Intelligent Sensors for dc Fault Location Scheme Based on Optimized Intelligent Architecture for HVdc Systems

We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs) are trained...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 22; číslo 24; s. 9936
Hlavní autori: Yousaf, Muhammad Zain, Tahir, Muhammad Faizan, Raza, Ali, Khan, Muhammad Ahmad, Badshah, Fazal
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 16.12.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs) are trained using the Levenberg–Marquardt backpropagation (LMBP) method, which multi-stage BO optimizes for efficiency. During training, the feature vectors at the sending terminal of the dc link are selected based on the norm values of the observed waveforms at various frequency bands. The multilayer ANN is trained using a comprehensive set of offline data that takes the denoising scheme into account. This choice not only helps to reduce the computational load but also provides better accuracy. An overall percentage error of 0.5144% is observed for the proposed algorithm when tested against fault resistances ranging from 10 to 485 Ω. The simulation results show that the proposed method can accurately estimate the fault site to a precision of 485 Ω and is more robust.
AbstractList We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs) are trained using the Levenberg–Marquardt backpropagation (LMBP) method, which multi-stage BO optimizes for efficiency. During training, the feature vectors at the sending terminal of the dc link are selected based on the norm values of the observed waveforms at various frequency bands. The multilayer ANN is trained using a comprehensive set of offline data that takes the denoising scheme into account. This choice not only helps to reduce the computational load but also provides better accuracy. An overall percentage error of 0.5144% is observed for the proposed algorithm when tested against fault resistances ranging from 10 to 485 Ω. The simulation results show that the proposed method can accurately estimate the fault site to a precision of 485 Ω and is more robust.
We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs) are trained using the Levenberg-Marquardt backpropagation (LMBP) method, which multi-stage BO optimizes for efficiency. During training, the feature vectors at the sending terminal of the dc link are selected based on the norm values of the observed waveforms at various frequency bands. The multilayer ANN is trained using a comprehensive set of offline data that takes the denoising scheme into account. This choice not only helps to reduce the computational load but also provides better accuracy. An overall percentage error of 0.5144% is observed for the proposed algorithm when tested against fault resistances ranging from 10 to 485 Ω. The simulation results show that the proposed method can accurately estimate the fault site to a precision of 485 Ω and is more robust.We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs) are trained using the Levenberg-Marquardt backpropagation (LMBP) method, which multi-stage BO optimizes for efficiency. During training, the feature vectors at the sending terminal of the dc link are selected based on the norm values of the observed waveforms at various frequency bands. The multilayer ANN is trained using a comprehensive set of offline data that takes the denoising scheme into account. This choice not only helps to reduce the computational load but also provides better accuracy. An overall percentage error of 0.5144% is observed for the proposed algorithm when tested against fault resistances ranging from 10 to 485 Ω. The simulation results show that the proposed method can accurately estimate the fault site to a precision of 485 Ω and is more robust.
Audience Academic
Author Yousaf, Muhammad Zain
Khan, Muhammad Ahmad
Tahir, Muhammad Faizan
Raza, Ali
Badshah, Fazal
AuthorAffiliation 1 School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
3 School of Electrical Engineering, University of Engineering and Technology, Lahore 39161, Pakistan
4 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2 School of Electric Power, South China University of Technology, Guangzhou 510630, China
AuthorAffiliation_xml – name: 2 School of Electric Power, South China University of Technology, Guangzhou 510630, China
– name: 3 School of Electrical Engineering, University of Engineering and Technology, Lahore 39161, Pakistan
– name: 4 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
– name: 1 School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
Author_xml – sequence: 1
  givenname: Muhammad Zain
  surname: Yousaf
  fullname: Yousaf, Muhammad Zain
– sequence: 2
  givenname: Muhammad Faizan
  orcidid: 0000-0001-9138-3323
  surname: Tahir
  fullname: Tahir, Muhammad Faizan
– sequence: 3
  givenname: Ali
  orcidid: 0000-0003-0947-3616
  surname: Raza
  fullname: Raza, Ali
– sequence: 4
  givenname: Muhammad Ahmad
  surname: Khan
  fullname: Khan, Muhammad Ahmad
– sequence: 5
  givenname: Fazal
  surname: Badshah
  fullname: Badshah, Fazal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36560301$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAQgCNURB9w4A-gSFzgsK1fsZ0L0lJRulKlHha4Wo4z2fUqiRfbQSq_nuluW22LfIhn8s3njDOnxdEYRiiK95Scc16Ti8QYE3XN5avihAomZpoxcnSwPy5OU9oQwjjn-k1xzGUlCSf0pBgWY4a-9ysYc7mEMYWYyi7EsnXllZ36XN4EZ7MPY7l0axig_GoTtCXGt9vsB_8Xg0PHPLq1z-DyFGEnuv6FquVdyjCkt8XrzvYJ3j08z4qfV99-XF7Pbm6_Ly7nNzNXEZ1nSthGitpJJqFhwknlGG1tBxg5ZrVzEmqqtLTMOmWbWtYONGVQIVwpyc-Kxd7bBrsx2-gHG-9MsN7sEiGujI3Zux4M501tgXRor4Skla1FUynRdZpwbhWg68vetZ2aAVqHTUbbP5M-fzP6tVmFP6ZWmmghUPDpQRDD7wlSNoNPDi_MjhCmZJiqNCWKaY3oxxfoJkxxxKu6p6TSgtYMqfM9tbLYgB-7gOc6XC0M3uFodB7zcyVkxSsuKBZ8OGzh6dsfxwCBiz3gYkgpQmecz7u_jmbfG0rM_aCZp0HDis8vKh6l_7P_AD0-0q8
CitedBy_id crossref_primary_10_1016_j_fraope_2025_100345
crossref_primary_10_1016_j_asej_2025_103736
crossref_primary_10_1016_j_prime_2025_100944
crossref_primary_10_3934_math_2025829
crossref_primary_10_3390_s25051347
crossref_primary_10_1016_j_prime_2025_101031
crossref_primary_10_1016_j_fraope_2025_100284
crossref_primary_10_1038_s41598_024_74300_z
crossref_primary_10_3390_su16146102
crossref_primary_10_1007_s00202_024_02625_z
crossref_primary_10_3390_electronics13193804
crossref_primary_10_1038_s41598_025_98006_y
crossref_primary_10_1016_j_ins_2024_121771
crossref_primary_10_3390_electronics12081766
crossref_primary_10_1016_j_ijepes_2023_109423
crossref_primary_10_1016_j_asej_2025_103596
crossref_primary_10_1016_j_asej_2025_103576
crossref_primary_10_1016_j_ijepes_2025_110709
crossref_primary_10_1038_s41598_024_80033_w
crossref_primary_10_3390_en17133171
crossref_primary_10_1155_2024_3713139
crossref_primary_10_1016_j_prime_2025_101043
crossref_primary_10_1016_j_heliyon_2025_e43101
crossref_primary_10_3934_electreng_2025017
crossref_primary_10_1109_ACCESS_2024_3444710
crossref_primary_10_1016_j_engappai_2025_110597
crossref_primary_10_1155_2024_1156761
crossref_primary_10_1038_s41598_025_86554_2
Cites_doi 10.1016/j.compeleceng.2019.07.022
10.1109/TPWRD.2013.2269769
10.1109/MELCON.2016.7495356
10.1109/TPWRD.2019.2922654
10.35833/MPCE.2021.000218
10.1109/72.329697
10.1109/TPWRD.2012.2211898
10.1109/TPWRD.2013.2248068
10.1109/TVLSI.2017.2784783
10.3390/su141811749
10.1049/cp.2015.0068
10.1109/TPWRD.2009.2033078
10.3390/app10041516
10.1109/ACCESS.2021.3057659
10.1016/j.ijepes.2018.07.044
10.1109/ACCESS.2020.3035905
10.1016/j.asoc.2012.09.010
10.1109/TPWRD.2012.2202405
10.1109/TPWRD.2014.2323356
10.1109/TPWRD.2016.2589265
10.1109/ACCESS.2022.3142534
10.1016/j.eswa.2007.05.011
10.1049/iet-gtd.2019.1414
10.1109/TMTT.2015.2495360
10.1016/j.neucom.2010.02.001
10.1109/ACCESS.2019.2945397
10.1007/978-981-15-2977-1
10.1109/TPWRD.2017.2721903
10.1016/j.epsr.2005.11.003
10.1016/j.epsr.2013.10.006
10.1049/iet-rpg.2018.5097
10.1109/TAI.2021.3097307
10.1109/TPWRS.2004.825883
10.1109/TII.2017.2777460
10.1109/TPWRD.2011.2174067
10.1109/TPWRD.2019.2942016
10.1109/TVLSI.2017.2656843
10.1109/TII.2017.2701823
10.1016/j.rser.2019.03.040
10.1016/j.ijepes.2017.10.040
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22249936
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_33b9ae0fafe54615a94b574ff8033a7e
PMC9780844
A746535341
36560301
10_3390_s22249936
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-74ab649c626eb24c67c21dafeeb2c2a8cc6e91786a2ac7ab969ce812e524c5763
IEDL.DBID 7X7
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904509000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:27:58 EDT 2025
Tue Nov 04 02:07:14 EST 2025
Fri Sep 05 09:00:06 EDT 2025
Tue Oct 07 07:20:34 EDT 2025
Tue Nov 04 18:15:22 EST 2025
Wed Feb 19 02:25:00 EST 2025
Sat Nov 29 07:14:53 EST 2025
Tue Nov 18 22:02:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords modular multilevel converter
Levenberg–Marquardt backpropagation
protection sensor
Bayesian optimization
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-74ab649c626eb24c67c21dafeeb2c2a8cc6e91786a2ac7ab969ce812e524c5763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9138-3323
0000-0003-0947-3616
OpenAccessLink https://www.proquest.com/docview/2756784192?pq-origsite=%requestingapplication%
PMID 36560301
PQID 2756784192
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_33b9ae0fafe54615a94b574ff8033a7e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9780844
proquest_miscellaneous_2758107288
proquest_journals_2756784192
gale_infotracacademiconefile_A746535341
pubmed_primary_36560301
crossref_citationtrail_10_3390_s22249936
crossref_primary_10_3390_s22249936
PublicationCentury 2000
PublicationDate 20221216
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 20221216
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ahmadimanesh (ref_9) 2013; 28
Chen (ref_25) 2015; 63
Xiao (ref_5) 2021; 10
ref_14
Torun (ref_24) 2018; 26
ref_35
He (ref_2) 2014; 29
ref_33
ref_10
Merlin (ref_22) 2018; 12
Sharifzadeh (ref_31) 2019; 108
Jayamaha (ref_21) 2019; 7
Soualhi (ref_28) 2017; 14
Ashouri (ref_40) 2019; 35
Suonan (ref_3) 2009; 25
Nanayakkara (ref_36) 2012; 27
Malathi (ref_18) 2010; 73
Fairley (ref_1) 2019; 1
Ekici (ref_20) 2008; 34
Tzelepis (ref_39) 2020; 8
Hagan (ref_29) 1994; 5
Tsotsopoulou (ref_44) 2022; 10
Tzelepis (ref_43) 2018; 97
Bull (ref_32) 2011; 12
Karmacharya (ref_23) 2017; 33
Luo (ref_17) 2019; 2019
Wang (ref_34) 2021; 21
Samantaray (ref_12) 2013; 13
Farshad (ref_19) 2019; 104
Lv (ref_27) 2017; 14
Zhang (ref_7) 2019; 34
Azizi (ref_38) 2014; 29
Nanayakkara (ref_37) 2011; 27
Zhang (ref_4) 2021; 9
Hadaeghi (ref_41) 2019; 78
Livani (ref_42) 2014; 107
Hamidi (ref_8) 2016; 32
Farshad (ref_11) 2012; 27
Ola (ref_13) 2020; 14
Samantaray (ref_15) 2006; 76
Park (ref_26) 2017; 25
Salat (ref_16) 2004; 19
Sadiq (ref_30) 2021; 2
ref_6
References_xml – volume: 78
  start-page: 313
  year: 2019
  ident: ref_41
  article-title: Multi extreme learning machine approach for fault location in multi-terminal high-voltage direct current systems
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.07.022
– volume: 29
  start-page: 851
  year: 2014
  ident: ref_2
  article-title: Natural frequency-based line fault location in HVDC lines
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2013.2269769
– ident: ref_10
  doi: 10.1109/MELCON.2016.7495356
– volume: 34
  start-page: 2028
  year: 2019
  ident: ref_7
  article-title: Single-ended traveling wave fault location method in DC transmission line based on wave front information
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2019.2922654
– volume: 10
  start-page: 1437
  year: 2021
  ident: ref_5
  article-title: Statistical Measure for Risk-Seeking Stochastic Wind Power Offering Strategies in Electricity Markets
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2021.000218
– volume: 5
  start-page: 989
  year: 1994
  ident: ref_29
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 12
  start-page: 2879
  year: 2011
  ident: ref_32
  article-title: Convergence rates of efficient global optimization algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 2019
  start-page: 2414
  year: 2019
  ident: ref_17
  article-title: Transient signal identification of HVDC transmission lines based on wavelet entropy and SVM
  publication-title: J. Eng.
– volume: 27
  start-page: 2360
  year: 2012
  ident: ref_11
  article-title: Accurate single-phase fault-location method for transmission lines based on k-nearest neighbor algorithm using one-end voltage
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2012.2211898
– volume: 28
  start-page: 1373
  year: 2013
  ident: ref_9
  article-title: Transient-based fault-location method for multiterminal lines employing S-transform
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2013.2248068
– volume: 26
  start-page: 792
  year: 2018
  ident: ref_24
  article-title: A global Bayesian optimization algorithm and its application to integrated system design
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2017.2784783
– ident: ref_6
  doi: 10.3390/su141811749
– ident: ref_33
  doi: 10.1049/cp.2015.0068
– volume: 25
  start-page: 1203
  year: 2009
  ident: ref_3
  article-title: A novel fault-location method for HVDC transmission lines
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2009.2033078
– ident: ref_14
  doi: 10.3390/app10041516
– volume: 9
  start-page: 29711
  year: 2021
  ident: ref_4
  article-title: Deep learning for short-term voltage stability assessment of power systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3057659
– volume: 104
  start-page: 615
  year: 2019
  ident: ref_19
  article-title: Detection and classification of internal faults in bipolar HVDC transmission lines based on K-means data description method
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.07.044
– volume: 8
  start-page: 203398
  year: 2020
  ident: ref_39
  article-title: Voltage and current measuring technologies for high voltage direct current supergrids: A technology review identifying the options for protection, fault location and automation applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035905
– volume: 13
  start-page: 928
  year: 2013
  ident: ref_12
  article-title: A systematic fuzzy rule based approach for fault classification in transmission lines
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.09.010
– volume: 27
  start-page: 2286
  year: 2012
  ident: ref_36
  article-title: Traveling-wave-based line fault location in star-connected multiterminal HVDC systems
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2012.2202405
– volume: 29
  start-page: 2552
  year: 2014
  ident: ref_38
  article-title: A traveling-wave-based methodology for wide-area fault location in multiterminal DC systems
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2014.2323356
– volume: 32
  start-page: 135
  year: 2016
  ident: ref_8
  article-title: Traveling-wave-based fault-location algorithm for hybrid multiterminal circuits
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2016.2589265
– volume: 10
  start-page: 10124
  year: 2022
  ident: ref_44
  article-title: Time-domain protection of superconducting cables based on artificial intelligence classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3142534
– volume: 34
  start-page: 2937
  year: 2008
  ident: ref_20
  article-title: Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.05.011
– volume: 14
  start-page: 1842
  year: 2020
  ident: ref_13
  article-title: Wigner distribution function and alienation coefficient-based transmission line protection scheme
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2019.1414
– volume: 63
  start-page: 4263
  year: 2015
  ident: ref_25
  article-title: Bayesian optimization for broadband high-efficiency power amplifier designs
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2015.2495360
– volume: 73
  start-page: 2160
  year: 2010
  ident: ref_18
  article-title: Intelligent approaches using support vector machine and extreme learning machine for transmission line protection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.001
– volume: 7
  start-page: 145371
  year: 2019
  ident: ref_21
  article-title: Wavelet-multi resolution analysis based ANN architecture for fault detection and localization in DC microgrids
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2945397
– ident: ref_35
  doi: 10.1007/978-981-15-2977-1
– volume: 1
  start-page: 35
  year: 2019
  ident: ref_1
  article-title: China’s ambitious plan to build the world’s biggest supergrid
  publication-title: IEEE Spectr.
– volume: 33
  start-page: 549
  year: 2017
  ident: ref_23
  article-title: Fault location in ungrounded photovoltaic system using wavelets and ANN
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2017.2721903
– volume: 76
  start-page: 897
  year: 2006
  ident: ref_15
  article-title: Fault classification and location using HS-transform and radial basis function neural network
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2005.11.003
– volume: 107
  start-page: 190
  year: 2014
  ident: ref_42
  article-title: A single-ended fault location method for segmented HVDC transmission line
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2013.10.006
– volume: 12
  start-page: 1555
  year: 2018
  ident: ref_22
  article-title: Efficient and robust ANN-based method for an improved protection of VSC-HVDC systems
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2018.5097
– volume: 2
  start-page: 314
  year: 2021
  ident: ref_30
  article-title: Toward the development of versatile brain–computer interfaces
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2021.3097307
– volume: 19
  start-page: 979
  year: 2004
  ident: ref_16
  article-title: Accurate fault location in the power transmission line using support vector machine approach
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.825883
– volume: 14
  start-page: 3436
  year: 2017
  ident: ref_27
  article-title: Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2777460
– volume: 21
  start-page: 2285
  year: 2021
  ident: ref_34
  article-title: Fault diagnosis for power cables based on convolutional neural network with chaotic system and discrete wavelet transform
  publication-title: IEEE Trans. Power Deliv.
– volume: 27
  start-page: 279
  year: 2011
  ident: ref_37
  article-title: Location of DC line faults in conventional HVDC systems with segments of cables and overhead lines using terminal measurements
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2011.2174067
– volume: 35
  start-page: 1365
  year: 2019
  ident: ref_40
  article-title: On the application of modal transient analysis for online fault localization in HVDC cable bundles
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2019.2942016
– volume: 25
  start-page: 1856
  year: 2017
  ident: ref_26
  article-title: Application of machine learning for optimization of 3-D integrated circuits and systems
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2017.2656843
– volume: 14
  start-page: 24
  year: 2017
  ident: ref_28
  article-title: Heath monitoring of capacitors and supercapacitors using the neo-fuzzy neural approach
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2701823
– volume: 108
  start-page: 513
  year: 2019
  ident: ref_31
  article-title: Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.03.040
– volume: 97
  start-page: 319
  year: 2018
  ident: ref_43
  article-title: Advanced fault location in MTDC networks utilising optically-multiplexed current measurements and machine learning approach
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.10.040
SSID ssj0023338
Score 2.5592527
Snippet We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc networks using discrete wavelet transforms (DWTs), Bayesian...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9936
SubjectTerms Accuracy
Algorithms
Back propagation
Bayes Theorem
Bayesian optimization
Bias
Computer Simulation
Electricity distribution
Levenberg–Marquardt backpropagation
Localization
modular multilevel converter
Neural networks
Neural Networks, Computer
Power
protection sensor
Sensors
Signal processing
Time
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFH7I4kEP4m-rq0QR9FK206RNcpwVhxVkFVZlbyFNExzY6SwzHQ_-9X5pO7WDghehl7SPkOS95Htf034heh1CqJXzs7SylUtFAGGtQqZS7yXQoPN5f9iEPD9Xl5f68-Sor_hNWC8P3A_cCeeVtj4LNvhCAH6tFlUhRQgq49xKH1ffTOo9mRqoFgfz6nWEOEj9yRYoiNS-02H-jT6dSP-fS_EEiw6_k5wAz-Iu3RkyRjbvW3qPbvjmPt2e6Ag-oNWHUVizZRcgpuvNliEbZbVjC7u7atnHdf9qjl3ASSvPTgFeNUP5E5aM1fInCtM65pPtha6is2-oalA3f0hfF--_vDtLh3MUUof0q02lsFUptAN3AY8WrpQun9UYUJRcbpVzpQdrU6XNrZO20qV2HsDvCxiDj_BHdNSsG_-EWKY9CJ_LuAoyki_lygK1FVntPTKjkNDb_fgaN4iMx7MurgzIRnSFGV2R0KvR9LpX1vib0Wl00mgQxbC7GwgRM4SI-VeIJPQmutjEKYvGODv8eYAuRfErM5dRZK4Anid0vI8CM8zlrYkC-XF3VucJvRwfYxbGrRXb-PWus1Eg0rlSCT3ug2ZsM4_6RlhHE5IH4XTQqcMnzfJ7p_Qd5aGUEE__xyg8o1t5_HVjhqs8pqN2s_PP6ab70S63mxfd9PkFSFYiPg
  priority: 102
  providerName: Directory of Open Access Journals
Title Intelligent Sensors for dc Fault Location Scheme Based on Optimized Intelligent Architecture for HVdc Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/36560301
https://www.proquest.com/docview/2756784192
https://www.proquest.com/docview/2758107288
https://pubmed.ncbi.nlm.nih.gov/PMC9780844
https://doaj.org/article/33b9ae0fafe54615a94b574ff8033a7e
Volume 22
WOSCitedRecordID wos000904509000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48F4ILFVASHCJNs3Lzgm1qNWuxJaKBVROkePYUGmbLE3KgQO_nRnHTVOBuCBVkZxMLVsznpnPTr4BeKm1LrhUQy8XufQijYA11z73lGIYDYzO22ITbDbji0U6txtutX2tcusTjaMuKkl75CdEU05nZGnw5uq7R1Wj6HTVltC4DodUNpvsnC12gCtE_NWyCYUI7U9qjIWY4Bs25l0MMlT9fzrkXkTaf1uyF36md_534Hfhtk083VFrKffgmirvw60eHeEDWJ11_JyNe4H4tlrXLia1biHdqdhcNu67qt3hcy9Q1yvljjEGFi6236PnWS1_YqPfx6h3SmE6Ov2MXVmS9IfwaTr5-PbUs-UYPIlZXOOxSORJlEqEQAjHI5kwGQwLoRW2ZCC4lIlC8McTEQjJRJ4mqVSYP6gYhRHWhEdwUFalegyunyrEjdIPuWaE4bhMYuwt9gulMMHSDrzeKiiTlqucSmZcZohZSJdZp0sHXnSiVy1Bx9-ExqTlToA4tc2Nav01s0sU_5KnQvkaZxRHmOiJNMpjFmnN_TAUTDnwimwko5WPg5HCfsCAUyIOrWzEiKsuxrTAgeOtKWTWJdTZzg4ceN49xsVMJzSiVNXGyHDE4wHnDjxqra4bc0g0SeiOHWB79rg3qf0n5fKbIQwnlikeRU_-PayncDOgbzuG-EuO4aBZb9QzuCF_NMt6PTAry1z5AA7Hk9n8w8BsYOD1_NcE783PzudffgP-aDYy
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tCxLLgfcjsIBBILhEm-Zl54BQF6habSlIu4t6C45jL5W2ydKmIPhR_EZm8moqELc9IPXiZmrZzeeZ-eL4G4BnxphUKN2zE5ko2zdIWBPjCFtrjtGgvOdVsQk-mYjpNPq4Bb-aszD0WmXjE0tHneaKnpHvkUw57ZFF7uuzrzZVjaLd1aaERgWLA_3jO1K25avRW7y_z1138O7ozdCuqwrYCpORwua-TEI_UpjJI6v0VciV20ul0dhSrhRKhRo5jAilKxWXSRRGSmMY1AEaY3buYb8X4CL6cU5kj0_XBM9DvlepF3le5OwtMfYioSjVn9cxrywN8GcA6ETAzbczO-FucO1_-6Ouw9U6sWb9aiXcgC2d3YQrHbnFWzAftfqjBTtE_p4vlgyTdpYqNpCr04KN8-oJJjtELM8128cYnzJsf0DPOp_9xEa3j35nF6bsaPgJu6pF4G_D8bnM9w5sZ3mm7wFzIo28WDmeMJw4qlBhgL0FTqo1JpDGgpcNIGJVa7FTSZDTGDkZYSdusWPB09b0rBIg-ZvRPqGqNSDN8PKLfHES1y4If5JEUjsGZxT4mMjKyE8C7hsjHM-TXFvwgjAZk2fDwShZH9DAKZFGWNznpMUXYNpjwW4Dvbh2ect4jTsLnrSX0VnRDpTMdL4qbUTP4a4QFtytUN6O2SMZKAw3FvAN_G9MavNKNvtSCqKTipbw_fv_HtZjuDw8ej-Ox6PJwQPYcekcSw8_4S5sF4uVfgiX1Lditlw8Klc1g8_nvTp-A5kMjkU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHULsgftYYIBBoPESNU2c2HlAqGNUqzZKpQHanjLHsaHSmowmBcFP49dxnNtSgXjbA1Jf3DhHdnJuX2x_B-C51jrhUg3sWMTSphoBa6wdbivFMBqU77wqNsEmE358HE7X4FdzFsZsq2x8Yumok0yab-R9Q1Nu1shCt6_rbRHTvdHr86-2qSBlVlqbchqVihyoH98RvuWvxnv4rl-47ujthzf7dl1hwJaYmBQ2oyIOaCgxq0eESWXApDtIhFbYkq7gUgYK8QwPhCskE3EYhFJhSFQ-dsZM3UO5V2AdU3Lq9mB9On43PWnhnofor-Iy8rzQ6ecYiRFelFzQFxGwLBTwZzjoxMPVvZqd4De6-T8_tltwo065ybCykduwptI7sNEhYrwL83HLTFqQI0T22SInmM6TRJKRWJ4V5DCrvm2SI9TyuSK7GP0Tgu336HPns5_Y6MoYdtZnSkH7n1BUTQ9_Dz5eynw3oZdmqdoC4oQKEbN0PK6ZQa9cBj5K851EKUwttQUvG-WIZM3SboqFnEWI1oweRa0eWfCs7XpeUZP8rdOu0bC2g2ETL__IFp-j2jnhLXEolKNxRj7FFFeENPYZ1Zo7nieYsmDH6GdkfB4ORor66AZOybCHRUNmWPp8TIgs2G7UMKqdYR5d6KAFT9vL6MbM2pRIVbYs-_CBw1zOLbhfaXw7Zs8QRGEgsoCt2MLKpFavpLMvJVW64dfilD7497CewDU0iuhwPDl4CNddc8BlgL9gG3rFYqkewVX5rZjli8e1iRM4vWzz-A12gZiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Sensors+for+dc+Fault+Location+Scheme+Based+on+Optimized+Intelligent+Architecture+for+HVdc+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yousaf%2C+Muhammad+Zain&rft.au=Tahir%2C+Muhammad+Faizan&rft.au=Raza%2C+Ali&rft.au=Khan%2C+Muhammad+Ahmad&rft.date=2022-12-16&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft_id=info:doi/10.3390%2Fs22249936&rft_id=info%3Apmid%2F36560301&rft.externalDocID=36560301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon