Multi-Scale Deep Neural Network Based on Dilated Convolution for Spacecraft Image Segmentation

In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and spac...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 11; p. 4222
Main Authors: Liu, Yuan, Zhu, Ming, Wang, Jing, Guo, Xiangji, Yang, Yifan, Wang, Jiarong
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.06.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework.
AbstractList In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework.In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework.
In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework.
Audience Academic
Author Liu, Yuan
Guo, Xiangji
Yang, Yifan
Wang, Jing
Wang, Jiarong
Zhu, Ming
AuthorAffiliation 2 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; liuyuan18@mails.ucas.ac.cn (Y.L.); wangjing@ciomp.ac.cn (J.W.); guoxiangji18@mails.ucas.ac.cn (X.G.); yangyifan17@mails.ucas.ac.cn (Y.Y.); wangjiarong@cust.edu.cn (J.W.)
AuthorAffiliation_xml – name: 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; liuyuan18@mails.ucas.ac.cn (Y.L.); wangjing@ciomp.ac.cn (J.W.); guoxiangji18@mails.ucas.ac.cn (X.G.); yangyifan17@mails.ucas.ac.cn (Y.Y.); wangjiarong@cust.edu.cn (J.W.)
– name: 2 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0002-8996-6834
  surname: Liu
  fullname: Liu, Yuan
– sequence: 2
  givenname: Ming
  surname: Zhu
  fullname: Zhu, Ming
– sequence: 3
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 4
  givenname: Xiangji
  surname: Guo
  fullname: Guo, Xiangji
– sequence: 5
  givenname: Yifan
  surname: Yang
  fullname: Yang, Yifan
– sequence: 6
  givenname: Jiarong
  surname: Wang
  fullname: Wang, Jiarong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35684842$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAQxyNURB9w4AugSFzgkNavOPYFqWwLrFTgsHDFcuzJ4iWJt05S1G_PLCmrtkI-jDX--T_P4-ygjz1k2UtKTjnX5GxgjFLBGHuSHaEVhWKMHNy7H2bHw7AhhHHO1bPskJdSCSXYUfbj89SOoVg520J-AbDNv8CUbItm_B3Tr_y9HcDnsc8vQmtHvC5ifxPbaQzoa2LKV1vrwCXbjPmys2vIV7DuoB_tjniePW1sO8CLO3uSff9w-W3xqbj6-nG5OL8qXEnUWEgmPBWNBlCNBMeIAOkEq72tSsV844V0XDAnKW-0BlaCkkoTShW1ktYVP8mWs66PdmO2KXQ23Zpog_nriGltbBqDa8FQoF5bRitSlaLUrnZ1xTzIklhPtGSo9W7W2k51B95hLdiQB6IPX_rw06zjjdFUlUJzFHhzJ5Di9QTDaLowOGhb20OcBsNkVUqK4Qmirx-hmzilHlu1owTXgiuF1OlMrXFKJvRNxLgOj4cuONyFJqD_vGJKlZIogR9e3S9hn_u_uSPwdgZcisOQoNkjlJjdTpn9TiF79oh1YZ4uZhHa__z4A2bRy20
CitedBy_id crossref_primary_10_3390_s22176335
crossref_primary_10_1109_JSTARS_2024_3523273
crossref_primary_10_1016_j_isci_2025_112401
crossref_primary_10_3390_s23010124
crossref_primary_10_1007_s42423_025_00182_6
crossref_primary_10_3390_rs17183144
crossref_primary_10_3390_s23020690
crossref_primary_10_1016_j_engappai_2023_107338
crossref_primary_10_3390_rs16050894
crossref_primary_10_3390_s23052597
crossref_primary_10_1109_TAES_2024_3512533
crossref_primary_10_1007_s42405_023_00653_w
crossref_primary_10_1016_j_jgsce_2024_205365
crossref_primary_10_1016_j_jobe_2025_112571
crossref_primary_10_1049_rsn2_12547
crossref_primary_10_1108_IJIUS_01_2023_0002
crossref_primary_10_1016_j_optlaseng_2024_108113
crossref_primary_10_1109_TIM_2025_3568937
Cites_doi 10.1109/CVPR.2018.00745
10.23919/ICACT48636.2020.9061445
10.1109/CVPR.2017.544
10.1016/j.actaastro.2015.12.032
10.1109/TPAMI.2016.2644615
10.1109/TAES.2020.2989063
10.3390/s21041167
10.1109/JSEN.2021.3100151
10.2514/6.2016-5478
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2017.75
10.1109/CVPR42600.2020.01155
10.1007/978-3-030-01234-2_49
10.1109/ICCV.2015.162
10.1109/ICCV.2019.00926
10.1109/CVPR.2016.350
10.1016/0031-3203(81)90009-1
10.1109/CVPR.2019.00584
10.1109/CVPR.2017.243
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2018.00474
10.1016/S0273-1177(01)00399-4
10.1109/AERO.2018.8396425
10.1109/TPAMI.1986.4767851
10.1016/j.paerosci.2017.07.001
10.3390/s19184026
10.1016/j.cviu.2007.09.014
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-01240-3_17
10.1109/CVPR.2019.00350
10.1109/CVPR.2018.00388
10.1109/CVPR.2019.00060
10.1504/IJSPACESE.2013.059268
10.1109/CVPR.2017.195
10.1109/TPAMI.2016.2572683
10.1109/CVPR.2016.90
10.1093/mnras/staa1463
10.1109/CVPR.2019.00326
10.1109/ICCV.2011.6126544
10.1007/978-1-4614-4541-8
10.1109/TPAMI.2017.2699184
10.1109/CVPR.2017.660
10.1109/CVPRW53098.2021.00229
10.1007/s42064-021-0101-5
10.1016/j.actaastro.2016.06.018
10.1007/s11263-009-0275-4
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22114222
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1e1d9a217075459cbcb72de650ad0962
PMC9185493
A728856084
35684842
10_3390_s22114222
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Science and Technology Department of Jilin Province, China
  grantid: 20200401123GX
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-624d14f9ee8f6ec204e6c42bda7582dfd46c342c613f99e25e868901181a61b73
IEDL.DBID 7X7
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809488400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:35:59 EST 2025
Tue Nov 04 01:58:19 EST 2025
Thu Sep 04 19:03:20 EDT 2025
Tue Oct 07 07:06:25 EDT 2025
Tue Nov 04 18:41:50 EST 2025
Wed Feb 19 02:25:59 EST 2025
Sat Nov 29 07:13:09 EST 2025
Tue Nov 18 22:11:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords deep learning
DeepLabv3
semantic segmentation
dilated convolution
multi-scale
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-624d14f9ee8f6ec204e6c42bda7582dfd46c342c613f99e25e868901181a61b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8996-6834
OpenAccessLink https://www.proquest.com/docview/2674394388?pq-origsite=%requestingapplication%
PMID 35684842
PQID 2674394388
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1e1d9a217075459cbcb72de650ad0962
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185493
proquest_miscellaneous_2675610750
proquest_journals_2674394388
gale_infotracacademiconefile_A728856084
pubmed_primary_35684842
crossref_primary_10_3390_s22114222
crossref_citationtrail_10_3390_s22114222
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_14
ref_13
ref_57
Uriot (ref_1) 2020; 6
ref_12
ref_56
ref_55
Khaldi (ref_58) 2021; 21
ref_10
ref_54
ref_53
ref_52
Lowe (ref_30) 2003; 20
Sumant (ref_35) 2018; 55
ref_51
ref_19
ref_18
ref_17
ref_16
ref_15
Castellani (ref_24) 2013; 1
ref_25
Carruba (ref_2) 2020; 496
Forshaw (ref_6) 2016; 127
ref_22
ref_21
Ballard (ref_34) 1981; 13
ref_20
ref_29
ref_28
ref_27
Herbert (ref_31) 2008; 110
ref_36
Badrinarayanan (ref_39) 2017; 39
Opromolla (ref_8) 2017; 93
ref_32
Canny (ref_33) 1986; 8
Long (ref_38) 2017; 39
Chen (ref_44) 2018; 40
ref_37
Kisantal (ref_9) 2020; 56
Everingham (ref_11) 2010; 88
ref_47
ref_46
Schildknecht (ref_23) 2001; 28
ref_45
ref_43
ref_42
ref_41
ref_40
ref_3
Sharma (ref_26) 2016; 123
ref_49
ref_48
ref_5
ref_4
ref_7
References_xml – ident: ref_20
  doi: 10.1109/CVPR.2018.00745
– ident: ref_5
  doi: 10.23919/ICACT48636.2020.9061445
– ident: ref_41
  doi: 10.1109/CVPR.2017.544
– volume: 123
  start-page: 435
  year: 2016
  ident: ref_26
  article-title: Comparative assessment of techniques for initial pose estimation using monocular vision
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.12.032
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_39
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref_32
– volume: 20
  start-page: 91
  year: 2003
  ident: ref_30
  article-title: Distinctive image features from scale-invariant key points
  publication-title: Int. J. Comput. Vis.
– volume: 56
  start-page: 4083
  year: 2020
  ident: ref_9
  article-title: Satellite Pose Estimation Challenge: Dataset, Competition Design, and Results
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2020.2989063
– ident: ref_19
  doi: 10.3390/s21041167
– volume: 55
  start-page: 1
  year: 2018
  ident: ref_35
  article-title: Robust Model-Based Monocular Pose Initialization for Noncooperative Spacecraft Rendezvous
  publication-title: J. Spacecr. Rocket.
– volume: 21
  start-page: 20704
  year: 2021
  ident: ref_58
  article-title: Ear Recognition Based on Deep Unsupervised Active Learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3100151
– ident: ref_3
  doi: 10.2514/6.2016-5478
– ident: ref_49
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_16
  doi: 10.1109/CVPR.2017.75
– ident: ref_21
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref_13
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_42
  doi: 10.1109/ICCV.2015.162
– ident: ref_53
  doi: 10.1109/ICCV.2019.00926
– ident: ref_4
– ident: ref_12
  doi: 10.1109/CVPR.2016.350
– volume: 13
  start-page: 111
  year: 1981
  ident: ref_34
  article-title: Generalizing the Hough transform to detect arbitrary shapes
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(81)90009-1
– ident: ref_48
– ident: ref_55
  doi: 10.1109/CVPR.2019.00584
– ident: ref_57
  doi: 10.1109/CVPR.2017.243
– ident: ref_10
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_56
  doi: 10.1109/CVPR.2018.00474
– volume: 28
  start-page: 1291
  year: 2001
  ident: ref_23
  article-title: The search for debris in GEO
  publication-title: Adv. Space Res.
  doi: 10.1016/S0273-1177(01)00399-4
– ident: ref_45
– ident: ref_36
  doi: 10.1109/AERO.2018.8396425
– volume: 8
  start-page: 679
  year: 1986
  ident: ref_33
  article-title: A Computational Approach to Edge Detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 93
  start-page: 53
  year: 2017
  ident: ref_8
  article-title: A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2017.07.001
– ident: ref_22
  doi: 10.3390/s19184026
– volume: 110
  start-page: 346
  year: 2008
  ident: ref_31
  article-title: Speeded-Up Robust Features (SURF)
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2007.09.014
– ident: ref_15
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_47
– ident: ref_50
  doi: 10.1007/978-3-030-01240-3_17
– ident: ref_28
  doi: 10.1109/CVPR.2019.00350
– ident: ref_40
– ident: ref_14
  doi: 10.1109/CVPR.2018.00388
– ident: ref_37
– ident: ref_18
– ident: ref_52
  doi: 10.1109/CVPR.2019.00060
– volume: 1
  start-page: 349
  year: 2013
  ident: ref_24
  article-title: PROBA-3 mission
  publication-title: Int. J. Space Sci. Eng.
  doi: 10.1504/IJSPACESE.2013.059268
– ident: ref_54
  doi: 10.1109/CVPR.2017.195
– volume: 39
  start-page: 640
  year: 2017
  ident: ref_38
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref_17
  doi: 10.1109/CVPR.2016.90
– volume: 496
  start-page: 540
  year: 2020
  ident: ref_2
  article-title: Machine learning classification of new asteroid families members
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/staa1463
– ident: ref_51
  doi: 10.1109/CVPR.2019.00326
– ident: ref_25
– ident: ref_29
  doi: 10.1109/ICCV.2011.6126544
– ident: ref_46
– ident: ref_27
  doi: 10.1007/978-1-4614-4541-8
– volume: 40
  start-page: 834
  year: 2018
  ident: ref_44
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref_43
  doi: 10.1109/CVPR.2017.660
– ident: ref_7
  doi: 10.1109/CVPRW53098.2021.00229
– volume: 6
  start-page: 121
  year: 2020
  ident: ref_1
  article-title: Spacecraft collision avoidance challenge: Design and results of a machine learning competition
  publication-title: Astrodynamics
  doi: 10.1007/s42064-021-0101-5
– volume: 127
  start-page: 448
  year: 2016
  ident: ref_6
  article-title: RemoveDEBRIS: An in-orbit active debris removal demonstration mission
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2016.06.018
– volume: 88
  start-page: 303
  year: 2010
  ident: ref_11
  article-title: The Pascal Visual Object Classes (VOC) Challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
SSID ssj0023338
Score 2.4860218
Snippet In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4222
SubjectTerms Algorithms
Annotations
Datasets
Deep learning
DeepLabv3
dilated convolution
Discovery and exploration
Image processing
Machine learning
Methods
multi-scale
Neural networks
Outer space
Remote sensing
Satellites
semantic segmentation
Semantics
Space exploration
Space ships
Space vehicles
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqgc4IMoztEUGIcElauN4_Tj2QQUSWiEtoJ6wHHsCK7XZqrvt7-_Y8UYbFYkLV9uJnHl4vok9nwHee6Wc4CqUvJVxm7GRZeMbLCvZBIoH2ui0o_vzq5pO9fm5-bZx1Vc8E9bTA_eCO6iwCsYRcKbYJibG05sUD0jAwgWC32n1PVRmnUzlVKumzKvnEaopqT9Ycp5qRvko-iSS_vtL8UYsGp-T3Ag8Z0_gcUaM7Kif6Q48wO4pPNrgEXwGv1IZbTkjeSM7RbxikXODHpr2h7zZMcWqwBYdO51fELgM7GTR3WajYwRb2YxSZwKQrl2xL5e0xLAZ_r7MZUndc_hx9un7yecyX5xQesJbq1JyESrRGkTdSvT8UKD0gjfBUXbAQxuE9LXgnkJ5awzyCWrSSqpBdbJqVP0CtrpFh6-ACUMZRYUU5LUSTjpHS4JX1EpIIZg2FPBxLVDrM6t4vNziwlJ2EWVvB9kX8G4YetVTafxt0HHUyjAgsl-nBrIJm23C_ssmCvgQdWqjj9JkvMulBvRJke3KHimuNUE9LQrYW6vdZuddWh4LM4yotS7g7dBNbhf3UlyHi5s0JiJPwlsFvOytZJhzPZFaaEHTUCP7GX3UuKeb_0nU3obgkzD16_8hhV14yGOtRvpltAdbq-sb3Idtf7uaL6_fJH-5A5PuGTk
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Scale Deep Neural Network Based on Dilated Convolution for Spacecraft Image Segmentation
URI https://www.ncbi.nlm.nih.gov/pubmed/35684842
https://www.proquest.com/docview/2674394388
https://www.proquest.com/docview/2675610750
https://pubmed.ncbi.nlm.nih.gov/PMC9185493
https://doaj.org/article/1e1d9a217075459cbcb72de650ad0962
Volume 22
WOSCitedRecordID wos000809488400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdg4wEe-IYFRmUQErxEWxzXH09o3ToxiVUVBVResBzbGZW2pGu7PfK3c3bcrBGIF1784DjJWXe--53tu0PoreFcU8JtSkrmjxkLlhamcGnGCgv2QEgRTnS_feKjkZhO5ThuuC3jtcq1TgyK2tbG75HvEX9bXtJciA_zy9RXjfKnq7GExm207ctmeznn0xuHKwf_q8kmlINrv7ckJESOko4NCqn6_1TIGxape1tyw_wcP_hfwh-i-xF44oNGUh6hW656jO5tpCN8gn6EaNx0Amxz-Mi5OfapO-ClUXNXHA_A5FlcV_hodg4Y1eLDurqOsosB_eIJeOCAQ3W5wicXoKnwxJ1dxOim6in6ejz8cvgxjfUXUgOwbZUyQm1GS-mcKJkzZJ86ZigprAYng9jSUmZySgwgglJKR_pOAHNDKKtmWcHzZ2irqiu3gzCV4JhkDrCC4FQzrUGzGA69ADisLG2C3q85okxMTu5rZJwrcFI881TLvAS9aYfOm4wcfxs08GxtB_gk2qGjXpypuCZV5uDfGnwygE20Lw0IKSfWAWbVFjw7-Mg7LxTKL3UgxugYsQBT8kmz1AEnQgBiFDRBu2veq6gDluqG8Ql63T6G1euPZHTl6qswxgNYgG0Jet6IWUtz3meCCgpk8I4AdibVfVLNfoYM4RJQGJX5i3-T9RLdJT6YI-wp7aKt1eLKvUJ3zPVqtlz0wlIKreih7cFwNP7cCzsW0J7-GkLf-OR0_P03MQouDA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwCwSVq43hj-4BQ26XqqssKaQvaE8GxnbJSmyy72yL-FL-RsfPoRiBuPXBNnGScfDPzTeyZAXipOVeMchPSPHHLjFkSZjqzYZRkBv2BkMKv6H4e8tFITCby4xr8anJh3LbKxiZ6Q21K7f6Rb1K3W16yWIh3s--h6xrlVlebFhoVLA7szx8Ysi3eDvr4fV9Ruvf-cHc_rLsKhBrJyDJMKDMRy6W1Ik-splvMJprRzCikztTkhiU6ZlSjn8ultLRnBYrsEzRVEmU8xvtegstox7kL9vjkPMCLMd6rqhfFsdzaXFDqM1Vpx-f51gB_OoAVD9jdnbni7vZu_m8v6hbcqIk12a404Tas2eIOXF8pt3gXvvhs43CMsLSkb-2MuNIkeNGo2gtPdtClG1IWpD89Rg5uyG5ZnNW6SZDdk_FMaeTZKl-SwQlaYjK2Ryd19lZxDz5dyATvw3pRFvYhECYx8IosciHBmUqUQsupOR5FQmVkbgJ40yAg1XXxddcD5DjFIMyBJW3BEsCLduisqjjyt0E7DkbtAFck3B8o50dpbXPSyOKzFcacSAtZT2pUQk6NRU6uDEaueJPXDoSpM2UojFZ1RgZOyRUFS7c5FQIZsWABbDRYS2sbt0jPgRbA8_Y0Wie35KQKW576MY6gIy0N4EEF61bmuJcIJhiKwTuA70yqe6aYfvMV0CWyTCbjR_8W6xlc3T_8MEyHg9HBY7hGXeKK_3-2AevL-al9Alf02XK6mD_1akzg60Wrw28TU4Nq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCE48C4sFDAIBJdVu15nbR8QahsiopYoUgCVC67X9pZI7W5I0iL-Gr-O8b5IBOLWA9ddZzNOvpn5Zj0PgOeGc80otyHNEn_MmCZhalIXRklq0R8IKcoT3U8HfDgUh4dytAY_m1oYn1bZ2MTSUNvC-HfkW9Rny0sWY8CW1WkRo17_zfRb6CdI-ZPWZpxGBZF99-M7hm_z14Me_tcvKO2__bD3LqwnDIQGickiTCizEcukcyJLnKHbzCWG0dRqpNHUZpYlJmbUoM_LpHS06wSKXxZr6iRKeYzPvQTrSMkZ7cD6aPB-9LkN92KM_qpeRnEst7fmlJZ1q3TFA5aDAv50B0v-cDVXc8n59W_8zz_bTbheU26yU-nILVhz-W24ttSI8Q58KeuQwzEC1pGec1Pim5bgh4ZVljzZRWdvSZGT3uQE2bkle0V-XmstQd5PxlNtkIHrbEEGp2ijydgdn9Z1Xfld-HghG9yATl7k7j4QJjEkixyyJMGZTrRGm2o4XkWqZWVmA3jVoEGZui27nw5yojA888BRLXACeNYunVa9SP62aNdDql3g24eXF4rZsaqtkYocfrfGaBQJI-tKg-rJqXXI1rXFmBYf8tIDUnkjh8IYXddq4JZ8uzC1w6kQyJUFC2CzwZ2qrd9c_QZdAE_b22i3_GGUzl1xVq7x1B0JawD3Koi3MsfdRDDBUAy-Av6VTa3eySdfy97oEvknk_GDf4v1BK6gFqiDwXD_IVylvqKlfLG2CZ3F7Mw9gsvmfDGZzx7XOk3g6KL14Rczlo25
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+Deep+Neural+Network+Based+on+Dilated+Convolution+for+Spacecraft+Image+Segmentation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Yuan&rft.au=Zhu%2C+Ming&rft.au=Wang%2C+Jing&rft.au=Guo%2C+Xiangji&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=11&rft.spage=4222&rft_id=info:doi/10.3390%2Fs22114222&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon