DOA Estimation Method Based on Improved Deep Convolutional Neural Network

For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inver...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 4; s. 1305
Hlavní autoři: Zhao, Fangzheng, Hu, Guoping, Zhan, Chenghong, Zhang, Yule
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 09.02.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which “1” indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input.
AbstractList For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which "1" indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input.For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which "1" indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input.
For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which “1” indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input.
Audience Academic
Author Zhao, Fangzheng
Zhan, Chenghong
Zhang, Yule
Hu, Guoping
AuthorAffiliation 1 Graduate School, Air Force Engineering University, Xi’an 710043, China; zhaofz1020@163.com (F.Z.); chenghong_zhan@163.com (C.Z.); yule_zhang0921@163.com (Y.Z.)
2 Air and Missile Defense College, Air Force Engineering University, Xi’an 710043, China
AuthorAffiliation_xml – name: 1 Graduate School, Air Force Engineering University, Xi’an 710043, China; zhaofz1020@163.com (F.Z.); chenghong_zhan@163.com (C.Z.); yule_zhang0921@163.com (Y.Z.)
– name: 2 Air and Missile Defense College, Air Force Engineering University, Xi’an 710043, China
Author_xml – sequence: 1
  givenname: Fangzheng
  orcidid: 0000-0003-0421-5917
  surname: Zhao
  fullname: Zhao, Fangzheng
– sequence: 2
  givenname: Guoping
  surname: Hu
  fullname: Hu, Guoping
– sequence: 3
  givenname: Chenghong
  surname: Zhan
  fullname: Zhan, Chenghong
– sequence: 4
  givenname: Yule
  orcidid: 0000-0002-6515-8189
  surname: Zhang
  fullname: Zhang, Yule
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35214207$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AkbjAYduxndjOBWnZtrBSoRc4W4492XpJ4sVOFvHv692UVVshHzyeefx6xjOn2VHve8yytwTOGavgIlIKBWFQvshOSEGLmUyOo0f2cXYa4xqAMsbkq-yYlTTFQJxky8vbeX4VB9fpwfk-_4bDnbf5Zx3R5um87DbBb5N9ibjJF77f-nbckbrNv-MY9tvwx4dfr7OXjW4jvnnYz7Kf11c_Fl9nN7dflov5zcyUIIeZQCtBUiasAIvCoAHakMqUxIhSlKBNLVmDnFpTUNJUwAQWhDe2ohIZRXaWLSdd6_VabULKPPxVXju1d_iwUjoMzrSoNOWFRsN0rZPBhYSiBgQqiG5q5DxpfZq0NmPdoTXYD6miJ6JPI727Uyu_VbLiDAhNAh8eBIL_PWIcVOeiwbbVPfoxKsrTh5ecCJnQ98_QtR9D-seJIpJI2GV0PlErnQpwfePTuyYti50zqe2NS_65kIRDJelO9t3jEg65_2txAj5OgAk-xoDNASGgduOjDuOT2ItnrHHDfjBSFq79z417TgPEQQ
CitedBy_id crossref_primary_10_3390_s23063100
crossref_primary_10_3390_s25082359
crossref_primary_10_3390_rs16040626
crossref_primary_10_3390_rs15010185
crossref_primary_10_1142_S2251171725500047
crossref_primary_10_1109_LGRS_2024_3469971
crossref_primary_10_1109_TITS_2023_3258688
crossref_primary_10_1109_ACCESS_2025_3544803
crossref_primary_10_3390_math10071174
crossref_primary_10_1007_s00034_025_03328_x
crossref_primary_10_1109_ACCESS_2025_3528328
crossref_primary_10_1002_ett_4959
crossref_primary_10_1016_j_aeue_2023_155008
crossref_primary_10_1016_j_isatra_2023_11_041
crossref_primary_10_3390_electronics13193866
crossref_primary_10_3390_s24010091
Cites_doi 10.1007/s10489-020-01678-4
10.1109/ICASSP.2015.7178838
10.1109/WASPAA.2017.8170010
10.1109/29.7543
10.1007/978-1-4842-5364-9
10.1109/29.32276
10.3390/s20185431
10.1109/TSP.2013.2289875
10.3390/s20010081
10.1016/j.flowmeasinst.2020.101804
10.1007/978-3-319-73074-5
10.1109/ICASSP.2015.7178484
10.1109/78.97999
10.1109/TSP.2021.3053495
10.1109/TAP.1986.1143830
10.1016/j.sigpro.2013.03.009
10.1007/978-1-4471-5571-3_4
10.1049/PBRA026E
10.1109/ACCESS.2020.2966653
10.1109/TSP.2003.820089
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22041305
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a264aec3aba64a67804b0e0271afbe66
PMC8963012
A781609828
35214207
10_3390_s22041305
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 6207011332
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-7ed808237d70de7cec02f19c51c75750acb83fe62dc421f9037e416fd928e32e3
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000763153500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:50 EDT 2025
Tue Nov 04 01:57:20 EST 2025
Fri Sep 05 07:51:02 EDT 2025
Tue Oct 07 07:43:08 EDT 2025
Tue Nov 04 18:29:21 EST 2025
Wed Feb 19 02:26:37 EST 2025
Tue Nov 18 22:24:16 EST 2025
Sat Nov 29 07:19:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords DOA estimation
deep convolutional neural network
the upper triangular matrix
covariance matrix
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-7ed808237d70de7cec02f19c51c75750acb83fe62dc421f9037e416fd928e32e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6515-8189
0000-0003-0421-5917
OpenAccessLink https://doaj.org/article/a264aec3aba64a67804b0e0271afbe66
PMID 35214207
PQID 2633181806
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_a264aec3aba64a67804b0e0271afbe66
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8963012
proquest_miscellaneous_2633856178
proquest_journals_2633181806
gale_infotracacademiconefile_A781609828
pubmed_primary_35214207
crossref_primary_10_3390_s22041305
crossref_citationtrail_10_3390_s22041305
PublicationCentury 2000
PublicationDate 20220209
PublicationDateYYYYMMDD 2022-02-09
PublicationDate_xml – month: 2
  year: 2022
  text: 20220209
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Rossi (ref_5) 2013; 62
Roshani (ref_17) 2020; 75
Hu (ref_14) 2020; 8
Wax (ref_12) 2021; 69
ref_13
ref_22
ref_21
ref_20
ref_1
ref_3
ref_2
ref_19
Hassanien (ref_6) 2004; 52
ref_16
ref_15
Viberg (ref_11) 1991; 39
Xiang (ref_18) 2020; 50
Roy (ref_8) 1989; 37
Ziskind (ref_9) 1988; 36
Schmidt (ref_7) 1986; 34
ref_4
Heidenreich (ref_10) 2013; 93
References_xml – volume: 50
  start-page: 2411
  year: 2020
  ident: ref_18
  article-title: Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01678-4
– ident: ref_21
  doi: 10.1109/ICASSP.2015.7178838
– ident: ref_16
  doi: 10.1109/WASPAA.2017.8170010
– ident: ref_4
– volume: 36
  start-page: 1553
  year: 1988
  ident: ref_9
  article-title: Wax, Maximum likelihood localization of multiple sources by alternating projection
  publication-title: IEEE Trans. Acoust. Speech. Signal Processing
  doi: 10.1109/29.7543
– ident: ref_20
  doi: 10.1007/978-1-4842-5364-9
– volume: 37
  start-page: 984
  year: 1989
  ident: ref_8
  article-title: ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques
  publication-title: IEEE Trans. Acoust. Speech Signal Processing
  doi: 10.1109/29.32276
– ident: ref_2
– ident: ref_3
  doi: 10.3390/s20185431
– volume: 62
  start-page: 419
  year: 2013
  ident: ref_5
  article-title: Spatial Compressive Sensing for MIMO Radar
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2013.2289875
– ident: ref_13
  doi: 10.3390/s20010081
– volume: 75
  start-page: 101804
  year: 2020
  ident: ref_17
  article-title: Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2020.101804
– ident: ref_19
  doi: 10.1007/978-3-319-73074-5
– ident: ref_15
  doi: 10.1109/ICASSP.2015.7178484
– volume: 39
  start-page: 2436
  year: 1991
  ident: ref_11
  article-title: Detection and estimation in sensor arrays using weighted subspace fitting
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/78.97999
– volume: 69
  start-page: 973
  year: 2021
  ident: ref_12
  article-title: Detection of the Number of Signals by Signal Subspace Matching
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2021.3053495
– volume: 34
  start-page: 276
  year: 1986
  ident: ref_7
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: Trans. Antennas Propagat
  doi: 10.1109/TAP.1986.1143830
– volume: 93
  start-page: 3400
  year: 2013
  ident: ref_10
  article-title: Superfast Maximum Likelihood DOA Estimation in the Two-Target Case with Applications to Automotive Radar
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2013.03.009
– ident: ref_22
  doi: 10.1007/978-1-4471-5571-3_4
– ident: ref_1
  doi: 10.1049/PBRA026E
– volume: 8
  start-page: 14809
  year: 2020
  ident: ref_14
  article-title: DOA Robust Estimation of Echo Signals Based on Deep Learning Networks with Multiple Type Illuminators of Opportunity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966653
– volume: 52
  start-page: 280
  year: 2004
  ident: ref_6
  article-title: A Generalized Capon Estimator for Localization of Multiple Spread Sources
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2003.820089
SSID ssj0023338
Score 2.4390266
Snippet For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1305
SubjectTerms Algorithms
Computer Simulation
covariance matrix
deep convolutional neural network
Deep learning
DOA estimation
Methods
Neural networks
Neural Networks, Computer
Noise
Propagation
Signal processing
the upper triangular matrix
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3oVAQQEhwSWq42xi-4Ta0goOVBxA2lvk2BOoVCXL7ra_nxnHm27UigunvEbRJPP24xuA9xTC6L6XWYPGZ7NG2Kwh6WaqKZD0gyfSdGg2oU5P9XxuvscBt1VcVrnxicFR-97xGPm-rApSv1yL6tPiT8Zdo3h2NbbQuA13uG0267maXxVcBdVfA5pQQaX9_kpKwT67nMSgANV_3SFvRaTpasmt8HPy8H8ZfwQPYuKZHgya8hhuYfcE7m_BET6Fr1Qopsdk88N2xvRb6C6dHlKg8yldDwMQdP4ZcZEe9d1l1Ft6L4N8hENYVf4Mfp4c_zj6ksVWC5kjYawzhV4H3BqvhEfl0AnZ5saVuVOU0AnrGl20WEnvZjJvjSgUUirXeiM1FhKLXdjp-g5fQOo10ZrSUKVmZ4LyH1U6elWTo8-xbKsEPm5-fu0iDjm3wzivqR5hOdWjnBJ4N5IuBvCNm4gOWYIjAeNlhxv98lcdza-2lPdZdIVtLJ1UjLrUCKSSPLdtgxUx9YHlX7NVEzPOxs0J9EmMj1UfKJ1XwlB5msDeRsx1NPdVfSXjBN6Oj8lQefbFdthfDDS65B2ZCTwfNGrkmbLgfCaFSkBNdG3yUdMn3dnvAAauyYNSkvHy32y9gnuS923wcnOzBzvr5QW-hrvucn22Wr4JVvMXQXwhRg
  priority: 102
  providerName: ProQuest
Title DOA Estimation Method Based on Improved Deep Convolutional Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/35214207
https://www.proquest.com/docview/2633181806
https://www.proquest.com/docview/2633856178
https://pubmed.ncbi.nlm.nih.gov/PMC8963012
https://doaj.org/article/a264aec3aba64a67804b0e0271afbe66
Volume 22
WOSCitedRecordID wos000763153500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7atIf2UPpM3SaLWwrtxUSS15Z0zCYbmsMuS2lhezKyNCaB4A3ZTY757RlJXrOmhV568UMehDwPzYwtfQPwhVwYtTuR1ahdNq6ZyWqSbibrHEk__I80FYpNyPlcLZd6sVPqy68Ji_DAkXFHhjy2QZub2tBF6fFyaoaUTHHT1FgGsG0m9TaZ6lKtnDKviCOUU1J_tBaC-dm6GHifANL_51S844uG6yR3HM_ZS3jRRYzpcRzpK3iE7Wt4voMj-AbOaVDplIw17kNMZ6EsdDohD-VSuo9fDuj6FPE6PVm1d53CUb8enSOcwnLwt_DrbPrz5HvW1UjILHFxk0l0KgDOOMkcSouWiYZrW3ArKRJjxtYqb7AUzo4FbzTLJVIM1jgtFOYC83ew165afA-pU0SrC00plhkzClxkYamrmqPjWDRlAt-2vKtsByDu61hcVZRIeDZXPZsT-NyTXkfUjL8RTbwAegIPdB0aSPxVJ_7qX-JP4KsXX-XNkQZjTbergF7JA1tVx1LxkmnKKxM42Eq46ux0XYkyp0mNK0Ydfeofk4X53yamxdVtpFGF30qZwH5UiH7MFL7yMelfAnKgKoOXGj5pLy8CireiqY-igw__gwsf4Znw2zL8anJ9AHubm1s8hKf2bnO5vhnBY7mU4ahG8GQynS9-jIK50HF2P6W2xfls8fsBtqcaTQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQICwSWqY29i-4BQn-qq7YpDkfYWEnsClVCy7G6L-FP8RsbOoxuBuPXAabPJyGuvP88j9nwD8JpMGN23PCpQ22hUsDwqaHYjWQgkfLiNNOWLTcjJRE2n-uMa_OpyYdyxyk4nekVta-PekW_yVBD8YsXSD7Pvkasa5XZXuxIaDSwO8ecPCtkW78e7NL9vON_fO9k5iNqqApGh311GEq3yFC1WMovSoGG8jLVJYiPJd2G5KZQoMeXWjHhcaiYkktdSWs0VCo6C2r0CV0mPSxfsyelFgCco3mvYi4TQbHPBOXM2IhnYPF8a4E8DsGIBh6czV8zd_u3_7Y-6A7daxzrcalbCXVjD6h7cXKFbvA9jCoTDPdJpTbpmeOyrZ4fbZMhtSN-bFyx0vYs4C3fq6rxdl9SuIzHxH_7U_AP4dCljeQjrVV3hYwitIlmdaIpE8xEj_04mhpoqYrQxJmUawLtusjPT8qy7ch_fMoq3HC6yHhcBvOpFZw25yN-Eth1iegHHB-5v1PMvWatespz82hyNyIucLlLHKlUwZFzGeVlgSp166_CWOa1FnTF5m3xBQ3L8X9mWVHHKNIXfAWx0sMpadbbILjAVwMv-MSkit7uUV1ifNTIqcRmnATxqENz3mbz8eMSZDEAOsD0Y1PBJdfrVk50rshDkRD35d7dewPWDk-Oj7Gg8OXwKN7jLUXFH6_UGrC_nZ_gMrpnz5eli_tyv2BA-XzbyfwNroX4J
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YChgEgouV9Tr2eg8ItU0jotIoB5Da07LeHUMlZIckLeKv8euY9YtYIG49cIpjj1az3m_n4Z0HwAtSYXTf8iBDaYNRxnSQ0eoGIouQ8OEO0tKq2YSYzdLjYznfgp9tLowLq2xlYiWobWncN_IhTyKCX5iyZJg3YRHz8eTt4lvgOki5k9a2nUYNkUP88Z3ct9Wb6ZjW-iXnk4MP---CpsNAYIiHdSDQplW5FiuYRWHQMJ6H0sShEWTHMG2yNMox4daMeJhLFgkkCya3kqcYcYxo3EuwTSb5iA9gez49mp907l5E3l9dyyiKJBuuOGdOY8Q9DVg1CvhTHWzow36s5obym9z4n1_bTbjemNz-br1HbsEWFrfh2kYhxjswJRfZPyBpVydy-kdVX21_j1S89el__emFrseIC3-_LM6bHUvjuvIm1U8VT38XPl7IXO7BoCgLfAC-TYlWxpJ8VD1iZPmJ2NBQWYg2xDhPPHjdLrwyTQV21wjkqyJPzGFEdRjx4HlHuqjLjvyNaM-hpyNwlcKrG-Xys2oEj9Jk8Wo0kc40XSSu3lTGkHER6jzDhJh65bCnnDwjZoxu0jJoSq4ymNoVaZgwSY65BzstxFQj6FbqN748eNY9JhHlzp10geVZTZPGLhfVg_s1mjueyf4PR5wJD0QP571J9Z8Up1-qMugp6Q4yrx7-m62ncIUAr95PZ4eP4Cp3ySsu5l7uwGC9PMPHcNmcr09XyyfN9vXh00VD_xfAS4hY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOA+Estimation+Method+Based+on+Improved+Deep+Convolutional+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Fangzheng&rft.au=Hu%2C+Guoping&rft.au=Zhan%2C+Chenghong&rft.au=Zhang%2C+Yule&rft.date=2022-02-09&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041305&rft_id=info%3Apmid%2F35214207&rft.externalDocID=35214207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon