An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition
The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside huma...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 22; číslo 3; s. 941 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
26.01.2022
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth production run in such environments. The loss of operating moving robots in plant evacuation can be avoided with the adequate safety induction for them. Operators are subject to frequent safety inductions to react in emergencies, but very little is done for robots. Our research proposes an experimental safety response mechanism for a small manufacturing plant, through which an autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the outcome as a rule-based system for the safety response. We also program a speech recognition system for operators to react timeously, with a voice command, to an emergency that requires stopping all plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP or a voice command sent directly to the factory central controller can give the factory an emergency signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic controller (PLC). We simulate a simple and small manufacturing environment overview to test our safety procedure. Our results show that the safety response mechanism successfully generates paths without obstacles to the closest safety exits from all the factory locations. Our research benefits any manufacturing SME intending to implement the initial and primary use of autonomous moving robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art technologies such as speech recognition to improve their performances. Our research empowers SMEs to adopt advanced and innovative technological concepts within their operations. |
|---|---|
| AbstractList | The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth production run in such environments. The loss of operating moving robots in plant evacuation can be avoided with the adequate safety induction for them. Operators are subject to frequent safety inductions to react in emergencies, but very little is done for robots. Our research proposes an experimental safety response mechanism for a small manufacturing plant, through which an autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the outcome as a rule-based system for the safety response. We also program a speech recognition system for operators to react timeously, with a voice command, to an emergency that requires stopping all plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP or a voice command sent directly to the factory central controller can give the factory an emergency signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic controller (PLC). We simulate a simple and small manufacturing environment overview to test our safety procedure. Our results show that the safety response mechanism successfully generates paths without obstacles to the closest safety exits from all the factory locations. Our research benefits any manufacturing SME intending to implement the initial and primary use of autonomous moving robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art technologies such as speech recognition to improve their performances. Our research empowers SMEs to adopt advanced and innovative technological concepts within their operations. The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth production run in such environments. The loss of operating moving robots in plant evacuation can be avoided with the adequate safety induction for them. Operators are subject to frequent safety inductions to react in emergencies, but very little is done for robots. Our research proposes an experimental safety response mechanism for a small manufacturing plant, through which an autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the outcome as a rule-based system for the safety response. We also program a speech recognition system for operators to react timeously, with a voice command, to an emergency that requires stopping all plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP or a voice command sent directly to the factory central controller can give the factory an emergency signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic controller (PLC). We simulate a simple and small manufacturing environment overview to test our safety procedure. Our results show that the safety response mechanism successfully generates paths without obstacles to the closest safety exits from all the factory locations. Our research benefits any manufacturing SME intending to implement the initial and primary use of autonomous moving robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art technologies such as speech recognition to improve their performances. Our research empowers SMEs to adopt advanced and innovative technological concepts within their operations.The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth production run in such environments. The loss of operating moving robots in plant evacuation can be avoided with the adequate safety induction for them. Operators are subject to frequent safety inductions to react in emergencies, but very little is done for robots. Our research proposes an experimental safety response mechanism for a small manufacturing plant, through which an autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the outcome as a rule-based system for the safety response. We also program a speech recognition system for operators to react timeously, with a voice command, to an emergency that requires stopping all plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP or a voice command sent directly to the factory central controller can give the factory an emergency signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic controller (PLC). We simulate a simple and small manufacturing environment overview to test our safety procedure. Our results show that the safety response mechanism successfully generates paths without obstacles to the closest safety exits from all the factory locations. Our research benefits any manufacturing SME intending to implement the initial and primary use of autonomous moving robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art technologies such as speech recognition to improve their performances. Our research empowers SMEs to adopt advanced and innovative technological concepts within their operations. |
| Audience | Academic |
| Author | Wang, Zenghui Kiangala, Kahiomba Sonia |
| AuthorAffiliation | 2 Department of Electrical and Mining Engineering, University of South Africa, Johannesburg 1710, South Africa 1 College of Science, Engineering and Technology (CSET), University of South Africa, Johannesburg 1710, South Africa; sokiangala@gmail.com |
| AuthorAffiliation_xml | – name: 2 Department of Electrical and Mining Engineering, University of South Africa, Johannesburg 1710, South Africa – name: 1 College of Science, Engineering and Technology (CSET), University of South Africa, Johannesburg 1710, South Africa; sokiangala@gmail.com |
| Author_xml | – sequence: 1 givenname: Kahiomba Sonia orcidid: 0000-0003-2994-0699 surname: Kiangala fullname: Kiangala, Kahiomba Sonia – sequence: 2 givenname: Zenghui orcidid: 0000-0003-3025-336X surname: Wang fullname: Wang, Zenghui |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35161688$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkk1v1DAQhiNURD_gwB9AlriUw7b-SuJckFbVApV2hejSs-U4dtarxF7sZEV_DX-VCdtWbZEPtsbvPON3PKfZkQ_eZNl7gi8Yq_BlohQzXHHyKjshnPKZgMDRk_NxdprSFmPKGBNvsmOWk4IUQpxkf-YeLX7vTHS98YPq0FpZM9yhG5N2wSeDVkZvlHepRzZEpDyaj0PwoQ9jQquwd75FN6EOA3IeKbTuVRzQSvnRKj2Mcbpe-L2LwU98dJumyI_Z0qjop-O8a0N0w6YHdIPWOwPloLgOrXeDC_5t9tqqLpl39_tZdvtl8fPq22z5_ev11Xw50zkWw4zVwhKiKguWG1s2mtii4rnVhAlOqWh4UytTgmVViELj2giak0owqqhQLGdn2fWB2wS1lTtoh4p3Mign_wVCbCU4c7ozsm5MXjcca0EM50pXvCYC68oUtWBlroH1-cDajXVvGg3Go-qeQZ_feLeRbdhLIZggjAPg_B4Qw6_RpEH2LmnTdcob6LukBa1wnhNcgvTjC-k2jNFDqyZVKYqypJO7i4OqVWDAeRugrobVmN5pGCbrID4vBaEVpTmGhA9PLTy-_WFwQHB5EOgYUorGSu0GNf0YkF0nCZbTaMrH0YSMTy8yHqD_a_8CJVPkhQ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128315 crossref_primary_10_3390_electronics12163380 crossref_primary_10_3390_logistics7040080 crossref_primary_10_3390_en15228595 crossref_primary_10_3390_electronics13040782 crossref_primary_10_1109_TCDS_2022_3168807 crossref_primary_10_3390_iot4030017 crossref_primary_10_1007_s11301_024_00405_4 crossref_primary_10_3389_frobt_2024_1342130 |
| Cites_doi | 10.1097/SLA.0000000000002693 10.1109/TCDS.2018.2817283 10.1016/j.procir.2019.03.162 10.1115/IMECE1996-0367 10.1109/ICMLA.2018.00100 10.1109/TII.2014.2300753 10.1007/BF00992698 10.3390/robotics8040100 10.1145/3005745.3005750 10.1109/ICASSP.2013.6638947 10.1109/TAEECE.2013.6557278 10.1109/ACCESS.2020.2987861 10.1016/j.ssci.2018.05.008 10.1109/TITS.2013.2255286 10.1613/jair.301 10.1109/ACCESS.2018.2852809 10.1007/s11740-012-0418-2 10.1021/acscentsci.7b00492 10.1109/INDIN.2014.6945523 10.1109/ACCESS.2020.3042874 10.1109/TCSS.2019.2922593 10.1109/TII.2014.2306782 10.1109/ACCESS.2020.2978077 10.1109/TII.2020.3007764 10.1109/ACCESS.2018.2800641 10.1109/URAI.2011.6145931 10.1109/TII.2012.2187910 10.1109/ACCESS.2017.2773127 10.1109/TNNLS.2017.2654539 10.21236/ADA457057 10.4028/www.scientific.net/AMM.198-199.922 10.1109/ACCESS.2020.2964042 10.1109/ICARSC.2019.8733621 10.1109/ACCESS.2020.2974101 10.1109/MSP.2010.939038 10.1109/ACCESS.2021.3052024 10.1109/ACCESS.2019.2937219 10.1109/ACCESS.2020.2970433 10.1109/ICSGRC.2018.8657642 10.1016/j.engfailanal.2021.105264 10.1109/TNN.1998.712192 10.1109/JSYST.2020.3023041 10.1109/ACCESS.2019.2896880 10.1016/j.matpr.2021.02.326 10.1016/j.engappai.2004.08.018 10.1016/j.proeng.2014.03.054 10.3390/s20205911 10.1109/ICISET.2018.8745656 10.1016/B978-0-12-802398-3.00002-7 10.1109/IRC.2019.00120 10.1109/ISCO.2016.7727034 10.3390/app9153057 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22030941 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_bde5bd40c81e44ac94b180c9e6b8375c PMC8838134 A781292250 35161688 10_3390_s22030941 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c508t-3b8f11a9f142df7dc1f6945fc1384228d4dbae7688a686c0be82519832a28a353 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755580300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:45:20 EDT 2025 Tue Nov 04 01:58:39 EST 2025 Wed Oct 01 14:32:56 EDT 2025 Tue Oct 07 07:22:04 EDT 2025 Tue Nov 04 18:30:35 EST 2025 Thu Apr 03 06:56:52 EDT 2025 Sat Nov 29 07:13:08 EST 2025 Tue Nov 18 20:58:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | autonomous moving robot smart manufacturing speech recognition obstacle-free path planning Q-learning algorithm reinforcement learning (RL) safety response |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-3b8f11a9f142df7dc1f6945fc1384228d4dbae7688a686c0be82519832a28a353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2994-0699 0000-0003-3025-336X |
| OpenAccessLink | https://doaj.org/article/bde5bd40c81e44ac94b180c9e6b8375c |
| PMID | 35161688 |
| PQID | 2627867725 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bde5bd40c81e44ac94b180c9e6b8375c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8838134 proquest_miscellaneous_2629055107 proquest_journals_2627867725 gale_infotracacademiconefile_A781292250 pubmed_primary_35161688 crossref_citationtrail_10_3390_s22030941 crossref_primary_10_3390_s22030941 |
| PublicationCentury | 2000 |
| PublicationDate | 20220126 |
| PublicationDateYYYYMMDD | 2022-01-26 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220126 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sehr (ref_49) 2021; 17 Rajkumar (ref_59) 2021; 46 ref_57 ref_12 ref_11 ref_55 Zhou (ref_36) 2017; 3 He (ref_52) 2014; 10 Peres (ref_10) 2020; 8 ref_18 Zhao (ref_8) 2020; 8 ref_16 Husnjak (ref_48) 2014; 69 Mannucci (ref_25) 2018; 29 Li (ref_51) 2014; 10 Dhounchak (ref_19) 2017; 3 Oviatt (ref_54) 2000; 43 Wang (ref_31) 2005; 18 ref_24 ref_22 Garcia (ref_56) 2019; 81 Bajic (ref_1) 2021; 15 Wang (ref_35) 2020; 8 ref_29 ref_27 Becerra (ref_21) 2017; 5 Ou (ref_2) 2018; 6 Verl (ref_20) 2012; 6 Hashimoto (ref_41) 2018; 268 Chan (ref_30) 2012; 8 Abdulhai (ref_38) 2013; 14 ref_34 Zhang (ref_50) 2020; 8 ref_32 ref_39 ref_37 Watkins (ref_44) 1992; 8 Wiedemann (ref_23) 2021; 9 Tang (ref_53) 2020; 8 Hald (ref_60) 2018; 109 Guo (ref_47) 2018; 6 Wang (ref_40) 2012; 198–199 Valle (ref_28) 2019; 11 Kaelbling (ref_33) 1996; 4 ref_46 ref_45 Nassif (ref_17) 2019; 7 ref_43 Erol (ref_26) 2020; 7 ref_42 Wang (ref_14) 2020; 8 ref_3 Xie (ref_13) 2019; 7 ref_9 ref_5 Yu (ref_15) 2011; 28 ref_4 ref_7 Dabous (ref_58) 2021; 122 ref_6 |
| References_xml | – volume: 268 start-page: 70 year: 2018 ident: ref_41 article-title: Artificial intelligence in surgery: Promises and perils publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000002693 – volume: 11 start-page: 363 year: 2019 ident: ref_28 article-title: Personalized Robot Assistant for Support in Dressing publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2817283 – volume: 81 start-page: 600 year: 2019 ident: ref_56 article-title: A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.162 – ident: ref_6 doi: 10.1115/IMECE1996-0367 – ident: ref_11 doi: 10.1109/ICMLA.2018.00100 – ident: ref_39 – volume: 10 start-page: 2233 year: 2014 ident: ref_52 article-title: Internet of Things in industries: A survey publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2014.2300753 – volume: 8 start-page: 279 year: 1992 ident: ref_44 article-title: Technical note: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 – ident: ref_3 doi: 10.3390/robotics8040100 – ident: ref_37 doi: 10.1145/3005745.3005750 – ident: ref_42 – ident: ref_12 doi: 10.1109/ICASSP.2013.6638947 – ident: ref_7 doi: 10.1109/TAEECE.2013.6557278 – volume: 8 start-page: 74129 year: 2020 ident: ref_35 article-title: Energy Efficient Two-Tier Data Dissemination Based on Q-Learning for Wireless Sensor Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2987861 – volume: 109 start-page: 1 year: 2018 ident: ref_60 article-title: Social influence and safe behavior in manufacturing publication-title: Saf. Sci. doi: 10.1016/j.ssci.2018.05.008 – volume: 14 start-page: 1140 year: 2013 ident: ref_38 article-title: Multiagent Reinforcement Learning for Integrated Network of Adaptive Traffic Signal Controllers (MARLIN-ATSC): Methodology and Large-Scale Application on Downtown Toronto publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2255286 – volume: 4 start-page: 237 year: 1996 ident: ref_33 article-title: Reinforcement learning: A survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.301 – volume: 6 start-page: 39385 year: 2018 ident: ref_47 article-title: Lossy Compression for Embedded Computer Vision Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2852809 – volume: 6 start-page: 643 year: 2012 ident: ref_20 article-title: Globalized cyber physical production systems publication-title: Prod. Eng. doi: 10.1007/s11740-012-0418-2 – volume: 3 start-page: 337 year: 2017 ident: ref_36 article-title: Optimizing chemical reactions with deep reinforcement learning publication-title: ACS Central Sci. doi: 10.1021/acscentsci.7b00492 – ident: ref_55 doi: 10.1109/INDIN.2014.6945523 – volume: 8 start-page: 220121 year: 2020 ident: ref_10 article-title: Industrial Artificial Intelligence in Industry 4.0—Systematic Review, Challenges and Outlook publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3042874 – volume: 7 start-page: 234 year: 2020 ident: ref_26 article-title: Toward Artificial Emotional Intelligence for Cooperative Social Human–Machine Interaction publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2019.2922593 – volume: 10 start-page: 1497 year: 2014 ident: ref_51 article-title: QoS-aware scheduling of services-oriented Internet of Things publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2014.2306782 – volume: 8 start-page: 47824 year: 2020 ident: ref_8 article-title: The Experience-Memory Q-Learning Algorithm for Robot Path Planning in Unknown Environment publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978077 – volume: 17 start-page: 3523 year: 2021 ident: ref_49 article-title: Programmable Logic Controllers in the Context of Industry 4.0 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3007764 – volume: 6 start-page: 14699 year: 2018 ident: ref_2 article-title: Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2800641 – ident: ref_45 doi: 10.1109/URAI.2011.6145931 – volume: 8 start-page: 869 year: 2012 ident: ref_30 article-title: Enhancement of Speech Recognitions for Control Automation Using an Intelligent Particle Swarm Optimization publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2012.2187910 – volume: 5 start-page: 26754 year: 2017 ident: ref_21 article-title: Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2773127 – volume: 29 start-page: 1069 year: 2018 ident: ref_25 article-title: Safe Exploration Algorithms for Reinforcement Learning Controllers publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2654539 – ident: ref_34 – ident: ref_16 doi: 10.21236/ADA457057 – volume: 198–199 start-page: 922 year: 2012 ident: ref_40 article-title: Multi-Agent Dam Management Model Based on Improved Reinforcement Learning Technology publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.198-199.922 – volume: 8 start-page: 9124 year: 2020 ident: ref_53 article-title: Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964042 – ident: ref_9 doi: 10.1109/ICARSC.2019.8733621 – volume: 8 start-page: 46335 year: 2020 ident: ref_14 article-title: Feature Extraction and Analysis of Natural Language Processing for Deep Learning English Language publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974101 – volume: 28 start-page: 145 year: 2011 ident: ref_15 article-title: Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939038 – ident: ref_18 – volume: 9 start-page: 13159 year: 2021 ident: ref_23 article-title: Robotic Information Gathering with Reinforcement Learning Assisted by Domain Knowledge: An Application to Gas Source Localization publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052024 – volume: 7 start-page: 119465 year: 2019 ident: ref_13 article-title: Matching Real-World Facilities to Building Information Modeling Data Using Natural Language Processing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937219 – volume: 8 start-page: 24258 year: 2020 ident: ref_50 article-title: Deep Interactive Reinforcement Learning for Path Following of Autonomous Underwater Vehicle publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970433 – ident: ref_4 doi: 10.1109/ICSGRC.2018.8657642 – volume: 122 start-page: 105264 year: 2021 ident: ref_58 article-title: Integration of failure mode, effects, and criticality analysis with multi-criteria decision-making in engineering applications: Part I—Manufacturing industry publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105264 – volume: 3 start-page: 498 year: 2017 ident: ref_19 article-title: Applications of Safety in Manufacturing Industry publication-title: Int. J. Sci. Res. Sci. Eng. Technol. – ident: ref_32 doi: 10.1109/TNN.1998.712192 – ident: ref_29 – volume: 15 start-page: 546 year: 2021 ident: ref_1 article-title: Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2020.3023041 – ident: ref_46 – volume: 7 start-page: 19143 year: 2019 ident: ref_17 article-title: Speech Recognition Using Deep Neural Networks: A Systematic Review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896880 – volume: 46 start-page: 7783 year: 2021 ident: ref_59 article-title: Job safety hazard identification and risk analysis in the foundry division of a gear manufacturing industry publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.02.326 – volume: 18 start-page: 73 year: 2005 ident: ref_31 article-title: Application of reinforcement learning for agent-based production scheduling publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2004.08.018 – volume: 69 start-page: 778 year: 2014 ident: ref_48 article-title: Possibilities of Using Speech Recognition Systems of Smart Terminal Devices in Traffic Environment publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.03.054 – ident: ref_5 doi: 10.3390/s20205911 – ident: ref_27 doi: 10.1109/ICISET.2018.8745656 – volume: 43 start-page: 45 year: 2000 ident: ref_54 article-title: Perceptual user interfaces: Multimodal interfaces that process what comes naturally publication-title: Commun. ACM – ident: ref_57 doi: 10.1016/B978-0-12-802398-3.00002-7 – ident: ref_43 doi: 10.1109/IRC.2019.00120 – ident: ref_22 doi: 10.1109/ISCO.2016.7727034 – ident: ref_24 doi: 10.3390/app9153057 |
| SSID | ssj0023338 |
| Score | 2.4292777 |
| Snippet | The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 941 |
| SubjectTerms | Algorithms Artificial intelligence Automation autonomous moving robot Collaboration Computational linguistics Data mining Electronics industry Emergency procedures Factories Humans Industry Language processing Machine learning Manufacturing Natural language interfaces obstacle-free path planning Q-learning algorithm reinforcement learning (RL) Robotics Robotics industry Robots safety response smart manufacturing Speech Speech Perception Speech recognition software Voice recognition |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagywEOvJcNLMggJLhEGydO4pxQFnXFgVZLC2hvke3Y3UrbpNukSPwa_iozqZttBeLCMckoGWfG87BnPhPyNrUCvZj2U6WUz60RvmTc-twk4D4sj2VXRPP9czoei4uL7NwtuDWurHJrEztDXdYa18hPwiRMEXstjD8sr308NQp3V90RGrfJASKV8QE5OB2Ozyd9yhVBBrbBE4oguT9pwhC3FDjb80IdWP-fJnnHJ-3XS-44oLMH_8v6Q3LfhZ403-jKI3LLVI_JvR1AwifkV17R4Q7mP51Ka9qfdLKppDV0ZLBTeN4sKAS7VFY0X7fYFlGvGzrqFifopFZ1S-cVlXS6AMWkI1mtsX-ia4ikw5vOOtrVK9AvvgN5ndH8agaMt5cLeHVJp0sDn6OTbY1TXT0l386GXz9-8t0RDr6GyK_1IyUsYzKzjIelTUvNbJLx2GoWCQQfK3mppIGUR8hEJDpQpmulBTMjQyGjODokg6quzBGhkGgalaWhRkRDxSNlpIVrlUFKqkvOPPJ-K9JCO3xzPGbjqoA8B6Vf9NL3yJuedLkB9fgb0SnqRU-AONzdjXo1K9y0LlRpYlXyQAtmOJc644qJQGcmUZD5x9oj71CrCrQWwIyWrukBhoS4W0WeQoCVgU0NPHK8VZ7CmZGmuNEcj7zuH4MBwF0dWRkQLtJkAcS9QeqRZxs97XmOYgjo4ed6JN3T4L1B7T-p5pcdyLgQEMtF_Pm_2XpB7obYDxIwP0yOyaBdrc1Lckf_aOfN6pWbjb8BqX9DCg priority: 102 providerName: ProQuest |
| Title | An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35161688 https://www.proquest.com/docview/2627867725 https://www.proquest.com/docview/2629055107 https://pubmed.ncbi.nlm.nih.gov/PMC8838134 https://doaj.org/article/bde5bd40c81e44ac94b180c9e6b8375c |
| Volume | 22 |
| WOSCitedRecordID | wos000755580300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: PROQUEST customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BwgEOiG8CSzUgJLhEGydO7By7qCuQaFVaQOUU2Y69W2mbrtoUiQt_hb_KOElLK5C4cImU2Epsz9gzL555BnglnPRWzIRCax1yZ2WoGHchtxmZD8dT1QTRfPkgRiM5m-XjvaO-fExYSw_cDtyJLm2qSx4ZySznyuRcMxmZ3GaasFVq_OpLXs8WTHVQKyHk1fIIJQTqT9Zx7LcSODuwPg1J_59L8Z4tOoyT3DM8Z3fhTucxYr9t6T24Zqv7cHuPR_AB_OxXONij6sepcrb-jpM2ANbi0PoE3_l6geSjoqqwv6l9NgPBfhw2_xRwstTLGucVKpwuaFhwqKqNT3to8hhx8DshDpswA_wYdtys59i_PF-u5vXFgl5d4vTK0udwsg1NWlYP4fPZ4NPbd2F38kJoyGGrw0RLx5jKHeNx6URpmMtynjrDEuk5w0peamUJqUiVycxE2jYZsLQ6qFiqJE0ewVG1rOwTQMKHVuciNp6IUPNEW-XoXueEJE3JWQBvthIpTEdL7k_HuCwInnjhFTvhBfByV_Wq5eL4W6VTL9ZdBU-f3TwgpSo6pSr-pVQBvPZKUfhJTo0xqstVoC55uqyiL8gvymkpjAI43upN0c3-dRFnsfA8gXEawItdMc1bvxmjKkvC9XXyiNzVSATwuFWzXZuTlPxwGtwAxIECHnTqsKSaXzTc4FKSC5bwp_9jFJ7Brdgne0QsjLNjOKpXG_scbppv9Xy96sF1MRPNVfbgxulgNJ70mklI1-GPAT0bvx-Ov_4C4Iw6qA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDQl44H4JDDAIBC_REsdJnAeECnRatbYq7YbGU7Adu6u0JqVJQfs1_AN-I8e5rRWItz3wmMRKHOc7t_ic7yD0MtTMWDFph0IIm2rFbO5SbVMVgPnQ1OdlEs3nfjgcspOTaLSFfjW1MCatstGJpaJOMmn-ke-RgISGe4347xbfbNM1yuyuNi00KlgcqvMfELLlb3sf4fu-ImS_e_ThwK67CtgSnJHC9gTTrssj7VKS6DCRrg4i6mvpeszwYSU0EVyBF854wALpCFVWdwLyOWG87BIBKn-HAtjZNtoZ9QajL22I50HEV_EXeV7k7OWEmC0M6m5YvbI5wJ8mYM0GbuZnrhm8_Zv_21LdQjdq1xp3Klm4jbZUegddXyNcvIt-dlLcXetpgCdcq-Icj6tMYYUHylRCz_I5Bmce8xR3VoUp-8hWOR6UP1_wOBNZgWcp5ngyB8HDA56uTH1IWfCJuxeVg7jMx8Cf7JrEdoo7Z1NYqOJ0DrdO8GSh4HF43ORwZek9dHwpK3QfbadZqh4iDIG0ElFIpGFsFNQTims4FhGE3DKhroXeNBCKZc3fbtqInMUQxxm0xS3aLPSiHbqoSEv-Nui9wWE7wPCMlyey5TSu1VYsEuWLhDqSuYpSLiMqXObISAWCeaEvLfTaoDg22hAmI3ld1AGvZHjF4k4IDmQENsOx0G4D1rhWk3l8gVQLPW8vg4Izu1Y8VfBxzZjIAb_eCS30oJKLds6eDwELLK6Fwg2J2XipzSvp7LQkUWcMfFWPPvr3tJ6hqwdHg37c7w0PH6NrxNS-OK5Ngl20XSxX6gm6Ir8Xs3z5tNYEGH29bIn6DY8tnuM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDSF44H4JDDAIBC9RE8dJnAeECmtFtbUqLaDxFGzH7iqtSWlS0H4N_4Nfx3FuawXibQ88JrESxznX-HzfQeh5qJnxYtIOhRA21YrZ3KXapioA96Gpz8sims9H4WjEjo-j8Q761WBhTFllYxNLQ51k0vwj75CAhIZ7jfgdXZdFjA_6b5bfbNNByuy0Nu00KhE5VGc_IH3LXw8O4Fu_IKTf-_juvV13GLAlBCaF7QmmXZdH2qUk0WEiXR1E1NfS9ZjhxkpoIriCiJzxgAXSEapEeoIWcMJ42TECzP8ehOQUdGxvPBiOv7TpngfZX8Vl5HmR08kJMdsZ1N3ygGWjgD_dwYY_3K7V3HB-_ev_87LdQNfqkBt3Kx25iXZUegtd3SBivI1-dlPc2-h1gKdcq-IMT6oKYoWHyiCk5_kCQ5CPeYq768LAQbJ1joflTxk8yURW4HmKOZ4uQCHxkKdrgxspgaC4d44oxGWdBv5g1-S2M9w9ncFCFScLuHWCp0sFj8OTprYrS--gTxeyQnfRbpql6j7CkGArEYVEGiZHQT2huIZjEUEqLhPqWuhVI06xrHndTXuR0xjyOyN5cSt5FnrWDl1WZCZ_G_TWyGQ7wPCPlyey1SyuzVksEuWLhDqSuYpSLiMqXObISAWCeaEvLfTSSHRsrCRMRvIa7AGvZPjG4m4IgWUEvsSx0H4juHFtPvP4XGot9LS9DIbP7GbxVMHHNWMiB-J9J7TQvUpH2jl7PiQysLgWCre0Z-ultq-k85OSXJ0xiGE9-uDf03qCLoMaxUeD0eFDdIUYSIzj2iTYR7vFaq0eoUvyezHPV49ro4DR14tWqN8J-qej |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Experimental+Safety+Response+Mechanism+for+an+Autonomous+Moving+Robot+in+a+Smart+Manufacturing+Environment+Using+Q-Learning+Algorithm+and+Speech+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kiangala%2C+Kahiomba+Sonia&rft.au=Wang%2C+Zenghui&rft.date=2022-01-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=3&rft.spage=941&rft_id=info:doi/10.3390%2Fs22030941&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22030941 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |