Intelligent Sensors for dc Fault Location Scheme Based on Optimized Intelligent Architecture for HVdc Systems

We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs) are trained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 24; S. 9936
Hauptverfasser: Yousaf, Muhammad Zain, Tahir, Muhammad Faizan, Raza, Ali, Khan, Muhammad Ahmad, Badshah, Fazal
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 16.12.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs) are trained using the Levenberg–Marquardt backpropagation (LMBP) method, which multi-stage BO optimizes for efficiency. During training, the feature vectors at the sending terminal of the dc link are selected based on the norm values of the observed waveforms at various frequency bands. The multilayer ANN is trained using a comprehensive set of offline data that takes the denoising scheme into account. This choice not only helps to reduce the computational load but also provides better accuracy. An overall percentage error of 0.5144% is observed for the proposed algorithm when tested against fault resistances ranging from 10 to 485 Ω. The simulation results show that the proposed method can accurately estimate the fault site to a precision of 485 Ω and is more robust.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22249936