DOA Estimation Method Based on Improved Deep Convolutional Neural Network
For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inver...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 22; číslo 4; s. 1305 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
09.02.2022
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which “1” indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input. |
|---|---|
| AbstractList | For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which "1" indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input.For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which "1" indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input. For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which “1” indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input. |
| Audience | Academic |
| Author | Zhao, Fangzheng Zhan, Chenghong Zhang, Yule Hu, Guoping |
| AuthorAffiliation | 1 Graduate School, Air Force Engineering University, Xi’an 710043, China; zhaofz1020@163.com (F.Z.); chenghong_zhan@163.com (C.Z.); yule_zhang0921@163.com (Y.Z.) 2 Air and Missile Defense College, Air Force Engineering University, Xi’an 710043, China |
| AuthorAffiliation_xml | – name: 1 Graduate School, Air Force Engineering University, Xi’an 710043, China; zhaofz1020@163.com (F.Z.); chenghong_zhan@163.com (C.Z.); yule_zhang0921@163.com (Y.Z.) – name: 2 Air and Missile Defense College, Air Force Engineering University, Xi’an 710043, China |
| Author_xml | – sequence: 1 givenname: Fangzheng orcidid: 0000-0003-0421-5917 surname: Zhao fullname: Zhao, Fangzheng – sequence: 2 givenname: Guoping surname: Hu fullname: Hu, Guoping – sequence: 3 givenname: Chenghong surname: Zhan fullname: Zhan, Chenghong – sequence: 4 givenname: Yule orcidid: 0000-0002-6515-8189 surname: Zhang fullname: Zhang, Yule |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35214207$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhiNURD_gwB9AkbjAYduxndjOBWnZtrBSoRc4W4492XpJ4sVOFvHv692UVVshHzyeefx6xjOn2VHve8yytwTOGavgIlIKBWFQvshOSEGLmUyOo0f2cXYa4xqAMsbkq-yYlTTFQJxky8vbeX4VB9fpwfk-_4bDnbf5Zx3R5um87DbBb5N9ibjJF77f-nbckbrNv-MY9tvwx4dfr7OXjW4jvnnYz7Kf11c_Fl9nN7dflov5zcyUIIeZQCtBUiasAIvCoAHakMqUxIhSlKBNLVmDnFpTUNJUwAQWhDe2ohIZRXaWLSdd6_VabULKPPxVXju1d_iwUjoMzrSoNOWFRsN0rZPBhYSiBgQqiG5q5DxpfZq0NmPdoTXYD6miJ6JPI727Uyu_VbLiDAhNAh8eBIL_PWIcVOeiwbbVPfoxKsrTh5ecCJnQ98_QtR9D-seJIpJI2GV0PlErnQpwfePTuyYti50zqe2NS_65kIRDJelO9t3jEg65_2txAj5OgAk-xoDNASGgduOjDuOT2ItnrHHDfjBSFq79z417TgPEQQ |
| CitedBy_id | crossref_primary_10_3390_s23063100 crossref_primary_10_3390_s25082359 crossref_primary_10_3390_rs16040626 crossref_primary_10_3390_rs15010185 crossref_primary_10_1142_S2251171725500047 crossref_primary_10_1109_LGRS_2024_3469971 crossref_primary_10_1109_TITS_2023_3258688 crossref_primary_10_1109_ACCESS_2025_3544803 crossref_primary_10_3390_math10071174 crossref_primary_10_1007_s00034_025_03328_x crossref_primary_10_1109_ACCESS_2025_3528328 crossref_primary_10_1002_ett_4959 crossref_primary_10_1016_j_aeue_2023_155008 crossref_primary_10_1016_j_isatra_2023_11_041 crossref_primary_10_3390_electronics13193866 crossref_primary_10_3390_s24010091 |
