Multi-Scale Deep Neural Network Based on Dilated Convolution for Spacecraft Image Segmentation
In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and spac...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 11; p. 4222 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
01.06.2022
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework. |
|---|---|
| AbstractList | In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework.In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework. In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework. |
| Audience | Academic |
| Author | Liu, Yuan Guo, Xiangji Yang, Yifan Wang, Jing Wang, Jiarong Zhu, Ming |
| AuthorAffiliation | 2 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; liuyuan18@mails.ucas.ac.cn (Y.L.); wangjing@ciomp.ac.cn (J.W.); guoxiangji18@mails.ucas.ac.cn (X.G.); yangyifan17@mails.ucas.ac.cn (Y.Y.); wangjiarong@cust.edu.cn (J.W.) |
| AuthorAffiliation_xml | – name: 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; liuyuan18@mails.ucas.ac.cn (Y.L.); wangjing@ciomp.ac.cn (J.W.); guoxiangji18@mails.ucas.ac.cn (X.G.); yangyifan17@mails.ucas.ac.cn (Y.Y.); wangjiarong@cust.edu.cn (J.W.) – name: 2 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China |
| Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0002-8996-6834 surname: Liu fullname: Liu, Yuan – sequence: 2 givenname: Ming surname: Zhu fullname: Zhu, Ming – sequence: 3 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 4 givenname: Xiangji surname: Guo fullname: Guo, Xiangji – sequence: 5 givenname: Yifan surname: Yang fullname: Yang, Yifan – sequence: 6 givenname: Jiarong surname: Wang fullname: Wang, Jiarong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35684842$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktv1DAQxyNURB9w4AugSFzgkNavOPYFqWwLrFTgsHDFcuzJ4iWJt05S1G_PLCmrtkI-jDX--T_P4-ygjz1k2UtKTjnX5GxgjFLBGHuSHaEVhWKMHNy7H2bHw7AhhHHO1bPskJdSCSXYUfbj89SOoVg520J-AbDNv8CUbItm_B3Tr_y9HcDnsc8vQmtHvC5ifxPbaQzoa2LKV1vrwCXbjPmys2vIV7DuoB_tjniePW1sO8CLO3uSff9w-W3xqbj6-nG5OL8qXEnUWEgmPBWNBlCNBMeIAOkEq72tSsV844V0XDAnKW-0BlaCkkoTShW1ktYVP8mWs66PdmO2KXQ23Zpog_nriGltbBqDa8FQoF5bRitSlaLUrnZ1xTzIklhPtGSo9W7W2k51B95hLdiQB6IPX_rw06zjjdFUlUJzFHhzJ5Di9QTDaLowOGhb20OcBsNkVUqK4Qmirx-hmzilHlu1owTXgiuF1OlMrXFKJvRNxLgOj4cuONyFJqD_vGJKlZIogR9e3S9hn_u_uSPwdgZcisOQoNkjlJjdTpn9TiF79oh1YZ4uZhHa__z4A2bRy20 |
| CitedBy_id | crossref_primary_10_3390_s22176335 crossref_primary_10_1109_JSTARS_2024_3523273 crossref_primary_10_1016_j_isci_2025_112401 crossref_primary_10_3390_s23010124 crossref_primary_10_1007_s42423_025_00182_6 crossref_primary_10_3390_rs17183144 crossref_primary_10_3390_s23020690 crossref_primary_10_1016_j_engappai_2023_107338 crossref_primary_10_3390_rs16050894 crossref_primary_10_3390_s23052597 crossref_primary_10_1109_TAES_2024_3512533 crossref_primary_10_1007_s42405_023_00653_w crossref_primary_10_1016_j_jgsce_2024_205365 crossref_primary_10_1016_j_jobe_2025_112571 crossref_primary_10_1049_rsn2_12547 crossref_primary_10_1108_IJIUS_01_2023_0002 crossref_primary_10_1016_j_optlaseng_2024_108113 crossref_primary_10_1109_TIM_2025_3568937 |
| Cites_doi | 10.1109/CVPR.2018.00745 10.23919/ICACT48636.2020.9061445 10.1109/CVPR.2017.544 10.1016/j.actaastro.2015.12.032 10.1109/TPAMI.2016.2644615 10.1109/TAES.2020.2989063 10.3390/s21041167 10.1109/JSEN.2021.3100151 10.2514/6.2016-5478 10.1007/978-3-030-01234-2_1 10.1109/CVPR.2017.75 10.1109/CVPR42600.2020.01155 10.1007/978-3-030-01234-2_49 10.1109/ICCV.2015.162 10.1109/ICCV.2019.00926 10.1109/CVPR.2016.350 10.1016/0031-3203(81)90009-1 10.1109/CVPR.2019.00584 10.1109/CVPR.2017.243 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2018.00474 10.1016/S0273-1177(01)00399-4 10.1109/AERO.2018.8396425 10.1109/TPAMI.1986.4767851 10.1016/j.paerosci.2017.07.001 10.3390/s19184026 10.1016/j.cviu.2007.09.014 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-01240-3_17 10.1109/CVPR.2019.00350 10.1109/CVPR.2018.00388 10.1109/CVPR.2019.00060 10.1504/IJSPACESE.2013.059268 10.1109/CVPR.2017.195 10.1109/TPAMI.2016.2572683 10.1109/CVPR.2016.90 10.1093/mnras/staa1463 10.1109/CVPR.2019.00326 10.1109/ICCV.2011.6126544 10.1007/978-1-4614-4541-8 10.1109/TPAMI.2017.2699184 10.1109/CVPR.2017.660 10.1109/CVPRW53098.2021.00229 10.1007/s42064-021-0101-5 10.1016/j.actaastro.2016.06.018 10.1007/s11263-009-0275-4 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22114222 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) (NC LIVE) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_1e1d9a217075459cbcb72de650ad0962 PMC9185493 A728856084 35684842 10_3390_s22114222 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Science and Technology Department of Jilin Province, China grantid: 20200401123GX |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c508t-624d14f9ee8f6ec204e6c42bda7582dfd46c342c613f99e25e868901181a61b73 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809488400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:35:59 EST 2025 Tue Nov 04 01:58:19 EST 2025 Thu Sep 04 19:03:20 EDT 2025 Tue Oct 07 07:06:25 EDT 2025 Tue Nov 04 18:41:50 EST 2025 Wed Feb 19 02:25:59 EST 2025 Sat Nov 29 07:13:09 EST 2025 Tue Nov 18 22:11:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | deep learning DeepLabv3 semantic segmentation dilated convolution multi-scale |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-624d14f9ee8f6ec204e6c42bda7582dfd46c342c613f99e25e868901181a61b73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8996-6834 |
| OpenAccessLink | https://www.proquest.com/docview/2674394388?pq-origsite=%requestingapplication% |
| PMID | 35684842 |
| PQID | 2674394388 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1e1d9a217075459cbcb72de650ad0962 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185493 proquest_miscellaneous_2675610750 proquest_journals_2674394388 gale_infotracacademiconefile_A728856084 pubmed_primary_35684842 crossref_primary_10_3390_s22114222 crossref_citationtrail_10_3390_s22114222 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 ref_14 ref_13 ref_57 Uriot (ref_1) 2020; 6 ref_12 ref_56 ref_55 Khaldi (ref_58) 2021; 21 ref_10 ref_54 ref_53 ref_52 Lowe (ref_30) 2003; 20 Sumant (ref_35) 2018; 55 ref_51 ref_19 ref_18 ref_17 ref_16 ref_15 Castellani (ref_24) 2013; 1 ref_25 Carruba (ref_2) 2020; 496 Forshaw (ref_6) 2016; 127 ref_22 ref_21 Ballard (ref_34) 1981; 13 ref_20 ref_29 ref_28 ref_27 Herbert (ref_31) 2008; 110 ref_36 Badrinarayanan (ref_39) 2017; 39 Opromolla (ref_8) 2017; 93 ref_32 Canny (ref_33) 1986; 8 Long (ref_38) 2017; 39 Chen (ref_44) 2018; 40 ref_37 Kisantal (ref_9) 2020; 56 Everingham (ref_11) 2010; 88 ref_47 ref_46 Schildknecht (ref_23) 2001; 28 ref_45 ref_43 ref_42 ref_41 ref_40 ref_3 Sharma (ref_26) 2016; 123 ref_49 ref_48 ref_5 ref_4 ref_7 |
| References_xml | – ident: ref_20 doi: 10.1109/CVPR.2018.00745 – ident: ref_5 doi: 10.23919/ICACT48636.2020.9061445 – ident: ref_41 doi: 10.1109/CVPR.2017.544 – volume: 123 start-page: 435 year: 2016 ident: ref_26 article-title: Comparative assessment of techniques for initial pose estimation using monocular vision publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.12.032 – volume: 39 start-page: 2481 year: 2017 ident: ref_39 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: ref_32 – volume: 20 start-page: 91 year: 2003 ident: ref_30 article-title: Distinctive image features from scale-invariant key points publication-title: Int. J. Comput. Vis. – volume: 56 start-page: 4083 year: 2020 ident: ref_9 article-title: Satellite Pose Estimation Challenge: Dataset, Competition Design, and Results publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2020.2989063 – ident: ref_19 doi: 10.3390/s21041167 – volume: 55 start-page: 1 year: 2018 ident: ref_35 article-title: Robust Model-Based Monocular Pose Initialization for Noncooperative Spacecraft Rendezvous publication-title: J. Spacecr. Rocket. – volume: 21 start-page: 20704 year: 2021 ident: ref_58 article-title: Ear Recognition Based on Deep Unsupervised Active Learning publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3100151 – ident: ref_3 doi: 10.2514/6.2016-5478 – ident: ref_49 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_16 doi: 10.1109/CVPR.2017.75 – ident: ref_21 doi: 10.1109/CVPR42600.2020.01155 – ident: ref_13 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_42 doi: 10.1109/ICCV.2015.162 – ident: ref_53 doi: 10.1109/ICCV.2019.00926 – ident: ref_4 – ident: ref_12 doi: 10.1109/CVPR.2016.350 – volume: 13 start-page: 111 year: 1981 ident: ref_34 article-title: Generalizing the Hough transform to detect arbitrary shapes publication-title: Pattern Recognit. doi: 10.1016/0031-3203(81)90009-1 – ident: ref_48 – ident: ref_55 doi: 10.1109/CVPR.2019.00584 – ident: ref_57 doi: 10.1109/CVPR.2017.243 – ident: ref_10 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_56 doi: 10.1109/CVPR.2018.00474 – volume: 28 start-page: 1291 year: 2001 ident: ref_23 article-title: The search for debris in GEO publication-title: Adv. Space Res. doi: 10.1016/S0273-1177(01)00399-4 – ident: ref_45 – ident: ref_36 doi: 10.1109/AERO.2018.8396425 – volume: 8 start-page: 679 year: 1986 ident: ref_33 article-title: A Computational Approach to Edge Detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 93 start-page: 53 year: 2017 ident: ref_8 article-title: A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2017.07.001 – ident: ref_22 doi: 10.3390/s19184026 – volume: 110 start-page: 346 year: 2008 ident: ref_31 article-title: Speeded-Up Robust Features (SURF) publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.09.014 – ident: ref_15 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_47 – ident: ref_50 doi: 10.1007/978-3-030-01240-3_17 – ident: ref_28 doi: 10.1109/CVPR.2019.00350 – ident: ref_40 – ident: ref_14 doi: 10.1109/CVPR.2018.00388 – ident: ref_37 – ident: ref_18 – ident: ref_52 doi: 10.1109/CVPR.2019.00060 – volume: 1 start-page: 349 year: 2013 ident: ref_24 article-title: PROBA-3 mission publication-title: Int. J. Space Sci. Eng. doi: 10.1504/IJSPACESE.2013.059268 – ident: ref_54 doi: 10.1109/CVPR.2017.195 – volume: 39 start-page: 640 year: 2017 ident: ref_38 article-title: Fully Convolutional Networks for Semantic Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – ident: ref_17 doi: 10.1109/CVPR.2016.90 – volume: 496 start-page: 540 year: 2020 ident: ref_2 article-title: Machine learning classification of new asteroid families members publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/staa1463 – ident: ref_51 doi: 10.1109/CVPR.2019.00326 – ident: ref_25 – ident: ref_29 doi: 10.1109/ICCV.2011.6126544 – ident: ref_46 – ident: ref_27 doi: 10.1007/978-1-4614-4541-8 – volume: 40 start-page: 834 year: 2018 ident: ref_44 article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: ref_43 doi: 10.1109/CVPR.2017.660 – ident: ref_7 doi: 10.1109/CVPRW53098.2021.00229 – volume: 6 start-page: 121 year: 2020 ident: ref_1 article-title: Spacecraft collision avoidance challenge: Design and results of a machine learning competition publication-title: Astrodynamics doi: 10.1007/s42064-021-0101-5 – volume: 127 start-page: 448 year: 2016 ident: ref_6 article-title: RemoveDEBRIS: An in-orbit active debris removal demonstration mission publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2016.06.018 – volume: 88 start-page: 303 year: 2010 ident: ref_11 article-title: The Pascal Visual Object Classes (VOC) Challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 |
| SSID | ssj0023338 |
| Score | 2.4860218 |
| Snippet | In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 4222 |
| SubjectTerms | Algorithms Annotations Datasets Deep learning DeepLabv3 dilated convolution Discovery and exploration Image processing Machine learning Methods multi-scale Neural networks Outer space Remote sensing Satellites semantic segmentation Semantics Space exploration Space ships Space vehicles |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqgc4IMoztEUGIcElauN4_Tj2QQUSWiEtoJ6wHHsCK7XZqrvt7-_Y8UYbFYkLV9uJnHl4vok9nwHee6Wc4CqUvJVxm7GRZeMbLCvZBIoH2ui0o_vzq5pO9fm5-bZx1Vc8E9bTA_eCO6iwCsYRcKbYJibG05sUD0jAwgWC32n1PVRmnUzlVKumzKvnEaopqT9Ycp5qRvko-iSS_vtL8UYsGp-T3Ag8Z0_gcUaM7Kif6Q48wO4pPNrgEXwGv1IZbTkjeSM7RbxikXODHpr2h7zZMcWqwBYdO51fELgM7GTR3WajYwRb2YxSZwKQrl2xL5e0xLAZ_r7MZUndc_hx9un7yecyX5xQesJbq1JyESrRGkTdSvT8UKD0gjfBUXbAQxuE9LXgnkJ5awzyCWrSSqpBdbJqVP0CtrpFh6-ACUMZRYUU5LUSTjpHS4JX1EpIIZg2FPBxLVDrM6t4vNziwlJ2EWVvB9kX8G4YetVTafxt0HHUyjAgsl-nBrIJm23C_ssmCvgQdWqjj9JkvMulBvRJke3KHimuNUE9LQrYW6vdZuddWh4LM4yotS7g7dBNbhf3UlyHi5s0JiJPwlsFvOytZJhzPZFaaEHTUCP7GX3UuKeb_0nU3obgkzD16_8hhV14yGOtRvpltAdbq-sb3Idtf7uaL6_fJH-5A5PuGTk priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Scale Deep Neural Network Based on Dilated Convolution for Spacecraft Image Segmentation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35684842 https://www.proquest.com/docview/2674394388 https://www.proquest.com/docview/2675610750 https://pubmed.ncbi.nlm.nih.gov/PMC9185493 https://doaj.org/article/1e1d9a217075459cbcb72de650ad0962 |
| Volume | 22 |
| WOSCitedRecordID | wos000809488400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdg4wEe-IYFRmUQErxEWxzXH09o3ToxiVUVBVResBzbGZW2pGu7PfK3c3bcrBGIF1784DjJWXe--53tu0PoreFcU8JtSkrmjxkLlhamcGnGCgv2QEgRTnS_feKjkZhO5ThuuC3jtcq1TgyK2tbG75HvEX9bXtJciA_zy9RXjfKnq7GExm207ctmeznn0xuHKwf_q8kmlINrv7ckJESOko4NCqn6_1TIGxape1tyw_wcP_hfwh-i-xF44oNGUh6hW656jO5tpCN8gn6EaNx0Amxz-Mi5OfapO-ClUXNXHA_A5FlcV_hodg4Y1eLDurqOsosB_eIJeOCAQ3W5wicXoKnwxJ1dxOim6in6ejz8cvgxjfUXUgOwbZUyQm1GS-mcKJkzZJ86ZigprAYng9jSUmZySgwgglJKR_pOAHNDKKtmWcHzZ2irqiu3gzCV4JhkDrCC4FQzrUGzGA69ADisLG2C3q85okxMTu5rZJwrcFI881TLvAS9aYfOm4wcfxs08GxtB_gk2qGjXpypuCZV5uDfGnwygE20Lw0IKSfWAWbVFjw7-Mg7LxTKL3UgxugYsQBT8kmz1AEnQgBiFDRBu2veq6gDluqG8Ql63T6G1euPZHTl6qswxgNYgG0Jet6IWUtz3meCCgpk8I4AdibVfVLNfoYM4RJQGJX5i3-T9RLdJT6YI-wp7aKt1eLKvUJ3zPVqtlz0wlIKreih7cFwNP7cCzsW0J7-GkLf-OR0_P03MQouDA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwCwSVq43hj-4BQ26XqqssKaQvaE8GxnbJSmyy72yL-FL-RsfPoRiBuPXBNnGScfDPzTeyZAXipOVeMchPSPHHLjFkSZjqzYZRkBv2BkMKv6H4e8tFITCby4xr8anJh3LbKxiZ6Q21K7f6Rb1K3W16yWIh3s--h6xrlVlebFhoVLA7szx8Ysi3eDvr4fV9Ruvf-cHc_rLsKhBrJyDJMKDMRy6W1Ik-splvMJprRzCikztTkhiU6ZlSjn8ultLRnBYrsEzRVEmU8xvtegstox7kL9vjkPMCLMd6rqhfFsdzaXFDqM1Vpx-f51gB_OoAVD9jdnbni7vZu_m8v6hbcqIk12a404Tas2eIOXF8pt3gXvvhs43CMsLSkb-2MuNIkeNGo2gtPdtClG1IWpD89Rg5uyG5ZnNW6SZDdk_FMaeTZKl-SwQlaYjK2Ryd19lZxDz5dyATvw3pRFvYhECYx8IosciHBmUqUQsupOR5FQmVkbgJ40yAg1XXxddcD5DjFIMyBJW3BEsCLduisqjjyt0E7DkbtAFck3B8o50dpbXPSyOKzFcacSAtZT2pUQk6NRU6uDEaueJPXDoSpM2UojFZ1RgZOyRUFS7c5FQIZsWABbDRYS2sbt0jPgRbA8_Y0Wie35KQKW576MY6gIy0N4EEF61bmuJcIJhiKwTuA70yqe6aYfvMV0CWyTCbjR_8W6xlc3T_8MEyHg9HBY7hGXeKK_3-2AevL-al9Alf02XK6mD_1akzg60Wrw28TU4Nq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCE48C4sFDAIBJdVu15nbR8QahsiopYoUgCVC67X9pZI7W5I0iL-Gr-O8b5IBOLWA9ddZzNOvpn5Zj0PgOeGc80otyHNEn_MmCZhalIXRklq0R8IKcoT3U8HfDgUh4dytAY_m1oYn1bZ2MTSUNvC-HfkW9Rny0sWY8CW1WkRo17_zfRb6CdI-ZPWZpxGBZF99-M7hm_z14Me_tcvKO2__bD3LqwnDIQGickiTCizEcukcyJLnKHbzCWG0dRqpNHUZpYlJmbUoM_LpHS06wSKXxZr6iRKeYzPvQTrSMkZ7cD6aPB-9LkN92KM_qpeRnEst7fmlJZ1q3TFA5aDAv50B0v-cDVXc8n59W_8zz_bTbheU26yU-nILVhz-W24ttSI8Q58KeuQwzEC1pGec1Pim5bgh4ZVljzZRWdvSZGT3uQE2bkle0V-XmstQd5PxlNtkIHrbEEGp2ijydgdn9Z1Xfld-HghG9yATl7k7j4QJjEkixyyJMGZTrRGm2o4XkWqZWVmA3jVoEGZui27nw5yojA888BRLXACeNYunVa9SP62aNdDql3g24eXF4rZsaqtkYocfrfGaBQJI-tKg-rJqXXI1rXFmBYf8tIDUnkjh8IYXddq4JZ8uzC1w6kQyJUFC2CzwZ2qrd9c_QZdAE_b22i3_GGUzl1xVq7x1B0JawD3Koi3MsfdRDDBUAy-Av6VTa3eySdfy97oEvknk_GDf4v1BK6gFqiDwXD_IVylvqKlfLG2CZ3F7Mw9gsvmfDGZzx7XOk3g6KL14Rczlo25 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+Deep+Neural+Network+Based+on+Dilated+Convolution+for+Spacecraft+Image+Segmentation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Yuan&rft.au=Zhu%2C+Ming&rft.au=Wang%2C+Jing&rft.au=Guo%2C+Xiangji&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=11&rft.spage=4222&rft_id=info:doi/10.3390%2Fs22114222&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |