Deep Neural Networks for wireless localization in indoor and outdoor environments

In this paper, we propose a wireless positioning method based on Deep Learning. To deal with the variant and unpredictable wireless signals, the positioning is casted in a four-layer Deep Neural Network (DNN) structure pre-trained by Stacked Denoising Autoencoder (SDA) that is capable of learning re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 194; s. 279 - 287
Hlavní autori: Zhang, Wei, Liu, Kan, Zhang, Weidong, Zhang, Youmei, Gu, Jason
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 19.06.2016
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose a wireless positioning method based on Deep Learning. To deal with the variant and unpredictable wireless signals, the positioning is casted in a four-layer Deep Neural Network (DNN) structure pre-trained by Stacked Denoising Autoencoder (SDA) that is capable of learning reliable features from a large set of noisy samples and avoids hand-engineering. Also, to maintain the temporal coherence, a Hidden Markov Model (HMM)-based fine localizer is introduced to smooth the initial positioning estimate obtained by the DNN-based coarse localizer. The data required for the experiments is collected from the real world in different periods to meet the actual environment. Experimental results indicate that the proposed system leads to substantial improvement on localization accuracy in coping with the turbulent wireless signals.
AbstractList In this paper, we propose a wireless positioning method based on Deep Learning. To deal with the variant and unpredictable wireless signals, the positioning is casted in a four-layer Deep Neural Network (DNN) structure pre-trained by Stacked Denoising Autoencoder (SDA) that is capable of learning reliable features from a large set of noisy samples and avoids hand-engineering. Also, to maintain the temporal coherence, a Hidden Markov Model (HMM)-based fine localizer is introduced to smooth the initial positioning estimate obtained by the DNN-based coarse localizer. The data required for the experiments is collected from the real world in different periods to meet the actual environment. Experimental results indicate that the proposed system leads to substantial improvement on localization accuracy in coping with the turbulent wireless signals.
Author Gu, Jason
Zhang, Weidong
Zhang, Youmei
Zhang, Wei
Liu, Kan
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: School of Control Science and Engineering, Shandong University, China
– sequence: 2
  givenname: Kan
  surname: Liu
  fullname: Liu, Kan
  email: sakuraxiafan@gmail.com
  organization: School of Control Science and Engineering, Shandong University, China
– sequence: 3
  givenname: Weidong
  surname: Zhang
  fullname: Zhang, Weidong
  organization: School of Control Science and Engineering, Shandong University, China
– sequence: 4
  givenname: Youmei
  surname: Zhang
  fullname: Zhang, Youmei
  organization: School of Control Science and Engineering, Shandong University, China
– sequence: 5
  givenname: Jason
  surname: Gu
  fullname: Gu, Jason
  organization: Department of Electrical and Computer Engineering, Dalhousie University, Canada
BookMark eNqNkU9LAzEQxYNUsFa_gYc9etk1ySbZ1IMg_gdRBD2HNJmF1G1Sk6xFP73b1pMHFQZmhnnvHX6zj0Y-eEDoiOCKYCJO5pWH3oRFRYetwrTCnO-gMZENLSWVYoTGeEp5SWtC99B-SnOMSUPodIyeLgGWxQP0UXdDy6sQX1PRhlisXIQOUiq6YHTnPnV2wRduXTYMd-1tEfq8mcG_uxj8AnxOB2i31V2Cw-8-QS_XV88Xt-X9483dxfl9aTiWuWzwjDDKiCS6tWBx07SCzXgrgVrMG8xsA3XNqABRNzCltSbWttwQLqxgdlZP0PE2dxnDWw8pq4VLBrpOewh9UkRSztiUC_kPKZZCSCLFIGVbqYkhpQitWka30PFDEazWsNVcbWGrNWyFqRpgD7bTHzbj8oZYjtp1f5nPtmYYcL07iCoZB96AHV5gsrLB_R7wBRW-n_4
CitedBy_id crossref_primary_10_1080_01468030_2018_1467515
crossref_primary_10_1109_JIOT_2022_3203414
crossref_primary_10_1109_LSENS_2021_3083500
crossref_primary_10_1007_s42979_025_04237_1
crossref_primary_10_3390_s19204597
crossref_primary_10_1109_ACCESS_2019_2918714
crossref_primary_10_1016_j_future_2022_07_021
crossref_primary_10_1109_JIOT_2021_3098356
crossref_primary_10_1007_s11276_016_1372_2
crossref_primary_10_1109_JSEN_2022_3186469