| Cites_doi | 10.1007/s10489-020-01678-4 10.1109/ICASSP.2015.7178838 10.1109/WASPAA.2017.8170010 10.1109/29.7543 10.1007/978-1-4842-5364-9 10.1109/29.32276 10.3390/s20185431 10.1109/TSP.2013.2289875 10.3390/s20010081 10.1016/j.flowmeasinst.2020.101804 10.1007/978-3-319-73074-5 10.1109/ICASSP.2015.7178484 10.1109/78.97999 10.1109/TSP.2021.3053495 10.1109/TAP.1986.1143830 10.1016/j.sigpro.2013.03.009 10.1007/978-1-4471-5571-3_4 10.1049/PBRA026E 10.1109/ACCESS.2020.2966653 10.1109/TSP.2003.820089 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22041305 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_a264aec3aba64a67804b0e0271afbe66 PMC8963012 A781609828 35214207 10_3390_s22041305 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 6207011332 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c508t-7ed808237d70de7cec02f19c51c75750acb83fe62dc421f9037e416fd928e32e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000763153500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:50 EDT 2025 Tue Nov 04 01:57:20 EST 2025 Fri Sep 05 07:51:02 EDT 2025 Tue Oct 07 07:43:08 EDT 2025 Tue Nov 04 18:29:21 EST 2025 Wed Feb 19 02:26:37 EST 2025 Tue Nov 18 22:24:16 EST 2025 Sat Nov 29 07:19:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | DOA estimation deep convolutional neural network the upper triangular matrix covariance matrix |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-7ed808237d70de7cec02f19c51c75750acb83fe62dc421f9037e416fd928e32e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6515-8189 0000-0003-0421-5917 |
| OpenAccessLink | https://doaj.org/article/a264aec3aba64a67804b0e0271afbe66 |
| PMID | 35214207 |
| PQID | 2633181806 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a264aec3aba64a67804b0e0271afbe66 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8963012 proquest_miscellaneous_2633856178 proquest_journals_2633181806 gale_infotracacademiconefile_A781609828 pubmed_primary_35214207 crossref_primary_10_3390_s22041305 crossref_citationtrail_10_3390_s22041305 |
| PublicationCentury | 2000 |
| PublicationDate | 20220209 |
| PublicationDateYYYYMMDD | 2022-02-09 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220209 day: 9 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Rossi (ref_5) 2013; 62 Roshani (ref_17) 2020; 75 Hu (ref_14) 2020; 8 Wax (ref_12) 2021; 69 ref_13 ref_22 ref_21 ref_20 ref_1 ref_3 ref_2 ref_19 Hassanien (ref_6) 2004; 52 ref_16 ref_15 Viberg (ref_11) 1991; 39 Xiang (ref_18) 2020; 50 Roy (ref_8) 1989; 37 Ziskind (ref_9) 1988; 36 Schmidt (ref_7) 1986; 34 ref_4 Heidenreich (ref_10) 2013; 93 |
| References_xml | – volume: 50 start-page: 2411 year: 2020 ident: ref_18 article-title: Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation publication-title: Appl. Intell. doi: 10.1007/s10489-020-01678-4 – ident: ref_21 doi: 10.1109/ICASSP.2015.7178838 – ident: ref_16 doi: 10.1109/WASPAA.2017.8170010 – ident: ref_4 – volume: 36 start-page: 1553 year: 1988 ident: ref_9 article-title: Wax, Maximum likelihood localization of multiple sources by alternating projection publication-title: IEEE Trans. Acoust. Speech. Signal Processing doi: 10.1109/29.7543 – ident: ref_20 doi: 10.1007/978-1-4842-5364-9 – volume: 37 start-page: 984 year: 1989 ident: ref_8 article-title: ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques publication-title: IEEE Trans. Acoust. Speech Signal Processing doi: 10.1109/29.32276 – ident: ref_2 – ident: ref_3 doi: 10.3390/s20185431 – volume: 62 start-page: 419 year: 2013 ident: ref_5 article-title: Spatial Compressive Sensing for MIMO Radar publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2013.2289875 – ident: ref_13 doi: 10.3390/s20010081 – volume: 75 start-page: 101804 year: 2020 ident: ref_17 article-title: Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2020.101804 – ident: ref_19 doi: 10.1007/978-3-319-73074-5 – ident: ref_15 doi: 10.1109/ICASSP.2015.7178484 – volume: 39 start-page: 2436 year: 1991 ident: ref_11 article-title: Detection and estimation in sensor arrays using weighted subspace fitting publication-title: IEEE Trans. Signal Process doi: 10.1109/78.97999 – volume: 69 start-page: 973 year: 2021 ident: ref_12 article-title: Detection of the Number of Signals by Signal Subspace Matching publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2021.3053495 – volume: 34 start-page: 276 year: 1986 ident: ref_7 article-title: Multiple emitter location and signal parameter estimation publication-title: Trans. Antennas Propagat doi: 10.1109/TAP.1986.1143830 – volume: 93 start-page: 3400 year: 2013 ident: ref_10 article-title: Superfast Maximum Likelihood DOA Estimation in the Two-Target Case with Applications to Automotive Radar publication-title: Signal Process doi: 10.1016/j.sigpro.2013.03.009 – ident: ref_22 doi: 10.1007/978-1-4471-5571-3_4 – ident: ref_1 doi: 10.1049/PBRA026E – volume: 8 start-page: 14809 year: 2020 ident: ref_14 article-title: DOA Robust Estimation of Echo Signals Based on Deep Learning Networks with Multiple Type Illuminators of Opportunity publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966653 – volume: 52 start-page: 280 year: 2004 ident: ref_6 article-title: A Generalized Capon Estimator for Localization of Multiple Spread Sources publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2003.820089 |
| SSID | ssj0023338 |
| Score | 2.4390266 |
| Snippet | For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1305 |
| SubjectTerms | Algorithms Computer Simulation covariance matrix deep convolutional neural network Deep learning DOA estimation Methods Neural networks Neural Networks, Computer Noise Propagation Signal processing the upper triangular matrix |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgM98KYECgoICS7R2k7WjxNqSysq0WoPgMopsp0JVELJsrvt72eceMNGIE6c4sRWZGvGn2eSmW8AXtcSyezmPmOSYVa4ymXW-Dzz2mrllZ_pjonpy0d1fq4vLsw8pkevYljlBhM7oO7ZnkPcNoHwtGp9-GI-FTInZeSayXeLn1moIRX-tcaCGjdhJxBvsQnszE_P5l8HBywnf6xnF8rJ1Z-uhGABw2ejM6mj7v8ToLdOqHH05NZxdHL3_y7kHtyJZml60OvRfbiBzQPY3SIrfAin5Eamx4QIfbJjetbVnk4P6RisUrrvP09Q-z3iIj1qm-uo1fTeQAHSXbqY80fw-eT409GHLBZiyDzZb-tMYaU7VptKsQqVR89EzY0nGSsy95j1Tuc1SlH5QvDasFwhGXp1ZYTGXGD-GCZN2-ATSDmvpTHWOAKSQltllEPuDC9sVaCduQTebkRR-shSHopl_CjJWwlSKwepJfBqGLroqTn-NugwyHMYENi0uwft8lsZN2dpySq06HPrLDVk4GRyDMlh57Z2KGUCb4I2lGHP02S8jakLtKTAnlUeKM0lM-S8JrC_EXoZwWBV_pZxAi-HbtrG4d-MbbC96sfoWcjXTGCv169hzmQj80IwlYAaad5oUeOe5vJ7RxWuCV_JBHn672k9g9siZHWEYHSzD5P18gqfwy1_vb5cLV_EXfQLtbcufQ priority: 102 providerName: ProQuest |
| Title | DOA Estimation Method Based on Improved Deep Convolutional Neural Network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35214207 https://www.proquest.com/docview/2633181806 https://www.proquest.com/docview/2633856178 https://pubmed.ncbi.nlm.nih.gov/PMC8963012 https://doaj.org/article/a264aec3aba64a67804b0e0271afbe66 |
| Volume | 22 |
| WOSCitedRecordID | wos000763153500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_B4AEeEJ8jsFUBIcFLNDtOY_txHZ2YRKsKASpPke1ctElTOq3dHvnbOdtp1AgkXvbiOLZlne98vrvE_hngQ1Miud3cZaxkmBW2tpnRTmROGSWddGMVkJh-fpXzuVou9WLnqi-_JyzCA0fGHRmy2AadMNZQpvR4OZYhBVPcNBbLALbNpN4GU12oJSjyijhCgoL6o3WeM79ajwfWJ4D0_70U79ii4T7JHcNz-hSedB5jehwpfQb3sH0Oj3dwBF_AGRGVTklZ4znEdBauhU4nZKHqlN7jlwPKf0a8Sk9W7W034ahfj84RHmE7-Ev4cTr9fvIl6-5IyBy5VptMYq0C4EwtWY3SoWN5w7Uj9kvyxJhxVokGy7x2Rc4bzYRE8sGaWucKRY7iFey1qxZfQ8p5U2pttCUdL5SRWlrkVvPC1AWasU3g05Z3lesAxP09FpcVBRKezVXP5gTe902vImrGvxpNvAD6Bh7oOhSQ-KtO_NX_xJ_ARy--yqsjEeNMd6qAhuSBrapjqXjJNMWVCRxsJVx1erqu8lLQosYVo47e9dWkYf63iWlxdRPbqLE_SpnAfpwQPc3kvvKC5l8CcjBVBoMa1rQX5wHFW9HSR97Bm7vgwlt4lPtjGX43uT6Avc31DR7CQ3e7uVhfj-C-XMqQqhE8mEzni2-joC6Uzn5PqWxxNlv8-gM_ThqF |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwLsQKBAQCC5RbScb2weE-lRX3V3toaD2FBxnApVQsuxui_hT_EbGebErELceOOVlRePk8zxszzcAr_IYye3mNmAxwyBKszQw2oaBVUZJK21fVUxMH4dyPFanp3qyBj_bXBi3rbLViZWizkrr5si3RRwS_Lhi8fvpt8BVjXKrq20JjRoWx_jjO4Vs83eDffq_r4U4PDjZOwqaqgKBJWdkEUjMVEXRkkmWobRomci5tiSwJN-FGZuqMMdYZDYSPNcslEheS55poTAUGNJ7r8F6RGBnPVifDEaTsy7ECyniq_mLwlCz7bkQzFmJ_orVq4oD_GkClmzg6v7MJYN3ePt_-1R34FbjWvs79Vi4C2tY3IObS4SL92FAobB_QFqtTtj0R1X9bH-XTHnm03U9xULn-4hTf68sLpuRSe91NCbVodo3_wA-XElfNqFXlAU-Ap_zPNba6JSUYaSM1DJFnmoemSxC0089eNv-7MQ2TOuu4MfXhCIuh4ukw4UHL7um05pe5G-Ndh1iugaOEby6Uc4-J42CSQx5tgZtaFJDJ7HjlUoZMiG5yVOMYw_eOLwlTm-RMNY06RfUJccAluxIxWOmKQD3YKuFVdIotHnyG1MevOgekypy60umwPKibqP6LufUg4c1gjuZyc_nkWDSA7mC7ZVOrT4pzr9UdOeKbAS5UY__LdZzuHF0Mhomw8H4-AlsCJel4jbX6y3oLWYX-BSu28vF-Xz2rBmzPny6auz_AsGwf8k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwPsRWCAgEFyi-pHG9gGh7bYV1S5VhQDtLTjOBFZCaWm7i_hr_DrGSRpagbjtgVMetiI7_jyPZOYbgGdFgmR2cxexhGEUZ3kWWeNk5LTVyinX0xUT08cjNZno42Mz3YGf61wYH1a5lomVoM5nzn8j74pEEvy4Zkm3aMIipoPR6_m3yFeQ8n9a1-U0aogc4o_v5L4tX40HtNbPhRgN3x-8iZoKA5Ejw2QVKcx1RdeSK5ajcuiYKLhxNHhFdgyzLtOywETkLha8MEwqJAumyI3QKAVKeu4F2FWSnJ4O7PaHk-m71t2T5P3VXEZSGtZdCsG8xuhtacCqUMCf6mBDH27Ham4ov9G1__m1XYerjckd7td75AbsYHkTrmwQMd6CMbnI4ZCkXZ3IGb6t6mqHfVLxeUjX9acXOh8gzsODWXnW7Fh6rqc3qQ5VPP1t-HAuc7kDnXJW4j0IOS8SY6zJSEjG2iqjMuSZ4bHNY7S9LICX64VPXcPA7guBfE3JE_MYSVuMBPC07TqvaUf-1qnv0dN28Ezh1Y3Z4nPaCJ7UksVr0UmbWTpJPN9UxpAJxW2RYZIE8MJjL_XyjAbjbJOWQVPyzGDpvtI8YYYc8wD21hBLG0G3TH_jK4AnbTOJKP_fyZY4O6376J7PRQ3gbo3mdsxk__NYMBWA2sL51qS2W8qTLxUNuibdQebV_X8P6zFcIsCnR-PJ4QO4LHzyio-5N3vQWS1O8SFcdGerk-XiUbN9Q_h03tD_BQ8diGM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOA+Estimation+Method+Based+on+Improved+Deep+Convolutional+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Fangzheng&rft.au=Hu%2C+Guoping&rft.au=Zhan%2C+Chenghong&rft.au=Zhang%2C+Yule&rft.date=2022-02-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041305&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |