221
  year: 2018
  ident: 10.1016/j.resconrec.2020.104814_bib0046
  article-title: Meteorological conditions conducive to PM2.5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.137
– volume: 84
  start-page: 17
  year: 2015
  ident: 10.1016/j.resconrec.2020.104814_bib0020
  article-title: Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.06.014
– ident: 10.1016/j.resconrec.2020.104814_bib0011
– volume: 17
  issue: 2
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0033
  article-title: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP
  publication-title: Atmosp. Chem. Phys. (Online)
– volume: 123
  start-page: 229
  year: 2015
  ident: 10.1016/j.resconrec.2020.104814_bib0037
  article-title: Source contributions of urban PM2. 5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.10.048
– volume: 63
  start-page: 236
  year: 2018
  ident: 10.1016/j.resconrec.2020.104814_bib0034
  article-title: Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2017.03.018
– volume: 580
  start-page: 197
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0001
  article-title: The impact of the “air pollution prevention and control action plan” on PM2. 5 concentrations in Jing-Jin-Ji region during 2012–2020
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.188
– volume: 7
  start-page: 249
  issue: 2
  year: 2016
  ident: 10.1016/j.resconrec.2020.104814_bib0018
  article-title: Assessment of the impact of emissions reductions on air quality over North China Plain
  publication-title: Atmosp. Pollut. Res.
  doi: 10.1016/j.apr.2015.09.009
– ident: 10.1016/j.resconrec.2020.104814_bib0027
– volume: 71
  issue: 1
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0058
  article-title: Aqueous-phase reactions occurred in the PM2.5 cumulative explosive growth during the heavy pollution episode (HPE) in 2016 Beijing wintertime
  publication-title: Tellus B
  doi: 10.1080/16000889.2019.1620079
– ident: 10.1016/j.resconrec.2020.104814_bib0067
  doi: 10.5194/acp-2017-428
– ident: 10.1016/j.resconrec.2020.104814_bib0004
– volume: 65
  start-page: 29
  year: 2018
  ident: 10.1016/j.resconrec.2020.104814_bib0062
  article-title: Multi-dimension apportionment of clean air "parade blue" phenomenon in Beijing
  publication-title: J Environ Sci (China)
  doi: 10.1016/j.jes.2017.03.035
– volume: 186
  start-page: 1594
  issue: 2-3
  year: 2011
  ident: 10.1016/j.resconrec.2020.104814_bib0003
  article-title: Association between long-term exposure to outdoor air pollution and mortality in China: a cohort study
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.12.036
– volume: 484
  start-page: 161
  issue: 7393
  year: 2012
  ident: 10.1016/j.resconrec.2020.104814_bib0065
  article-title: Cleaning China's air
  publication-title: Nature
  doi: 10.1038/484161a
– volume: 13
  issue: 1
  year: 2013
  ident: 10.1016/j.resconrec.2020.104814_bib0068
  article-title: Analysis of a winter regional haze event and its formation mechanism in the North China Plain
  publication-title: Atmosph. Chem. Phys. Discuss.
– volume: 198
  start-page: 185
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0035
  article-title: Temporal and spatial analyses of particulate matter (PM 10 and PM 2.5) and its relationship with meteorological parameters over an urban city in northeast China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.08.023
– year: 2007
  ident: 10.1016/j.resconrec.2020.104814_bib0013
  article-title: Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM2. 5, and regional haze. US Environmental Protection Agency
  publication-title: Office Air Qual. Plan. Stand.
– volume: 20
  start-page: 26
  issue: 1
  year: 2020
  ident: 10.1016/j.resconrec.2020.104814_bib0040
  article-title: Assessment of Meteorological Impact and Emergency Plan for a Heavy Haze Pollution Episode in a Core City of the North China Plain
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2019.08.0392
– ident: 10.1016/j.resconrec.2020.104814_bib0056
– volume: 16
  start-page: 10333
  issue: 16
  year: 2016
  ident: 10.1016/j.resconrec.2020.104814_bib0019
  article-title: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-10333-2016
– ident: 10.1016/j.resconrec.2020.104814_bib0010
– volume: 662
  start-page: 297
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0052
  article-title: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.227
– volume: 553
  start-page: 429
  year: 2016
  ident: 10.1016/j.resconrec.2020.104814_bib0050
  article-title: "APEC blue"–The effects and implications of joint pollution prevention and control program
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.02.122
– volume: 46
  start-page: 134
  year: 2016
  ident: 10.1016/j.resconrec.2020.104814_bib0017
  article-title: Spatial and temporal variation of haze in China from 1961 to 2012
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2015.12.033
– volume: 168
  start-page: 1381
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0036
  article-title: The “APEC blue” endeavor: causal effects of air pollution regulation on air quality in China
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.08.164
– volume: 254
  issue: Pt A
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0063
  article-title: Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources
  publication-title: Environ. Pollut.
– ident: 10.1016/j.resconrec.2020.104814_bib0024
– ident: 10.1016/j.resconrec.2020.104814_bib0028
– volume: 62
  start-page: 228
  year: 2012
  ident: 10.1016/j.resconrec.2020.104814_bib0064
  article-title: Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.08.014
– volume: 102
  start-page: 112
  year: 2015
  ident: 10.1016/j.resconrec.2020.104814_bib0051
  article-title: Analysis of a severe prolonged regional haze episode in the Yangtze River Delta, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.11.038
– volume: 248
  start-page: 74
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0031
  article-title: Severe particulate pollution days in China during 2013-2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.01.124
– volume: 99
  start-page: 527
  year: 2014
  ident: 10.1016/j.resconrec.2020.104814_bib0006
  article-title: Unit-based emission inventory and uncertainty assessment of coal-fired power plants
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.10.023
– volume: 18
  start-page: 969
  issue: 4
  year: 2018
  ident: 10.1016/j.resconrec.2020.104814_bib0002
  article-title: Weather condition dominates regional PM2.5 Pollutions in the Eastern Coastal Provinces of China during Winter
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2017.04.0140
– volume: 83
  start-page: 8
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0041
  article-title: Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014-2016
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/j.jes.2019.02.031
– volume: 197
  start-page: 177
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0049
  article-title: The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.10.001
– volume: 230
  start-page: 718
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0032
  article-title: Characteristics and source apportionment of PM2. 5 during persistent extreme haze events in Chengdu, southwest China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.029
– volume: 70
  start-page: 39
  year: 2013
  ident: 10.1016/j.resconrec.2020.104814_bib0014
  article-title: Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.12.034
– volume: 15
  start-page: 13681
  issue: 23
  year: 2015
  ident: 10.1016/j.resconrec.2020.104814_bib0061
  article-title: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study
  publication-title: Atmos. Chem. Phys
  doi: 10.5194/acp-15-13681-2015
– volume: 437
  start-page: 129
  issue: 7055
  year: 2005
  ident: 10.1016/j.resconrec.2020.104814_bib0045
  article-title: Increase in tropospheric nitrogen dioxide over China observed from space
  publication-title: Nature
  doi: 10.1038/nature04092
– volume: 17
  start-page: 31
  issue: 1
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0060
  article-title: Air quality improvement in a megacity: implications from 2015 Beijing Parade Blue pollution control actions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-31-2017
– volume: 5
  start-page: 1471
  issue: 6
  year: 2012
  ident: 10.1016/j.resconrec.2020.104814_bib0015
  article-title: The model of emissions of gases and aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions
  publication-title: Geosci. Model Develop.
  doi: 10.5194/gmd-5-1471-2012
– ident: 10.1016/j.resconrec.2020.104814_bib0025
– ident: 10.1016/j.resconrec.2020.104814_bib0042
– ident: 10.1016/j.resconrec.2020.104814_bib0029
– ident: 10.1016/j.resconrec.2020.104814_bib0023
– volume: 116
  start-page: 24463
  issue: 49
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0066
  article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1907956116
– volume: 10
  start-page: 276
  issue: 4
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0055
  article-title: Trends of surface PM2. 5 over Beijing–Tianjin–Hebei in 2013–2015 and their causes: emission controls vs. meteorological conditions
  publication-title: Atmosph. Ocean. Sci. Lett.
  doi: 10.1080/16742834.2017.1315631
– volume: 247
  start-page: 1125
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0016
  article-title: Satellite-derived PM2.5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.01.056
– volume: 19
  start-page: 5791
  issue: 9
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0043
  article-title: Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-5791-2019
– year: 2011
  ident: 10.1016/j.resconrec.2020.104814_bib0069
  article-title: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-2295-2011
– volume: 6
  start-page: 20668
  year: 2016
  ident: 10.1016/j.resconrec.2020.104814_bib0047
  article-title: "APEC Blue": secondary aerosol reductions from emission controls in Beijing
  publication-title: Sci. Rep.
  doi: 10.1038/srep20668
– ident: 10.1016/j.resconrec.2020.104814_bib0009
– volume: 212
  start-page: 290
  year: 2019
  ident: 10.1016/j.resconrec.2020.104814_bib0044
  article-title: Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.05.049
– volume: 4
  start-page: 625
  issue: 3
  year: 2011
  ident: 10.1016/j.resconrec.2020.104814_bib0057
  article-title: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning
  publication-title: Geoscientific Model Devel.
  doi: 10.5194/gmd-4-625-2011
– volume: 182
  start-page: 101
  year: 2013
  ident: 10.1016/j.resconrec.2020.104814_bib0008
  article-title: Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.06.043
– ident: 10.1016/j.resconrec.2020.104814_bib0012
– volume: 595
  start-page: 81
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0048
  article-title: Characteristics and emission-reduction measures evaluation of PM2.5 during the two major events: APEC and Parade
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.231
– volume: 45
  start-page: 9293
  issue: 21
  year: 2011
  ident: 10.1016/j.resconrec.2020.104814_bib0053
  article-title: Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2022347
– volume: 571
  start-page: 855
  year: 2016
  ident: 10.1016/j.resconrec.2020.104814_bib0007
  article-title: Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.064
– volume: 26
  start-page: 75
  issue: 1
  year: 2014
  ident: 10.1016/j.resconrec.2020.104814_bib0005
  article-title: Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(13)60383-6
– volume: 17
  start-page: 2971
  issue: 4
  year: 2017
  ident: 10.1016/j.resconrec.2020.104814_bib0039
  article-title: Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-2971-2017
– volume: 189
  start-page: 317
  year: 2016
  ident: 10.1016/j.resconrec.2020.104814_bib0030
  article-title: The "Parade Blue": effects of short-term emission control on aerosol chemistry
  publication-title: Faraday Discuss
  doi: 10.1039/C6FD00004E
– ident: 10.1016/j.resconrec.2020.104814_bib0026
SSID ssj0003893
Score 2.7041965
Snippet Due to the pandemic of coronavirus disease 2019 in China, almost all avoidable activities in China are prohibited since Wuhan announced lockdown on January 23,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104814
SubjectTerms air pollution
air quality
anthropogenic activities
China
Coronavirus infections
COVID-19
Emission reduction
emissions
Meteorology
Orthocoronavirinae
pandemic
particulates
Severe air pollution
transportation
Title Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak
URI https://dx.doi.org/10.1016/j.resconrec.2020.104814
https://www.ncbi.nlm.nih.gov/pubmed/32300261
https://www.proquest.com/docview/2391971683
https://www.proquest.com/docview/2431842590
https://pubmed.ncbi.nlm.nih.gov/PMC7151380
Volume 158
WOSCitedRecordID wos000540609500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003893
  issn: 0921-3449
  databaseCode: AIEXJ
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6DST2gKAwKD8mI_FWpUriNHZ4m0YRAzQmbUx9i5zE6TKmdGubav0T-K8555ykXQcDIV6iNInjpPflfHe--0zIW7BSHaU9Vd9PODgovmtFME5bLHXshIHEZUk8f_qFHx6K4TA4arV-VLUw8wue5-L6Orj8r6KGYyBsXTr7F-KubwoHYB-EDlsQO2z_SPDHCh5ZdWU20SswYE_dkqdp2s3Hs66cj7ME7c6J5m1VmqwVV0uAe2r61rhcUQJc6KqIcf_r6cF7ywm642IGLrT8vmzSVhMAJSBinZxtwryYuq7iha6-HDWRe9QuRyofpSpr0gtQ_32W2aJootlFGZ2Fc6MrwPGtN1mOW4CTWuW4mmDaWkENRiVdx2Iespj2FOpkwTVRAjK810obf64NABiLOO9N1BTeGN6xp_vWM9kCi1VvsGsf6x51h672DVl_uEG2XN4PQEFu7R0Mhp_qYV1bdiVxo3nClWTBW7v7lamz7srczMhdMnFOHpGHxjehe4ipx6Sl8ja5Pyh5zRdtsr3EXdkmO4OmRBIamTFi-oQkCEAKAKQ1ACkCkAIAqQEgjRbUAJCuAJA2AKQIQFoBkFYAfEq-fRic7H-0zFoeVgwuwMwSygdbMrXtSAhmC8W5in3mpDLlPozVgjMBfp4no8gXMvKiQIHjwV3QFbGfMDCvdshmPs7Vc0LBVBAuT-IkkY7nuG6QgM9lSxZ7MvUcr98hfvW3h7EhutfrrVyEVUbjeVjLK9TyClFeHWLXDS-R6-XuJu8quYbGZEVTNARA3t34TYWEEJS6nqmTuRoX09BlgaO53QT7zTVg-us59MDukGeInvqpmcvK4EqH8BVc1RdoUvnVM3l2VpLLc3ABmLBf_MuLvSQPmi_-FdmcTQr1mtyL57NsOtklG3wods3n9RPRbvca
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Severe+air+pollution+events+not+avoided+by+reduced+anthropogenic+activities+during+COVID-19+outbreak&rft.jtitle=Resources%2C+conservation+and+recycling&rft.au=Wang%2C+Pengfei&rft.au=Chen%2C+Kaiyu&rft.au=Zhu%2C+Shengqiang&rft.au=Wang%2C+Peng&rft.date=2020-07-01&rft.pub=Elsevier+B.V&rft.issn=0921-3449&rft.eissn=1879-0658&rft.volume=158&rft_id=info:doi/10.1016%2Fj.resconrec.2020.104814&rft.externalDocID=S092134492030135X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-3449&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-3449&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-3449&client=summon