crossref_primary_10_3390_a16110529
crossref_primary_10_1049_cit2_12114
crossref_primary_10_1007_s10586_021_03458_2
crossref_primary_10_1109_JIOT_2020_3041204
crossref_primary_10_32604_cmes_2023_031534
crossref_primary_10_1016_j_asoc_2022_108624
crossref_primary_10_1109_TWC_2021_3089202
crossref_primary_10_1145_3461342
crossref_primary_10_1109_COMST_2020_3014304
crossref_primary_10_1016_j_autcon_2020_103135
crossref_primary_10_1155_2021_6660990
crossref_primary_10_1016_j_future_2019_09_020
crossref_primary_10_1109_TII_2022_3146598
crossref_primary_10_1016_j_simpat_2021_102372
crossref_primary_10_1145_3539659
crossref_primary_10_3390_s20133767
crossref_primary_10_1080_24751839_2021_1975425
crossref_primary_10_7717_peerj_cs_2471
crossref_primary_10_1016_j_pmcj_2022_101548
crossref_primary_10_1177_1550147719867072
crossref_primary_10_3390_app8071062
crossref_primary_10_3390_fi16060211
crossref_primary_10_1038_s41598_023_49816_5
crossref_primary_10_1145_3362036
crossref_primary_10_1016_j_comcom_2020_01_043
crossref_primary_10_3390_en12142758
crossref_primary_10_3390_electronics11101604
crossref_primary_10_1109_ACCESS_2019_2935225
crossref_primary_10_1016_j_jii_2021_100236
crossref_primary_10_1109_ACCESS_2018_2853996
crossref_primary_10_1109_COMST_2020_2965856
crossref_primary_10_12677_SEA_2023_124060
crossref_primary_10_1016_j_phycom_2025_102815
crossref_primary_10_1080_10589759_2023_2253493
crossref_primary_10_1002_dac_5000
crossref_primary_10_3390_s23208458
crossref_primary_10_1016_j_future_2023_02_017
crossref_primary_10_1038_s41598_025_99694_2
crossref_primary_10_1016_j_neucom_2017_08_018
crossref_primary_10_1016_j_entcom_2022_100512
crossref_primary_10_3390_s19081790
crossref_primary_10_1109_ACCESS_2019_2932469
crossref_primary_10_1109_JSEN_2019_2936412
crossref_primary_10_3390_s24165335
crossref_primary_10_1109_JIOT_2019_2957778
crossref_primary_10_3390_rs13061106
crossref_primary_10_3390_s22155840
crossref_primary_10_3390_su142114652
crossref_primary_10_1109_COMST_2019_2904897
crossref_primary_10_1109_JSYST_2019_2918678
crossref_primary_10_1109_TCOMM_2022_3145408
crossref_primary_10_1016_j_aei_2022_101571
crossref_primary_10_1016_j_pmcj_2021_101420
crossref_primary_10_1002_mmce_22444
crossref_primary_10_1186_s41044_018_0031_2
crossref_primary_10_3390_s21082722
crossref_primary_10_1109_JIOT_2018_2889303
crossref_primary_10_1109_JSEN_2018_2885958
crossref_primary_10_3390_electronics10010002
crossref_primary_10_1016_j_neucom_2020_09_040
crossref_primary_10_3390_s18093142
crossref_primary_10_3390_ijgi9040267
crossref_primary_10_1016_j_neucom_2018_10_082
crossref_primary_10_3390_s23010153
crossref_primary_10_1007_s11277_021_08222_8
crossref_primary_10_1109_JIOT_2017_2712560
crossref_primary_10_1007_s11276_018_1766_4
crossref_primary_10_1155_2018_1253752
crossref_primary_10_3390_app13148545
crossref_primary_10_3390_electronics9060891
crossref_primary_10_1016_j_comcom_2022_07_003
crossref_primary_10_1080_17489725_2020_1817582
crossref_primary_10_12677_mos_2024_133356
crossref_primary_10_1109_JIOT_2019_2907580
crossref_primary_10_1109_TIM_2025_3557108
crossref_primary_10_3390_s19235180
crossref_primary_10_1007_s11277_018_5725_2
crossref_primary_10_1016_j_pmcj_2020_101199
crossref_primary_10_3390_electronics9050851
crossref_primary_10_3390_s18113723
crossref_primary_10_3390_sym12111750
crossref_primary_10_1063_5_0215063
crossref_primary_10_1109_JIOT_2020_2986685
crossref_primary_10_1109_ACCESS_2021_3080288
crossref_primary_10_1109_JIOT_2022_3222003
crossref_primary_10_1109_ACCESS_2020_2985162
crossref_primary_10_1155_2019_4592902
crossref_primary_10_3390_s19204420
crossref_primary_10_1109_JIOT_2020_3024845
crossref_primary_10_1109_COMST_2018_2844341
crossref_primary_10_1109_ACCESS_2017_2720164
crossref_primary_10_22581_muet1982_1901_13
crossref_primary_10_3390_rs16214014
crossref_primary_10_1016_j_neucom_2022_03_050
crossref_primary_10_1109_ACCESS_2020_3033312
crossref_primary_10_1109_JIOT_2019_2929822
crossref_primary_10_3390_s23031370
crossref_primary_10_1007_s12652_020_02438_5
crossref_primary_10_1016_j_jii_2023_100443
crossref_primary_10_3390_electronics9111829
crossref_primary_10_1007_s11042_020_09291_w
crossref_primary_10_1155_2018_3287810
crossref_primary_10_1109_LCOMM_2022_3195646
crossref_primary_10_1016_j_eswa_2016_11_030
crossref_primary_10_1016_j_sigpro_2020_107915
crossref_primary_10_1016_j_jnca_2020_102852
crossref_primary_10_1109_JIOT_2019_2948075
crossref_primary_10_1109_ACCESS_2019_2933921
crossref_primary_10_1007_s10776_021_00504_z
crossref_primary_10_1109_ACCESS_2020_3041765
crossref_primary_10_1155_2018_7963210
crossref_primary_10_1186_s13673_020_00222_0
crossref_primary_10_1109_ACCESS_2018_2879986
crossref_primary_10_1109_ACCESS_2018_2888616
crossref_primary_10_1016_j_aei_2024_102370
crossref_primary_10_1109_ACCESS_2020_2971269
crossref_primary_10_1109_JSEN_2022_3155902
crossref_primary_10_1016_j_pmcj_2020_101219
crossref_primary_10_4218_etrij_2022_0234
crossref_primary_10_1109_JIOT_2021_3114373
crossref_primary_10_3390_s23031514
crossref_primary_10_1109_ACCESS_2017_2698419
crossref_primary_10_1109_JIOT_2022_3214211
crossref_primary_10_1109_JSEN_2024_3455554
crossref_primary_10_1155_2021_6592562
crossref_primary_10_3390_app10010321
crossref_primary_10_3390_s20061691
crossref_primary_10_1002_int_22459
crossref_primary_10_1109_ACCESS_2020_2995865
crossref_primary_10_1007_s12008_023_01721_x
crossref_primary_10_1016_j_robot_2022_104269
crossref_primary_10_1051_matecconf_201818903017
crossref_primary_10_1155_2022_8156917
crossref_primary_10_3390_electronics10030318
crossref_primary_10_1049_iet_rsn_2019_0260
crossref_primary_10_3390_s20247230
crossref_primary_10_3390_s21082640
Cites_doi 10.1109/PLANS.2008.4569985
10.1109/MPRV.2003.1228524
10.1016/j.neucom.2015.03.099
10.1109/ICInfA.2014.6932657
10.1109/TASL.2011.2109382
10.1109/ACSSC.2010.5757507
10.1109/CAMSAP.2009.5413285
10.1109/TASL.2011.2134090
10.1109/ICIEA.2008.4582530
10.1145/2348543.2348578
10.1016/j.neucom.2012.10.011
10.1145/1164783.1164806
10.1109/ICNSC.2004.1297088
10.1109/TCE.2010.5681092
10.1109/WCNC.2013.6554922
10.1109/TCE.2007.381737
10.1162/neco.2006.18.7.1527
10.1007/978-3-540-30119-6_6
10.1109/INFCOM.2000.832252
10.1016/j.patcog.2015.04.012
10.1109/IROS.2008.4651203
10.1016/j.neucom.2013.07.032
10.1145/1390156.1390294
10.1109/ICInfA.2014.6932827
10.1126/science.290.5500.2323
10.1016/j.neucom.2015.05.120
10.1109/TCE.2011.6018861
10.1002/rob.20276
10.1109/TCE.2010.5606338
10.1109/TMC.2011.216
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2016.02.055
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 287
ExternalDocumentID 10_1016_j_neucom_2016_02_055
S0925231216003027
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c508t-70b1424181afded077f64b5f8e2d05704d7e33426e637e923a1ddf5c156d64db3
ISICitedReferencesCount 207
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376548100028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Thu Oct 02 09:41:19 EDT 2025
Tue Oct 07 09:22:14 EDT 2025
Tue Nov 18 22:38:10 EST 2025
Sat Nov 29 07:48:13 EST 2025
Fri Feb 23 02:28:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stacked Denoising Autoencoder (SDA)
Hidden Markov model (HMM)
Deep Neural Networks (DNNs)
Deep Learning
Wireless positioning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-70b1424181afded077f64b5f8e2d05704d7e33426e637e923a1ddf5c156d64db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1808668186
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1825449568
proquest_miscellaneous_1808668186
crossref_primary_10_1016_j_neucom_2016_02_055
crossref_citationtrail_10_1016_j_neucom_2016_02_055
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_02_055
PublicationCentury 2000
PublicationDate 2016-06-19
PublicationDateYYYYMMDD 2016-06-19
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-19
  day: 19
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cheng, Wu, Zhang (bib2) 2011; 57
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib36) 2010; 11
Z. Yang, C. Wu, Y. Liu, Locating in fingerprint space: wireless indoor localization with little human intervention, in: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, ACM, Istanbul, Turkey, 2012, pp. 269–280.
W. Zhang, K. Liu, W. Zhang, Y. Zhang, J.-F. Gu, Wi-fi positioning based on deep learning, in: 2014 IEEE International Conference on Information and Automation (ICIA), IEEE, Hailar, China, 2014, pp. 1176–1179.
Li, Li, Ge (bib12) 2013; 104
Dahl, Yu, Deng, Acero (bib21) 2012; 20
Feng, Au, Valaee, Tan (bib9) 2012; 11
Fox, Hightower, Liao, Schulz, Borriello (bib6) 2003; 3
Chen, Wang (bib24) 2014; 123
Lim, Wan, Ng, See (bib28) 2007; 53
Hinton, Osindero, Teh (bib34) 2006; 18
S. Nikitaki, P. Tsakalides, Localization in wireless networks via spatial sparsity, in: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), IEEE, Pacific Grove, CA, 2010, pp. 236–239.
M. Ciurana, F. Barceló, S. Cugno, Indoor tracking in wlan location with toa measurements, in: Proceedings of the 4th ACM International Workshop on Mobility Management and Wireless Access, ACM, Torremolinos, Spain, 2006, pp. 121–125.
P. Sermanet, R. Hadsell, M. Scoffier, U. Muller, Y. LeCun, Mapping and planning under uncertainty in mobile robots with long-range perception, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, IROS 2008, IEEE, Nice, France, 2008, pp. 2525–2530.
L. Deng, Three classes of deep learning architectures and their applications: a tutorial survey, APSIPA Trans. Signal Inf. Process 2012
H. Lee, P. Pham, Y. Largman, A.Y. Ng, Unsupervised feature learning for audio classification using convolutional deep belief networks, in: Advances in Neural Information Processing Systems, 2009, pp. 1096–1104.
C.-L. Wu, L.-C. Fu, F.-L. Lian, Wlan location determination in e-home via support vector classification, in: 2004 IEEE International Conference on Networking, Sensing and Control, vol. 2, IEEE, 2004, pp. 1026–1031.
De Sá, Nedjah, De Macedo Mourelle (bib13) 2016; 172
Zhang, Zhang, Ma, Guan, Gong (bib18) 2015; 48
Chang, Rashidzadeh, Ahmadi (bib26) 2010; 56
Zhang, Yu (bib27) 2010; 56
K. Derr, M. Manic, Wireless based object tracking based on neural networks, in: 3rd IEEE Conference on Industrial Electronics and Applications, 2008, ICIEA 2008, IEEE, Singapore, 2008, pp. 308–313.
P. Bahl, V.N. Padmanabhan, Radar: An in-building rf-based user location and tracking system, in: INFOCOM 2000, Proceedings of Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE, vol. 2, IEEE, Tel Aviv, 2000, pp. 775–784.
J. Hightower, G. Borriello, Particle filters for location estimation in ubiquitous computing: a case study, in: UbiComp 2004: Ubiquitous Computing, Springer, 2004, pp. 88–106.
Q.V. Le, Building high-level features using large scale unsupervised learning, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, BC, 2013, pp. 8595–8598.
A.S. Paul, E.A. Wan, Wi-fi based indoor localization and tracking using sigma-point Kalman filtering methods, in: Position, Location and Navigation Symposium, 2008 IEEE/ION, IEEE, Monterey, CA, 2008, pp. 646–659.
S.J. Pan, V.W. Zheng, Q. Yang, D.H. Hu, Transfer learning for wifi-based indoor localization, in: Proceedings of Workshop on Transfer Learning for Complex Task of the 23rd Association for the Advancement of Artificial Intelligence (AAAI) Conference on Artificial Intelligence, 2008.
R. Battiti, A. Villani, T. Le Nhat, Neural network models for intelligent networks: deriving the location from signal patterns, Proc. AINS 2002, UCLA, 2002.
H. Zhang, F. Zhou, W. Zhang, X. Yuan, Z. Chen, Real-time action recognition based on a modified deep belief network model, in: 2014 IEEE International Conference on Information and Automation (ICIA), IEEE, Hailar, China, 2014, pp. 225–228.
Yang, Zhang, Chen (bib25) 2016; 174
Mohamed, Dahl, Hinton (bib19) 2012; 20
.
Hadsell, Sermanet, Ben, Erkan, Scoffier, Kavukcuoglu, Muller, LeCun (bib23) 2009; 26
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint
G. Ding, Z. Tan, J. Zhang, L. Zhang, Fingerprinting localization based on affinity propagation clustering and artificial neural networks, in: 2013 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, Shanghai, China, 2013, pp. 2317–2322.
Roweis, Saul (bib38) 2000; 290
I. Guvenc, C.T. Abdallah, R. Jordan, O. Dedeoglu, Enhancements to rss based indoor tracking systems using Kalman filters, in: GSPx & International Signal Processing Conference, 2003, pp. 91–102.
C. Feng, W. S.A. Au, S. Valaee, Z. Tan, Orientation-aware indoor localization using affinity propagation and compressive sensing, in: 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), IEEE, Aruba, Dutch Antilles, 2009, pp. 261–264.
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, ACM, 2008, pp. 1096–1103.
Chang (10.1016/j.neucom.2016.02.055_bib26) 2010; 56
De Sá (10.1016/j.neucom.2016.02.055_bib13) 2016; 172
Zhang (10.1016/j.neucom.2016.02.055_bib18) 2015; 48
10.1016/j.neucom.2016.02.055_bib20
Feng (10.1016/j.neucom.2016.02.055_bib9) 2012; 11
Zhang (10.1016/j.neucom.2016.02.055_bib27) 2010; 56
Roweis (10.1016/j.neucom.2016.02.055_bib38) 2000; 290
Li (10.1016/j.neucom.2016.02.055_bib12) 2013; 104
10.1016/j.neucom.2016.02.055_bib17
10.1016/j.neucom.2016.02.055_bib39
10.1016/j.neucom.2016.02.055_bib15
10.1016/j.neucom.2016.02.055_bib37
10.1016/j.neucom.2016.02.055_bib16
10.1016/j.neucom.2016.02.055_bib35
10.1016/j.neucom.2016.02.055_bib14
10.1016/j.neucom.2016.02.055_bib11
10.1016/j.neucom.2016.02.055_bib33
Hadsell (10.1016/j.neucom.2016.02.055_bib23) 2009; 26
10.1016/j.neucom.2016.02.055_bib7
10.1016/j.neucom.2016.02.055_bib4
10.1016/j.neucom.2016.02.055_bib5
Vincent (10.1016/j.neucom.2016.02.055_bib36) 2010; 11
10.1016/j.neucom.2016.02.055_bib3
Chen (10.1016/j.neucom.2016.02.055_bib24) 2014; 123
Lim (10.1016/j.neucom.2016.02.055_bib28) 2007; 53
10.1016/j.neucom.2016.02.055_bib1
10.1016/j.neucom.2016.02.055_bib31
10.1016/j.neucom.2016.02.055_bib10
10.1016/j.neucom.2016.02.055_bib32
10.1016/j.neucom.2016.02.055_bib30
10.1016/j.neucom.2016.02.055_bib8
Hinton (10.1016/j.neucom.2016.02.055_bib34) 2006; 18
10.1016/j.neucom.2016.02.055_bib29
Yang (10.1016/j.neucom.2016.02.055_bib25) 2016; 174
Fox (10.1016/j.neucom.2016.02.055_bib6) 2003; 3
Cheng (10.1016/j.neucom.2016.02.055_bib2) 2011; 57
10.1016/j.neucom.2016.02.055_bib22
Mohamed (10.1016/j.neucom.2016.02.055_bib19) 2012; 20
Dahl (10.1016/j.neucom.2016.02.055_bib21) 2012; 20
References_xml – reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
– reference: G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint
– volume: 57
  start-page: 1099
  year: 2011
  end-page: 1104
  ident: bib2
  article-title: Indoor robot localization based on wireless sensor networks
  publication-title: IEEE Trans. Consum. Electron.
– volume: 26
  start-page: 120
  year: 2009
  end-page: 144
  ident: bib23
  article-title: Learning long-range vision for autonomous off-road driving
  publication-title: J. Field Robot.
– reference: C.-L. Wu, L.-C. Fu, F.-L. Lian, Wlan location determination in e-home via support vector classification, in: 2004 IEEE International Conference on Networking, Sensing and Control, vol. 2, IEEE, 2004, pp. 1026–1031.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib34
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: bib38
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– volume: 53
  start-page: 618
  year: 2007
  end-page: 622
  ident: bib28
  article-title: A real-time indoor wifi localization system utilizing smart antennas
  publication-title: IEEE Trans. Consum. Electron.
– volume: 11
  start-page: 1983
  year: 2012
  end-page: 1993
  ident: bib9
  article-title: Received-signal-strength-based indoor positioning using compressive sensing
  publication-title: IEEE Trans. Mob. Comput.
– reference: S.J. Pan, V.W. Zheng, Q. Yang, D.H. Hu, Transfer learning for wifi-based indoor localization, in: Proceedings of Workshop on Transfer Learning for Complex Task of the 23rd Association for the Advancement of Artificial Intelligence (AAAI) Conference on Artificial Intelligence, 2008.
– volume: 20
  start-page: 14
  year: 2012
  end-page: 22
  ident: bib19
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib36
  article-title: Stacked denoising autoencoders
  publication-title: J. Mach. Learn. Res.
– volume: 48
  start-page: 3191
  year: 2015
  end-page: 3202
  ident: bib18
  article-title: Multimodal learning for facial expression recognition
  publication-title: Pattern Recognit.
– volume: 56
  start-page: 2208
  year: 2010
  end-page: 2216
  ident: bib27
  article-title: Lswd
  publication-title: IEEE Trans. Consum. Electron.
– volume: 56
  start-page: 1860
  year: 2010
  end-page: 1867
  ident: bib26
  article-title: Robust indoor positioning using differential wi-fi access points
  publication-title: IEEE Trans. Consum. Electron.
– volume: 3
  start-page: 24
  year: 2003
  end-page: 33
  ident: bib6
  article-title: Bayesian filtering for location estimation
  publication-title: IEEE Pervasive Comput.
– reference: Q.V. Le, Building high-level features using large scale unsupervised learning, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, BC, 2013, pp. 8595–8598.
– reference: S. Nikitaki, P. Tsakalides, Localization in wireless networks via spatial sparsity, in: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), IEEE, Pacific Grove, CA, 2010, pp. 236–239.
– reference: L. Deng, Three classes of deep learning architectures and their applications: a tutorial survey, APSIPA Trans. Signal Inf. Process 2012,
– reference: R. Battiti, A. Villani, T. Le Nhat, Neural network models for intelligent networks: deriving the location from signal patterns, Proc. AINS 2002, UCLA, 2002.
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, ACM, 2008, pp. 1096–1103.
– volume: 172
  start-page: 322
  year: 2016
  end-page: 336
  ident: bib13
  article-title: Distributed efficient localization in swarm robotic systems using swarm intelligence algorithms
  publication-title: Neurocomputing
– volume: 174
  start-page: 121
  year: 2016
  end-page: 133
  ident: bib25
  article-title: Rfid-enabled indoor positioning method for a real-time manufacturing execution system using os-elm
  publication-title: Neurocomputing
– reference: G. Ding, Z. Tan, J. Zhang, L. Zhang, Fingerprinting localization based on affinity propagation clustering and artificial neural networks, in: 2013 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, Shanghai, China, 2013, pp. 2317–2322.
– reference: P. Bahl, V.N. Padmanabhan, Radar: An in-building rf-based user location and tracking system, in: INFOCOM 2000, Proceedings of Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE, vol. 2, IEEE, Tel Aviv, 2000, pp. 775–784.
– reference: J. Hightower, G. Borriello, Particle filters for location estimation in ubiquitous computing: a case study, in: UbiComp 2004: Ubiquitous Computing, Springer, 2004, pp. 88–106.
– reference: K. Derr, M. Manic, Wireless based object tracking based on neural networks, in: 3rd IEEE Conference on Industrial Electronics and Applications, 2008, ICIEA 2008, IEEE, Singapore, 2008, pp. 308–313.
– reference: M. Ciurana, F. Barceló, S. Cugno, Indoor tracking in wlan location with toa measurements, in: Proceedings of the 4th ACM International Workshop on Mobility Management and Wireless Access, ACM, Torremolinos, Spain, 2006, pp. 121–125.
– volume: 104
  start-page: 170
  year: 2013
  end-page: 179
  ident: bib12
  article-title: A biologically inspired solution to simultaneous localization and consistent mapping in dynamic environments
  publication-title: Neurocomputing
– volume: 20
  start-page: 30
  year: 2012
  end-page: 42
  ident: bib21
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– reference: .
– reference: H. Zhang, F. Zhou, W. Zhang, X. Yuan, Z. Chen, Real-time action recognition based on a modified deep belief network model, in: 2014 IEEE International Conference on Information and Automation (ICIA), IEEE, Hailar, China, 2014, pp. 225–228.
– reference: Z. Yang, C. Wu, Y. Liu, Locating in fingerprint space: wireless indoor localization with little human intervention, in: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, ACM, Istanbul, Turkey, 2012, pp. 269–280.
– reference: H. Lee, P. Pham, Y. Largman, A.Y. Ng, Unsupervised feature learning for audio classification using convolutional deep belief networks, in: Advances in Neural Information Processing Systems, 2009, pp. 1096–1104.
– reference: C. Feng, W. S.A. Au, S. Valaee, Z. Tan, Orientation-aware indoor localization using affinity propagation and compressive sensing, in: 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), IEEE, Aruba, Dutch Antilles, 2009, pp. 261–264.
– reference: A.S. Paul, E.A. Wan, Wi-fi based indoor localization and tracking using sigma-point Kalman filtering methods, in: Position, Location and Navigation Symposium, 2008 IEEE/ION, IEEE, Monterey, CA, 2008, pp. 646–659.
– reference: W. Zhang, K. Liu, W. Zhang, Y. Zhang, J.-F. Gu, Wi-fi positioning based on deep learning, in: 2014 IEEE International Conference on Information and Automation (ICIA), IEEE, Hailar, China, 2014, pp. 1176–1179.
– reference: P. Sermanet, R. Hadsell, M. Scoffier, U. Muller, Y. LeCun, Mapping and planning under uncertainty in mobile robots with long-range perception, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, IROS 2008, IEEE, Nice, France, 2008, pp. 2525–2530.
– volume: 123
  start-page: 354
  year: 2014
  end-page: 361
  ident: bib24
  article-title: Modeling rfid signal distribution based on neural network combined with continuous ant colony optimization
  publication-title: Neurocomputing
– reference: I. Guvenc, C.T. Abdallah, R. Jordan, O. Dedeoglu, Enhancements to rss based indoor tracking systems using Kalman filters, in: GSPx & International Signal Processing Conference, 2003, pp. 91–102.
– ident: 10.1016/j.neucom.2016.02.055_bib8
  doi: 10.1109/PLANS.2008.4569985
– volume: 3
  start-page: 24
  year: 2003
  ident: 10.1016/j.neucom.2016.02.055_bib6
  article-title: Bayesian filtering for location estimation
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2003.1228524
– ident: 10.1016/j.neucom.2016.02.055_bib37
– volume: 172
  start-page: 322
  year: 2016
  ident: 10.1016/j.neucom.2016.02.055_bib13
  article-title: Distributed efficient localization in swarm robotic systems using swarm intelligence algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.099
– ident: 10.1016/j.neucom.2016.02.055_bib17
  doi: 10.1109/ICInfA.2014.6932657
– ident: 10.1016/j.neucom.2016.02.055_bib16
– ident: 10.1016/j.neucom.2016.02.055_bib14
– ident: 10.1016/j.neucom.2016.02.055_bib5
– volume: 20
  start-page: 14
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2016.02.055_bib19
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2011.2109382
– ident: 10.1016/j.neucom.2016.02.055_bib10
  doi: 10.1109/ACSSC.2010.5757507
– ident: 10.1016/j.neucom.2016.02.055_bib29
  doi: 10.1109/CAMSAP.2009.5413285
– volume: 20
  start-page: 30
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2016.02.055_bib21
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2011.2134090
– ident: 10.1016/j.neucom.2016.02.055_bib31
  doi: 10.1109/ICIEA.2008.4582530
– ident: 10.1016/j.neucom.2016.02.055_bib20
– ident: 10.1016/j.neucom.2016.02.055_bib33
  doi: 10.1145/2348543.2348578
– volume: 104
  start-page: 170
  year: 2013
  ident: 10.1016/j.neucom.2016.02.055_bib12
  article-title: A biologically inspired solution to simultaneous localization and consistent mapping in dynamic environments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.011
– ident: 10.1016/j.neucom.2016.02.055_bib1
  doi: 10.1145/1164783.1164806
– ident: 10.1016/j.neucom.2016.02.055_bib4
  doi: 10.1109/ICNSC.2004.1297088
– volume: 56
  start-page: 2208
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2016.02.055_bib27
  article-title: Lswd
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2010.5681092
– ident: 10.1016/j.neucom.2016.02.055_bib32
  doi: 10.1109/WCNC.2013.6554922
– volume: 53
  start-page: 618
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2016.02.055_bib28
  article-title: A real-time indoor wifi localization system utilizing smart antennas
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2007.381737
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.neucom.2016.02.055_bib34
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.neucom.2016.02.055_bib15
– ident: 10.1016/j.neucom.2016.02.055_bib7
  doi: 10.1007/978-3-540-30119-6_6
– ident: 10.1016/j.neucom.2016.02.055_bib3
  doi: 10.1109/INFCOM.2000.832252
– ident: 10.1016/j.neucom.2016.02.055_bib11
– volume: 48
  start-page: 3191
  issue: 10
  year: 2015
  ident: 10.1016/j.neucom.2016.02.055_bib18
  article-title: Multimodal learning for facial expression recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.012
– ident: 10.1016/j.neucom.2016.02.055_bib22
  doi: 10.1109/IROS.2008.4651203
– volume: 123
  start-page: 354
  year: 2014
  ident: 10.1016/j.neucom.2016.02.055_bib24
  article-title: Modeling rfid signal distribution based on neural network combined with continuous ant colony optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.07.032
– ident: 10.1016/j.neucom.2016.02.055_bib35
  doi: 10.1145/1390156.1390294
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neucom.2016.02.055_bib36
  article-title: Stacked denoising autoencoders
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2016.02.055_bib39
  doi: 10.1109/ICInfA.2014.6932827
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.neucom.2016.02.055_bib38
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 174
  start-page: 121
  year: 2016
  ident: 10.1016/j.neucom.2016.02.055_bib25
  article-title: Rfid-enabled indoor positioning method for a real-time manufacturing execution system using os-elm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.120
– volume: 57
  start-page: 1099
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2016.02.055_bib2
  article-title: Indoor robot localization based on wireless sensor networks
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2011.6018861
– ident: 10.1016/j.neucom.2016.02.055_bib30
– volume: 26
  start-page: 120
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2016.02.055_bib23
  article-title: Learning long-range vision for autonomous off-road driving
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20276
– volume: 56
  start-page: 1860
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2016.02.055_bib26
  article-title: Robust indoor positioning using differential wi-fi access points
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2010.5606338
– volume: 11
  start-page: 1983
  issue: 12
  year: 2012
  ident: 10.1016/j.neucom.2016.02.055_bib9
  article-title: Received-signal-strength-based indoor positioning using compressive sensing
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2011.216
SSID ssj0017129
Score 2.5634844
Snippet In this paper, we propose a wireless positioning method based on Deep Learning. To deal with the variant and unpredictable wireless signals, the positioning is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 279
SubjectTerms Computational fluid dynamics
Deep Learning
Deep Neural Networks (DNNs)
Hidden Markov model (HMM)
Learning
Localization
Neural networks
Outdoor
Position (location)
Stacked Denoising Autoencoder (SDA)
Turbulence
Wireless communication
Wireless positioning
Title Deep Neural Networks for wireless localization in indoor and outdoor environments
URI https://dx.doi.org/10.1016/j.neucom.2016.02.055
https://www.proquest.com/docview/1808668186
https://www.proquest.com/docview/1825449568
Volume 194
WOSCitedRecordID wos000376548100028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIde-i5JH0GF0ktQ8UO2rOPSbkjLsm1hQ_cmbEuCDRt7m6xDfn5nLNl1kqZJD10WY4T8QPN5NBrNfEPIu8SGeW4FZ6W1gvFIJCyPE84ynaV5EchCuqolUzGbZYuF_DYa2S4X5nwlqiq7uJDr_ypqaANhY-rsP4i7vyk0wDkIHY4gdjjeSfCfjFnvI-cGDP7MBXm3nAv7yEq8QsXWzl8-_xL9HbAsr30sZd1s2vNh_tvQfm25PMq2EoT3MYxPkGpBI656n0Lvhf5hln3Ez7Jx0RvVn3rp2s-gw3bQRCf-Bt4vEaYYP-W1n3cwRgkD6_GyrpV8qC1dHRk_8UZu5r2m05174fhDZRoM8MFntTSrjt73MoX27Ks6OJpO1XyymL9f_2RYXQx34X2plXtkG9AoQfttjz9PFl_6_SYRRo6V0b9zl2TZRgJef_BNRsyV6by1UeaPyUO_uKBjB4onZGSqp-RRV7iDej3-jHxHjFCHEdphhAJGaIcROsQIXeIfcUEBI9RjhA4x8pwcHUzmHw-Zr63BSjDJN0wE6P3jYN_lVhsdCGFTXiQ2M5EGEz7gWpg4BvPNpLEwsArIQ61tUsJyX6dcF_ELslXVldkhtJQmBUvQFrEtuOZpUcTwy-DjT7TMhNwlcTdYqvTE81j_ZKW6CMNj5YZY4RCrIFIwxLuE9VetHfHKLf1FJwfljUdnFCrA0S1Xvu3EpkC34oZZXpm6OVNhBgv-FDkf_9YHSf4w6fblHfq8Ig9-fyuvydbmtDFvyP3yfLM8O93zqPwFd6irJw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Networks+for+wireless+localization+in+indoor+and+outdoor+environments&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Wei&rft.au=Liu%2C+Kan&rft.au=Zhang%2C+Weidong&rft.au=Zhang%2C+Youmei&rft.date=2016-06-19&rft.issn=0925-2312&rft.volume=194&rft.spage=279&rft.epage=287&rft_id=info:doi/10.1016%2Fj.neucom.2016.02.055&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon