Sparse signals recovered by non-convex penalty in quasi-linear systems

The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of inequalities and applications Ročník 2018; číslo 1; s. 59 - 11
Hlavní autoři: Cui, Angang, Li, Haiyang, Wen, Meng, Peng, Jigen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 2018
SpringerOpen
Témata:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the ℓ 0 -norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function ρ a in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem ( Q P a λ ) for all a > 0 . With the change of parameter a > 0 , our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.
AbstractList The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the [Formula: see text]-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function [Formula: see text] in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem [Formula: see text] for all [Formula: see text]. With the change of parameter [Formula: see text], our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the [Formula: see text]-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function [Formula: see text] in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem [Formula: see text] for all [Formula: see text]. With the change of parameter [Formula: see text], our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.
The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the [Formula: see text]-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function [Formula: see text] in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem [Formula: see text] for all [Formula: see text]. With the change of parameter [Formula: see text], our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.
The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the $\ell _{0}$ ℓ0-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function $\rho_{a}$ ρa in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem $(QP_{a}^{\lambda})$ (QPaλ) for all $a>0$ a>0. With the change of parameter $a>0$ a>0, our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.
The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the ℓ 0 -norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function ρ a in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem ( Q P a λ ) for all a > 0 . With the change of parameter a > 0 , our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.
Abstract The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the ℓ0 $\ell _{0}$-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function ρa $\rho_{a}$ in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem (QPaλ) $(QP_{a}^{\lambda})$ for all a>0 $a>0$. With the change of parameter a>0 $a>0$, our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.
ArticleNumber 59
Author Cui, Angang
Li, Haiyang
Peng, Jigen
Wen, Meng
Author_xml – sequence: 1
  givenname: Angang
  surname: Cui
  fullname: Cui, Angang
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 2
  givenname: Haiyang
  surname: Li
  fullname: Li, Haiyang
  organization: School of Science, Xi’an Polytechnic University
– sequence: 3
  givenname: Meng
  surname: Wen
  fullname: Wen, Meng
  organization: School of Science, Xi’an Polytechnic University
– sequence: 4
  givenname: Jigen
  surname: Peng
  fullname: Peng, Jigen
  email: jgpengxjtu@126.com
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29576716$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB_wA9igLNkY_Egce4OEKgqVKrEAJHaWY18PHmXsqZ2MmH-PQ0rVsujKlu8537nS8Tk6iSkCQq8peUepFO8L5UIQTKjEVHQMy2fojBKmMGvZz5MH91N0XsqWEEa5bF-gU6a6XvRUnKGrb3uTCzQlbKIZS5PBpgNkcM1wbGoctike4Hezhzqejk2Ize1sSsBjiGByU45lgl15iZ77aodXd-cF-nH16fvlF3zz9fP15ccbbDsiJyx6ppQXxMq6OLfSt455JTkjqpWOcCC8J7ZXXSeJ6UANnktKjPeM2n4gjl-g65XrktnqfQ47k486maD_PqS80SZPwY6gO0UpGHCOC95a3xtJOLWtYFYZB2KorA8raz8PO3AW4pTN-Aj6eBLDL71JB93JjjEiK-DtHSCn2xnKpHehWBhHEyHNRbNajBCton2VvnmYdR_yr4gqoKvA5lRKBn8voUQvZeu1bF2ZeilbL_n9fx4bJjOFtKwbxiedbHWWmhI3kPU2zXn5AE-Y_gAmAb4Y
CitedBy_id crossref_primary_10_1177_13694332221151017
Cites_doi 10.1137/060657704
10.1109/34.120331
10.1109/TNNLS.2012.2197412
10.1002/cpa.20124
10.1137/130929928
10.1109/TIT.2006.871582
10.1016/j.cam.2017.12.048
10.1007/978-1-4419-7011-4
ContentType Journal Article
Copyright The Author(s) 2018
Copyright_xml – notice: The Author(s) 2018
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/s13660-018-1652-8
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 11
ExternalDocumentID oai_doaj_org_article_5911eaedd3634cf7a8031c462c9ade6b
PMC5852208
29576716
10_1186_s13660_018_1652_8
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundations of China
  grantid: 11771347, 11131006, 41390450
– fundername: ;
  grantid: 11771347, 11131006, 41390450
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
NPM
7X8
5PM
ID FETCH-LOGICAL-c508t-67299f60c83663c8f4d2f98320948d03e0370c795580a5e9bf3810aff21c7b0d3
IEDL.DBID C24
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427542200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-242X
1025-5834
IngestDate Fri Oct 03 12:44:51 EDT 2025
Tue Nov 04 01:57:23 EST 2025
Sun Nov 09 13:02:22 EST 2025
Thu Jan 02 22:41:59 EST 2025
Sat Nov 29 06:10:31 EST 2025
Tue Nov 18 20:55:34 EST 2025
Fri Feb 21 02:33:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 93C10
Non-convex fraction function
34A34
78M50
Quasi-linear
Iterative thresholding algorithm
Compressed sensing
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-67299f60c83663c8f4d2f98320948d03e0370c795580a5e9bf3810aff21c7b0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13660-018-1652-8
PMID 29576716
PQID 2018664917
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_5911eaedd3634cf7a8031c462c9ade6b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5852208
proquest_miscellaneous_2018664917
pubmed_primary_29576716
crossref_primary_10_1186_s13660_018_1652_8
crossref_citationtrail_10_1186_s13660_018_1652_8
springer_journals_10_1186_s13660_018_1652_8
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationTitleAlternate J Inequal Appl
PublicationYear 2018
Publisher Springer International Publishing
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: SpringerOpen
References Bruckstein, Donoho, Elad (CR3) 2009; 51
Candes, Romberg, Tao (CR1) 2006; 59
CR5
Geman, Reynolds (CR8) 1992; 14
CR7
Elad (CR4) 2010
Xu, Chang, Xu, Zhang (CR12) 2012; 23
CR9
Xing (CR11) 2003; 12
Ehler, Fornasier, Sigl (CR6) 2014; 12
Donoho (CR2) 2006; 52
Cui, Peng, Li, Zhang, Yu (CR10) 2018; 336
M. Elad (1652_CR4) 2010
F. Xing (1652_CR11) 2003; 12
E. Candes (1652_CR1) 2006; 59
M. Ehler (1652_CR6) 2014; 12
D.L. Donoho (1652_CR2) 2006; 52
Z. Xu (1652_CR12) 2012; 23
1652_CR9
A.M. Bruckstein (1652_CR3) 2009; 51
1652_CR7
A. Cui (1652_CR10) 2018; 336
1652_CR5
D. Geman (1652_CR8) 1992; 14
References_xml – volume: 51
  start-page: 34
  issue: 1
  year: 2009
  end-page: 81
  ident: CR3
  article-title: From sparse solutions of systems of equations to sparse modelling of signals and images
  publication-title: SIAM Rev.
  doi: 10.1137/060657704
– volume: 14
  start-page: 367
  issue: 3
  year: 1992
  end-page: 383
  ident: CR8
  article-title: Constrained restoration and recovery of discontinuities
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.120331
– ident: CR9
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  end-page: 1027
  ident: CR12
  article-title: L1/2 regularization: a thresholding representation theory and a fast solver
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197412
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  end-page: 1223
  ident: CR1
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– volume: 12
  start-page: 725
  issue: 2
  year: 2014
  end-page: 754
  ident: CR6
  article-title: Quasi-linear compressed sensing
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/130929928
– volume: 12
  start-page: 207
  issue: 3
  year: 2003
  end-page: 218
  ident: CR11
  article-title: Investigation on solutions of cubic equations with one unknown
  publication-title: J. Cent. Univ. Natl. (Nat. Sci. Ed.)
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: CR2
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– ident: CR5
– ident: CR7
– volume: 336
  start-page: 353
  year: 2018
  end-page: 374
  ident: CR10
  article-title: Affine matrix rank minimization problem via non-convex fraction function penalty
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.12.048
– year: 2010
  ident: CR4
  publication-title: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
  doi: 10.1007/978-1-4419-7011-4
– ident: 1652_CR5
– volume: 336
  start-page: 353
  year: 2018
  ident: 1652_CR10
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.12.048
– volume: 12
  start-page: 207
  issue: 3
  year: 2003
  ident: 1652_CR11
  publication-title: J. Cent. Univ. Natl. (Nat. Sci. Ed.)
– volume: 12
  start-page: 725
  issue: 2
  year: 2014
  ident: 1652_CR6
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/130929928
– ident: 1652_CR7
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  ident: 1652_CR1
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– ident: 1652_CR9
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 1652_CR2
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  ident: 1652_CR12
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197412
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  ident: 1652_CR3
  publication-title: SIAM Rev.
  doi: 10.1137/060657704
– volume-title: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
  year: 2010
  ident: 1652_CR4
  doi: 10.1007/978-1-4419-7011-4
– volume: 14
  start-page: 367
  issue: 3
  year: 1992
  ident: 1652_CR8
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.120331
SSID ssj0021384
ssib044744598
ssib008501289
Score 2.105403
Snippet The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the...
Abstract The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms Analysis
Applications of Mathematics
Compressed sensing
Iterative thresholding algorithm
Mathematics
Mathematics and Statistics
Non-convex fraction function
Quasi-linear
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja9wwFBYl5NBLm6SbmwUVemoRkSVZyzEJHXoKgbSQm9BKB8p0Mp4Jzb_Pk60ZOl0vvVoyfnqL9D7r8T2E3rIcMg86kxhaTUQrFPGm60j20WTFJRXOD80m1OWlvrkxVz-0-io1YSM98Ki40w6iMbkUI5dchKycBjcMQrJgXEzSl92XKrMGUxVqtVyLeofZannat1zKUoAFiEl2sAVsnUIDWf_vMsxfCyV_ui0dDqHJHnpSs0d8Nkq9jx6l2QF6WjNJXOO0f4Ym13MArAmX6gzwL1xg713pyon9PQbAT4Zi8-94nmB4eY-nM3y7cv2UlKTTLfDI79w_R58nHz5dfCS1YwIJkGgtiYRU2WRJg4b1FhOIyLKBoAUQpyPliXJFgwJjaOq6ZHwuBF8uZ9YG5WnkL9AOCJFeIdx6lhx3UXGThXOAubNKrfcpspSy9w2iaw3aUOnES1eLr3aAFVraUekWlG6L0q1u0LvNK_ORS-Nvk8-LWTYTCw328ACcw1bnsP9yjga9WRvVQtiUuxA3S99WvYW8R0spAKw26OVo5M2nmAEQBjiyQWrL_FuybI_Mpl8Gam4AX4xREP792lFs3RP6Py_19f9Y6iF6XNY0_h06QjvLxSodo91wt5z2i5MhOh4AeD4U3A
  priority: 102
  providerName: Directory of Open Access Journals
Title Sparse signals recovered by non-convex penalty in quasi-linear systems
URI https://link.springer.com/article/10.1186/s13660-018-1652-8
https://www.ncbi.nlm.nih.gov/pubmed/29576716
https://www.proquest.com/docview/2018664917
https://pubmed.ncbi.nlm.nih.gov/PMC5852208
https://doaj.org/article/5911eaedd3634cf7a8031c462c9ade6b
Volume 2018
WOSCitedRecordID wos000427542200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-242X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021384
  issn: 1029-242X
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1029-242X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044744598
  issn: 1029-242X
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-242X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021384
  issn: 1029-242X
  databaseCode: C24
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xCwc4sLC8yqMyEidQhBMntnOE1VZcdoUESL1ZfkIllJamXbEXfjtjx6lUWJDgkkNsKxN7xp7PM_4M8KIKNjArQ-FsKYu6rEVh2qYpgnFtEIzTWpt02YQ4P5fzefs-n-Pux2z3MSSZZupk1pK_7kvGeUyiQtTDGzTjA7ge2cRiHtdJPOKQUVbJZJ3Dl1c221uAEk__Vc7l7zmSvwRK0_ozO_ovye_A7exukjeDftyFa747hqPsepJs2P0x3Drb0bf292D2YYV415OY3IHqSSJqvoiXehJzSbplV6Rc9e9k5bF4c0kWHfm21f2iiD6rXpOBHrq_D59mpx9P3hX5woXCop-2KTh62m3g1EoUOI5g7arQos0jBpSOMk-ZoFbgWEqqG9-aEPnBdAhVaYWhjj2AQxTCPwJSmsprpp1gbai1RsgehC-N8a7yPhgzATqOgrKZjTxeivFVJVQiuRp6TWGvqdhrSk7g5a7JaqDi-Fvlt3FodxUji3Z6sVx_VtkoVYMzvdfeOcZZbYPQEqc4W_PKttp5jkI-HxVDodXFUIru_HLbK3SbJOc1Yt0JPBwUZfepqkUMhzB0AmJPhfZk2S_pFl8Sszdit6qiKPyrUZFUnlL6P__q43-q_QRuRuGHXaSncLhZb_0zuGEvNot-PYUDMZfTZFDTtD2Bz7Mfpz8B4swepw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BQGI8MBhf5dNIPIEiktixnUeYqIbYKiSGtDfLn1AJpV3TTuy_5-y4lQoDCV5jW7n4Pny_3PkO4GUdbKBWhsLZShasYqIwbdMUwbg2CMpLpk1qNiEmE3l62n7K97j7dbb7OiSZLHVSa8nf9BXlPCZRIerhDarxVbjGEJ_EPK6DeMUho6yKSpbDl5cu2zqAUp3-y5zL33MkfwmUpvNnvPdflN-GW9ndJG8H-bgDV3y3D3vZ9SRZsft9uHm8Kd_a34Xx5zniXU9icgeKJ4mo-Tw29STmgnSzrki56j_I3OPw8oJMO3K20v20iD6rXpChPHR_D76M358cHBa54UJh0U9bFhw97Tbw0kokOHKQuTq0qPOIAaUrqS-pKK1AXspSN741IdYH0yHUlRWmdPQ-7CAR_iGQytReU-0EbQPTGiF7EL4yxrva-2DMCMo1F5TN1chjU4zvKqESydWwawp3TcVdU3IErzZL5kMpjr9NfhdZu5kYq2inB7PFV5WVUjVo6b32zlFOmQ1CSzRxlvHattp5jkS-WAuGQq2LoRTd-dmqV-g2Sc4ZYt0RPBgEZfOqukUMhzB0BGJLhLZo2R7ppt9SZW_EbnVdIvGv14Kksknp__ypj_5p9nO4cXhyfKSOPkw-Pobd-CHDH6UnsLNcrPxTuG7Pl9N-8Syp1U8vmh5-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0FNEHT887XT8j-KSEa5s2SR_1dFHU5UCFewv51IWju267h_ffO2nThdVTEF_bhE6SmWR-nclvAJ4VwQZmZaDO5pKWeSmoqauKBuPqIBjPSm36YhNiNpMnJ_VxqnPajtnuY0hyuNMQWZqa7nDpwmDikh-2OeM8JlQhAuIVmvRluILIRES1PorXHRLiypksUyjzwm5bh1HP2X-Ro_l7vuQvQdP-LJru_vcobsHN5IaSl4Pe3IZLvtmD3eSSkmTw7R7c-LihdW3vwPTTEnGwJzHpA9WWRDR9Fot9EnNOmkVD-xz2H2Tp8XV3TuYN-b7W7ZxGX1avyEAb3e7Dl-mbz0dvaSrEQC36bx3l6IHXgWdWosBxZUtXhBr3AsSG0mXMZ0xkVuAay0xXvjYh8obpEIrcCpM5dgA7KIS_ByQ3hddMO8HqUGqNUD4InxvjXeF9MGYC2bgiyiaW8lgs41T1aEVyNcyawllTcdaUnMDzTZflQNHxt8av4jJvGkZ27f7BYvVVJWNVFZ4AXnvnGGelDUJL3PpsyQtba-c5Cvl0VBKF1hhDLLrxi3Wr0J2SnJeIgSdwd1CazaeKGrEdwtMJiC112pJl-00z_9YzfiOmK4oMhX8xKpVKW03756He_6fWT-Da8eup-vBu9v4BXI_jGH40PYSdbrX2j-CqPevm7epxb2E_Abw3J2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+signals+recovered+by+non-convex+penalty+in+quasi-linear+systems&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Cui%2C+Angang&rft.au=Li%2C+Haiyang&rft.au=Wen%2C+Meng&rft.au=Peng%2C+Jigen&rft.date=2018&rft.pub=Springer+International+Publishing&rft.eissn=1029-242X&rft.volume=2018&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-018-1652-8&rft.externalDocID=10_1186_s13660_018_1652_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon