Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector
The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so...
Uložené v:
| Vydané v: | Physical review letters Ročník 125; číslo 13; s. 1 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
College Park
American Physical Society
25.09.2020
|
| Predmet: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise. |
|---|---|
| AbstractList | The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave
detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be
easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the
technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation
pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed
vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg
mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and
70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the
Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum
radiation pressure noise. The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise. The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise.The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise. |
| ArticleNumber | 131101 |
| Author | Caudill, S. Christensen, N. Bertolini, A. Arène, M. Cirone, A. Brighenti, F. Cavalieri, R. Barneo, P. Chiadini, F. Cagnoli, G. Bagnasco, S. Bozzi, A. Branchesi, M. Carbognani, F. Cipriano, F. Canepa, M. Acernese, F. Blanch, O. Bonnand, R. Briant, T. Ansoldi, S. Badaracco, F. Carpinelli, M. Ciecielag, P. Boldrini, M. Barsuglia, M. Bizouard, M.-A. Chaibi, W. Chassande-Mottin, E. Bogaert, G. Cerdá-Durán, P. Chierici, R. Corre, D. Cella, G. Bondu, F. Boschi, V. Boer, M. Basti, A. Bitossi, M. Bulik, T. Barone, F. Ain, A. Colpi, M. Cordero-Carrión, I. Casentini, C. Bradaschia, C. Aubin, F. Boom, B. A. Corezzi, S. Bulten, H. J. Bejger, M. Clesse, S. Brillet, A. Chua, S. Astone, P. Brooks, J. Ciolfi, R. Barbieri, C. Breschi, M. Cesarini, E. Coccia, E. Carapella, G. Bobba, F. Diaz, J. Casanueva Cavalier, F. Aiello, L. Barta, D. Bischi, M. Chanial, P. Ballardin, G. Baird, J. Cifaldi, M. Cohen, D. E. Bersanetti, D. Arnaud, N. Ciani, G. Cieślar, M. Allocca, A. Agathos, M. Cleva, F. Bruno, G. Bazzan, M. Ascenzi, S. Amato, A. Cohadon, P.-F. Calloni, E. Chiummo, A. Bader, M. K. M. Belah |
| Author_xml | – sequence: 1 givenname: F. surname: Acernese fullname: Acernese, F. – sequence: 2 givenname: M. surname: Agathos fullname: Agathos, M. – sequence: 3 givenname: L. surname: Aiello fullname: Aiello, L. – sequence: 4 givenname: A. surname: Ain fullname: Ain, A. – sequence: 5 givenname: A. surname: Allocca fullname: Allocca, A. – sequence: 6 givenname: A. surname: Amato fullname: Amato, A. – sequence: 7 givenname: S. surname: Ansoldi fullname: Ansoldi, S. – sequence: 8 givenname: S. surname: Antier fullname: Antier, S. – sequence: 9 givenname: M. surname: Arène fullname: Arène, M. – sequence: 10 givenname: N. surname: Arnaud fullname: Arnaud, N. – sequence: 11 givenname: S. surname: Ascenzi fullname: Ascenzi, S. – sequence: 12 givenname: P. surname: Astone fullname: Astone, P. – sequence: 13 givenname: F. surname: Aubin fullname: Aubin, F. – sequence: 14 givenname: S. surname: Babak fullname: Babak, S. – sequence: 15 givenname: F. surname: Badaracco fullname: Badaracco, F. – sequence: 16 givenname: M. K. M. surname: Bader fullname: Bader, M. K. M. – sequence: 17 givenname: S. surname: Bagnasco fullname: Bagnasco, S. – sequence: 18 givenname: J. surname: Baird fullname: Baird, J. – sequence: 19 givenname: G. surname: Ballardin fullname: Ballardin, G. – sequence: 20 givenname: G. surname: Baltus fullname: Baltus, G. – sequence: 21 givenname: C. surname: Barbieri fullname: Barbieri, C. – sequence: 22 givenname: P. surname: Barneo fullname: Barneo, P. – sequence: 23 givenname: F. surname: Barone fullname: Barone, F. – sequence: 24 givenname: M. surname: Barsuglia fullname: Barsuglia, M. – sequence: 25 givenname: D. surname: Barta fullname: Barta, D. – sequence: 26 givenname: A. surname: Basti fullname: Basti, A. – sequence: 27 givenname: M. surname: Bawaj fullname: Bawaj, M. – sequence: 28 givenname: M. surname: Bazzan fullname: Bazzan, M. – sequence: 29 givenname: M. surname: Bejger fullname: Bejger, M. – sequence: 30 givenname: I. surname: Belahcene fullname: Belahcene, I. – sequence: 31 givenname: S. surname: Bernuzzi fullname: Bernuzzi, S. – sequence: 32 givenname: D. surname: Bersanetti fullname: Bersanetti, D. – sequence: 33 givenname: A. surname: Bertolini fullname: Bertolini, A. – sequence: 34 givenname: M. surname: Bischi fullname: Bischi, M. – sequence: 35 givenname: M. surname: Bitossi fullname: Bitossi, M. – sequence: 36 givenname: M.-A. surname: Bizouard fullname: Bizouard, M.-A. – sequence: 37 givenname: O. surname: Blanch fullname: Blanch, O. – sequence: 38 givenname: F. surname: Bobba fullname: Bobba, F. – sequence: 39 givenname: M. surname: Boer fullname: Boer, M. – sequence: 40 givenname: G. surname: Bogaert fullname: Bogaert, G. – sequence: 41 givenname: M. surname: Boldrini fullname: Boldrini, M. – sequence: 42 givenname: F. surname: Bondu fullname: Bondu, F. – sequence: 43 givenname: R. surname: Bonnand fullname: Bonnand, R. – sequence: 44 givenname: B. A. surname: Boom fullname: Boom, B. A. – sequence: 45 givenname: V. surname: Boschi fullname: Boschi, V. – sequence: 46 givenname: V. surname: Boudart fullname: Boudart, V. – sequence: 47 givenname: Y. surname: Bouffanais fullname: Bouffanais, Y. – sequence: 48 givenname: A. surname: Bozzi fullname: Bozzi, A. – sequence: 49 givenname: C. surname: Bradaschia fullname: Bradaschia, C. – sequence: 50 givenname: M. surname: Branchesi fullname: Branchesi, M. – sequence: 51 givenname: M. surname: Breschi fullname: Breschi, M. – sequence: 52 givenname: T. surname: Briant fullname: Briant, T. – sequence: 53 givenname: F. surname: Brighenti fullname: Brighenti, F. – sequence: 54 givenname: A. surname: Brillet fullname: Brillet, A. – sequence: 55 givenname: J. surname: Brooks fullname: Brooks, J. – sequence: 56 givenname: G. surname: Bruno fullname: Bruno, G. – sequence: 57 givenname: T. surname: Bulik fullname: Bulik, T. – sequence: 58 givenname: H. J. surname: Bulten fullname: Bulten, H. J. – sequence: 59 givenname: D. surname: Buskulic fullname: Buskulic, D. – sequence: 60 givenname: G. surname: Cagnoli fullname: Cagnoli, G. – sequence: 61 givenname: E. surname: Calloni fullname: Calloni, E. – sequence: 62 givenname: M. surname: Canepa fullname: Canepa, M. – sequence: 63 givenname: G. surname: Carapella fullname: Carapella, G. – sequence: 64 givenname: F. surname: Carbognani fullname: Carbognani, F. – sequence: 65 givenname: M. surname: Carpinelli fullname: Carpinelli, M. – sequence: 66 givenname: G. surname: Carullo fullname: Carullo, G. – sequence: 67 givenname: J. Casanueva surname: Diaz fullname: Diaz, J. Casanueva – sequence: 68 givenname: C. surname: Casentini fullname: Casentini, C. – sequence: 69 givenname: S. surname: Caudill fullname: Caudill, S. – sequence: 70 givenname: F. surname: Cavalier fullname: Cavalier, F. – sequence: 71 givenname: R. surname: Cavalieri fullname: Cavalieri, R. – sequence: 72 givenname: G. surname: Cella fullname: Cella, G. – sequence: 73 givenname: P. surname: Cerdá-Durán fullname: Cerdá-Durán, P. – sequence: 74 givenname: E. surname: Cesarini fullname: Cesarini, E. – sequence: 75 givenname: W. surname: Chaibi fullname: Chaibi, W. – sequence: 76 givenname: P. surname: Chanial fullname: Chanial, P. – sequence: 77 givenname: E. surname: Chassande-Mottin fullname: Chassande-Mottin, E. – sequence: 78 givenname: F. surname: Chiadini fullname: Chiadini, F. – sequence: 79 givenname: R. surname: Chierici fullname: Chierici, R. – sequence: 80 givenname: A. surname: Chincarini fullname: Chincarini, A. – sequence: 81 givenname: A. surname: Chiummo fullname: Chiummo, A. – sequence: 82 givenname: N. surname: Christensen fullname: Christensen, N. – sequence: 83 givenname: S. surname: Chua fullname: Chua, S. – sequence: 84 givenname: G. surname: Ciani fullname: Ciani, G. – sequence: 85 givenname: P. surname: Ciecielag fullname: Ciecielag, P. – sequence: 86 givenname: M. surname: Cieślar fullname: Cieślar, M. – sequence: 87 givenname: M. surname: Cifaldi fullname: Cifaldi, M. – sequence: 88 givenname: R. surname: Ciolfi fullname: Ciolfi, R. – sequence: 89 givenname: F. surname: Cipriano fullname: Cipriano, F. – sequence: 90 givenname: A. surname: Cirone fullname: Cirone, A. – sequence: 91 givenname: S. surname: Clesse fullname: Clesse, S. – sequence: 92 givenname: F. surname: Cleva fullname: Cleva, F. – sequence: 93 givenname: E. surname: Coccia fullname: Coccia, E. – sequence: 94 givenname: P.-F. surname: Cohadon fullname: Cohadon, P.-F. – sequence: 95 givenname: D. E. surname: Cohen fullname: Cohen, D. E. – sequence: 96 givenname: M. surname: Colpi fullname: Colpi, M. – sequence: 97 givenname: L. surname: Conti fullname: Conti, L. – sequence: 98 givenname: I. surname: Cordero-Carrión fullname: Cordero-Carrión, I. – sequence: 99 givenname: S. surname: Corezzi fullname: Corezzi, S. – sequence: 100 givenname: D. surname: Corre fullname: Corre, D. |
| BackLink | https://hal.science/hal-02959692$$DView record in HAL |
| BookMark | eNqFkVtv1DAQRi1URLeFv4As8QIPWWbsXBEvS7kUsdBSLq-W40x23WbjYjsr9d_jNgihviBZsmd0juXxd8QORjcSY08RloggX55vb8IF7dcU4xJFsUSZ2viALRCqJqsQ8wO2AJCYNQDVITsK4RIAUJT1I3YoJci8gHLBxq-THuO042-0udImWjfytD5tsm9GD8Q_W--dD6_4WRvI7_UM9PxCd3Yuzj2FMHniX5wNxO3I45b4qtvr0VDHf1q_cfwtRTLR-cfsYa-HQE_-7Mfsx_t3309Os_XZh48nq3VmCqhjlhtRVKhNm1Obm14IWbcFVEXV9QKhlSWVHeSAPeZ9oXvZVXVpoEXoRGNM1cpjJud7B0sbUs63Vu2FctrO52nYKG1US0qkH1GikFjLZL2Yra0e1LW3O-1v7pzT1Vrd9kA0RVM2Yo-JfT6z1979mihEtbPB0DDokdwUlMjzpilR1mVCn91DL93kxzR_ogrMsQJZJaqcKeNdCJ76vy9AULeZq38yVylzNWeexNf3RGPjXTbRazv8T_8NHSm1WQ |
| CitedBy_id | crossref_primary_10_3390_galaxies13010011 crossref_primary_10_1140_epjd_e2020_10183_7 crossref_primary_10_1088_1361_6382_adb82b crossref_primary_10_1109_TQE_2022_3224686 crossref_primary_10_3390_app151810179 crossref_primary_10_1038_s41467_023_42059_y crossref_primary_10_1103_PhysRevX_13_041039 crossref_primary_10_1038_s41586_025_09224_3 crossref_primary_10_1088_1402_4896_ac2efc crossref_primary_10_1103_PhysRevD_104_062006 crossref_primary_10_1103_PhysRevLett_130_241401 crossref_primary_10_1088_1361_6382_aceb4e crossref_primary_10_1103_PhysRevApplied_21_034054 crossref_primary_10_3390_galaxies8040079 crossref_primary_10_1007_s11467_024_1400_0 crossref_primary_10_1103_PhysRevD_106_102003 crossref_primary_10_1088_1402_4896_abfef0 crossref_primary_10_3788_LOP250795 crossref_primary_10_1103_PhysRevApplied_15_044006 crossref_primary_10_1103_PhysRevResearch_3_043079 crossref_primary_10_1103_PhysRevX_13_041021 crossref_primary_10_1016_j_physleta_2024_130171 crossref_primary_10_1002_andp_202500030 crossref_primary_10_1088_1402_4896_ac1637 crossref_primary_10_1515_nanoph_2023_0032 |
| Cites_doi | 10.1038/s41566-019-0527-y 10.1103/PhysRevLett.124.171102 10.1103/PhysRevLett.116.013602 10.1088/0953-4075/46/10/104001 10.1103/PhysRevLett.97.011101 10.1103/PhysRevD.23.1693 10.1103/PhysRevD.65.022002 10.1103/PhysRevLett.123.231108 10.1038/s41586-019-1051-4 10.1038/nphys3701 10.1103/PhysRevLett.124.171101 10.1364/AO.57.009705 10.1038/s41586-018-0643-8 10.1088/0264-9381/33/7/075009 10.1088/0264-9381/32/11/115012 10.1103/PhysRevD.88.043007 10.1088/1361-6382/aaf448 10.1103/RevModPhys.85.471 10.1103/PhysRevLett.110.181101 10.1103/PhysRevLett.123.231107 10.1088/0264-9381/26/5/055012 10.1088/0264-9381/32/2/024001 10.1038/s41586-020-2420-8 10.1088/0264-9381/29/6/065005 10.1126/science.1231282 |
| ContentType | Journal Article |
| Contributor | STAR Institute |
| Contributor_xml | – sequence: 1 fullname: STAR Institute |
| Copyright | Copyright American Physical Society Sep 25, 2020 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright American Physical Society Sep 25, 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| CorporateAuthor | The Virgo Collaboration |
| CorporateAuthor_xml | – name: The Virgo Collaboration |
| DBID | AAYXX CITATION 7U5 8FD H8D L7M 7X8 1XC VOOES JLOSS Q33 |
| DOI | 10.1103/PhysRevLett.125.131101 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | oai_orbi_ulg_ac_be_2268_253183 oai:HAL:hal-02959692v1 10_1103_PhysRevLett_125_131101 |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 7U5 8FD H8D L7M 7X8 1XC VOOES JLOSS Q33 |
| ID | FETCH-LOGICAL-c508t-4c2571acb4eb4cf2238b50757df210b36e6d0401f14f5af3d786c0b10d29cc7b3 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571655800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Sat Nov 29 01:28:24 EST 2025 Wed Oct 29 08:35:17 EDT 2025 Sun Nov 09 13:16:35 EST 2025 Sun Jun 29 16:51:07 EDT 2025 Sat Nov 29 05:55:49 EST 2025 Tue Nov 18 22:16:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | noise Gravitational wave detectors Quantum fluctuations Gravitational waves |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-4c2571acb4eb4cf2238b50757df210b36e6d0401f14f5af3d786c0b10d29cc7b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-85092802918 |
| ORCID | 0000-0002-4341-2860 0000-0002-1890-1128 0000-0003-2572-3101 0000-0001-6487-5197 0000-0002-8380-1633 0000-0003-4344-7227 0000-0001-7469-4250 0000-0003-0589-9687 0000-0001-6589-8673 0000-0002-0693-4838 0000-0003-1714-365X 0000-0002-1421-4996 0000-0002-0631-1198 0000-0002-5613-7693 0000-0001-9870-6850 0000-0001-5078-9044 0000-0002-1019-6911 0000-0001-5852-2301 0000-0002-4551-2902 0000-0003-3768-9908 0000-0002-8680-5170 0000-0002-1180-4050 0000-0002-3658-7240 0000-0001-8654-409X 0000-0001-6354-8514 0000-0002-9293-8439 0000-0002-2321-1017 0000-0002-7686-3334 0000-0003-0885-824X 0000-0003-2180-1598 0000-0001-8740-0127 0000-0002-4991-8213 0000-0003-2507-3866 0000-0002-4618-1674 0000-0001-9157-4349 0000-0002-4918-0247 0000-0003-2112-0653 0000-0002-4390-9746 0000-0002-2003-4238 |
| OpenAccessLink | https://orbi.uliege.be/handle/2268/253183 |
| PMID | 33034506 |
| PQID | 2451417037 |
| PQPubID | 2048222 |
| ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_253183 hal_primary_oai_HAL_hal_02959692v1 proquest_miscellaneous_2449961386 proquest_journals_2451417037 crossref_primary_10_1103_PhysRevLett_125_131101 crossref_citationtrail_10_1103_PhysRevLett_125_131101 |
| PublicationCentury | 2000 |
| PublicationDate | 20200925 |
| PublicationDateYYYYMMDD | 2020-09-25 |
| PublicationDate_xml | – month: 09 year: 2020 text: 20200925 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | College Park |
| PublicationPlace_xml | – name: College Park |
| PublicationTitle | Physical review letters |
| PublicationYear | 2020 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevLett.125.131101Cc2R1 PhysRevLett.125.131101Cc3R1 PhysRevLett.125.131101Cc4R1 PhysRevLett.125.131101Cc21R1 PhysRevLett.125.131101Cc20R1 PhysRevLett.125.131101Cc6R1 PhysRevLett.125.131101Cc7R1 PhysRevLett.125.131101Cc8R1 PhysRevLett.125.131101Cc9R1 PhysRevLett.125.131101Cc16R1 PhysRevLett.125.131101Cc15R1 V. B. Braginsky (PhysRevLett.125.131101Cc5R1) 1967; 53 PhysRevLett.125.131101Cc18R1 PhysRevLett.125.131101Cc12R1 PhysRevLett.125.131101Cc11R1 PhysRevLett.125.131101Cc14R1 PhysRevLett.125.131101Cc1R1 PhysRevLett.125.131101Cc13R1 PhysRevLett.125.131101Cc19R1 PhysRevLett.125.131101Cc31R1 PhysRevLett.125.131101Cc10R1 PhysRevLett.125.131101Cc30R1 PhysRevLett.125.131101Cc27R1 R. W. P. Drever (PhysRevLett.125.131101Cc17R1) 1983 PhysRevLett.125.131101Cc28R1 PhysRevLett.125.131101Cc23R1 PhysRevLett.125.131101Cc25R1 |
| References_xml | – ident: PhysRevLett.125.131101Cc15R1 doi: 10.1038/s41566-019-0527-y – volume-title: Gravitational Radiation year: 1983 ident: PhysRevLett.125.131101Cc17R1 – ident: PhysRevLett.125.131101Cc28R1 doi: 10.1103/PhysRevLett.124.171102 – volume: 53 start-page: 1434 issn: 0044-4510 year: 1967 ident: PhysRevLett.125.131101Cc5R1 publication-title: Zh. Eksp. Teor. Fiz. – ident: PhysRevLett.125.131101Cc11R1 doi: 10.1103/PhysRevLett.116.013602 – ident: PhysRevLett.125.131101Cc31R1 doi: 10.1088/0953-4075/46/10/104001 – ident: PhysRevLett.125.131101Cc23R1 doi: 10.1103/PhysRevLett.97.011101 – ident: PhysRevLett.125.131101Cc6R1 doi: 10.1103/PhysRevD.23.1693 – ident: PhysRevLett.125.131101Cc25R1 doi: 10.1103/PhysRevD.65.022002 – ident: PhysRevLett.125.131101Cc8R1 doi: 10.1103/PhysRevLett.123.231108 – ident: PhysRevLett.125.131101Cc13R1 doi: 10.1038/s41586-019-1051-4 – ident: PhysRevLett.125.131101Cc14R1 doi: 10.1038/nphys3701 – ident: PhysRevLett.125.131101Cc27R1 doi: 10.1103/PhysRevLett.124.171101 – ident: PhysRevLett.125.131101Cc21R1 doi: 10.1364/AO.57.009705 – ident: PhysRevLett.125.131101Cc12R1 doi: 10.1038/s41586-018-0643-8 – ident: PhysRevLett.125.131101Cc3R1 doi: 10.1088/0264-9381/33/7/075009 – ident: PhysRevLett.125.131101Cc2R1 doi: 10.1088/0264-9381/32/11/115012 – ident: PhysRevLett.125.131101Cc4R1 doi: 10.1103/PhysRevD.88.043007 – ident: PhysRevLett.125.131101Cc20R1 doi: 10.1088/1361-6382/aaf448 – ident: PhysRevLett.125.131101Cc30R1 doi: 10.1103/RevModPhys.85.471 – ident: PhysRevLett.125.131101Cc7R1 doi: 10.1103/PhysRevLett.110.181101 – ident: PhysRevLett.125.131101Cc9R1 doi: 10.1103/PhysRevLett.123.231107 – ident: PhysRevLett.125.131101Cc18R1 doi: 10.1088/0264-9381/26/5/055012 – ident: PhysRevLett.125.131101Cc1R1 doi: 10.1088/0264-9381/32/2/024001 – ident: PhysRevLett.125.131101Cc16R1 doi: 10.1038/s41586-020-2420-8 – ident: PhysRevLett.125.131101Cc19R1 doi: 10.1088/0264-9381/29/6/065005 – ident: PhysRevLett.125.131101Cc10R1 doi: 10.1126/science.1231282 |
| SSID | ssj0001268 |
| Score | 2.5634425 |
| Snippet | The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the... The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the... |
| SourceID | liege hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | Chemical Sciences Engineering Sciences Gravitation Gravitational waves interferometers Noise Physical, chemical, mathematical & earth Sciences Physics Physique Physique, chimie, mathématiques & sciences de la terre quantum optics Radiation pressure Sensors Shot noise |
| Title | Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector |
| URI | https://www.proquest.com/docview/2451417037 https://www.proquest.com/docview/2449961386 https://hal.science/hal-02959692 https://orbi.uliege.be/handle/2268/253183 |
| Volume | 125 |
| WOSCitedRecordID | wos000571655800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 1079-7114 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 1079-7114 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1bb5UwuJlTE1-8Lx6dphofZWtLS8G342VZojvqvOS8NW1pj8QzWOBwfr9fCyMaNWYJIVDaBr72u_HdEHounBCa0zKROtUJcCiSaOZp4jLDjdHcOmljsQm5WOTLZfFxB5G_W_ApSQ-DJ-Sp24bolgPgxgchP8wQsJXzsLHTk-VEeinLBtKbBr8DIseQ4H9P8xs3uvI9-EJeXQdr9R-kOfKbo1uXf9Pb6OYoW-L5sBnuoB1X30XXo4-n7e6h-lMPYOzP8CttfwzxDBiOd6vkMyyUwydV2zZt9xJ_MNOvWtx4fBrSF8SbIZawdXjRVJ3DVY1BfMTz0Y0Af6vaVYPfuE20BNxHX4_efnl9nIzlFhILUtom4RbQl2pruDPcepAbcgPSopClB73QpJnLSkB56in3Qvu0lHlmiaGkZIW10qR7aLduavcAYZL6zJQ0t6BPhRJ2msNswCqhxRnP_AyJC7ArO-YiDyUx1irqJCRVv8BSASzVAMsZOpzGnQ_ZOP474hms6tQ5JNM-nr9XoY2wQhRZwbbQ6UVcdNW0plJbFrvF6369Utoq4xSIqbliIpDAGdq_2BtqxPhOMQ6iJwX6KWfo6fQYcDUYYHTtmj70AXiA_JRnDy_9IY_QDRZU_WAQE_tod9P27jG6ZrebqmufRDSAs1zmPwH6HwV5 |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Backaction+on+Kg-Scale+Mirrors%3A+Observation+of+Radiation+Pressure+Noise+in+the+Advanced+Virgo+Detector&rft.jtitle=Physical+review+letters&rft.au=Acernese%2C+F.&rft.au=Agathos%2C+M.&rft.au=Aiello%2C+L.&rft.au=Ain%2C+A.&rft.date=2020-09-25&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=125&rft.issue=13&rft_id=info:doi/10.1103%2FPhysRevLett.125.131101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_125_131101 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |