An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition

The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside huma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 3; s. 941
Hlavní autoři: Kiangala, Kahiomba Sonia, Wang, Zenghui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 26.01.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth production run in such environments. The loss of operating moving robots in plant evacuation can be avoided with the adequate safety induction for them. Operators are subject to frequent safety inductions to react in emergencies, but very little is done for robots. Our research proposes an experimental safety response mechanism for a small manufacturing plant, through which an autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the outcome as a rule-based system for the safety response. We also program a speech recognition system for operators to react timeously, with a voice command, to an emergency that requires stopping all plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP or a voice command sent directly to the factory central controller can give the factory an emergency signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic controller (PLC). We simulate a simple and small manufacturing environment overview to test our safety procedure. Our results show that the safety response mechanism successfully generates paths without obstacles to the closest safety exits from all the factory locations. Our research benefits any manufacturing SME intending to implement the initial and primary use of autonomous moving robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art technologies such as speech recognition to improve their performances. Our research empowers SMEs to adopt advanced and innovative technological concepts within their operations.
AbstractList The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth production run in such environments. The loss of operating moving robots in plant evacuation can be avoided with the adequate safety induction for them. Operators are subject to frequent safety inductions to react in emergencies, but very little is done for robots. Our research proposes an experimental safety response mechanism for a small manufacturing plant, through which an autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the outcome as a rule-based system for the safety response. We also program a speech recognition system for operators to react timeously, with a voice command, to an emergency that requires stopping all plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP or a voice command sent directly to the factory central controller can give the factory an emergency signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic controller (PLC). We simulate a simple and small manufacturing environment overview to test our safety procedure. Our results show that the safety response mechanism successfully generates paths without obstacles to the closest safety exits from all the factory locations. Our research benefits any manufacturing SME intending to implement the initial and primary use of autonomous moving robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art technologies such as speech recognition to improve their performances. Our research empowers SMEs to adopt advanced and innovative technological concepts within their operations.
The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth production run in such environments. The loss of operating moving robots in plant evacuation can be avoided with the adequate safety induction for them. Operators are subject to frequent safety inductions to react in emergencies, but very little is done for robots. Our research proposes an experimental safety response mechanism for a small manufacturing plant, through which an autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the outcome as a rule-based system for the safety response. We also program a speech recognition system for operators to react timeously, with a voice command, to an emergency that requires stopping all plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP or a voice command sent directly to the factory central controller can give the factory an emergency signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic controller (PLC). We simulate a simple and small manufacturing environment overview to test our safety procedure. Our results show that the safety response mechanism successfully generates paths without obstacles to the closest safety exits from all the factory locations. Our research benefits any manufacturing SME intending to implement the initial and primary use of autonomous moving robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art technologies such as speech recognition to improve their performances. Our research empowers SMEs to adopt advanced and innovative technological concepts within their operations.The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this revolution, known as Industry 4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth production run in such environments. The loss of operating moving robots in plant evacuation can be avoided with the adequate safety induction for them. Operators are subject to frequent safety inductions to react in emergencies, but very little is done for robots. Our research proposes an experimental safety response mechanism for a small manufacturing plant, through which an autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the outcome as a rule-based system for the safety response. We also program a speech recognition system for operators to react timeously, with a voice command, to an emergency that requires stopping all plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP or a voice command sent directly to the factory central controller can give the factory an emergency signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic controller (PLC). We simulate a simple and small manufacturing environment overview to test our safety procedure. Our results show that the safety response mechanism successfully generates paths without obstacles to the closest safety exits from all the factory locations. Our research benefits any manufacturing SME intending to implement the initial and primary use of autonomous moving robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art technologies such as speech recognition to improve their performances. Our research empowers SMEs to adopt advanced and innovative technological concepts within their operations.
Audience Academic
Author Wang, Zenghui
Kiangala, Kahiomba Sonia
AuthorAffiliation 2 Department of Electrical and Mining Engineering, University of South Africa, Johannesburg 1710, South Africa
1 College of Science, Engineering and Technology (CSET), University of South Africa, Johannesburg 1710, South Africa; sokiangala@gmail.com
AuthorAffiliation_xml – name: 2 Department of Electrical and Mining Engineering, University of South Africa, Johannesburg 1710, South Africa
– name: 1 College of Science, Engineering and Technology (CSET), University of South Africa, Johannesburg 1710, South Africa; sokiangala@gmail.com
Author_xml – sequence: 1
  givenname: Kahiomba Sonia
  orcidid: 0000-0003-2994-0699
  surname: Kiangala
  fullname: Kiangala, Kahiomba Sonia
– sequence: 2
  givenname: Zenghui
  orcidid: 0000-0003-3025-336X
  surname: Wang
  fullname: Wang, Zenghui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35161688$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhiNURD_gwB9AlriUw7b-SuJckFbVApV2hejSs-U4dtarxF7sZEV_DX-VCdtWbZEPtsbvPON3PKfZkQ_eZNl7gi8Yq_BlohQzXHHyKjshnPKZgMDRk_NxdprSFmPKGBNvsmOWk4IUQpxkf-YeLX7vTHS98YPq0FpZM9yhG5N2wSeDVkZvlHepRzZEpDyaj0PwoQ9jQquwd75FN6EOA3IeKbTuVRzQSvnRKj2Mcbpe-L2LwU98dJumyI_Z0qjop-O8a0N0w6YHdIPWOwPloLgOrXeDC_5t9tqqLpl39_tZdvtl8fPq22z5_ev11Xw50zkWw4zVwhKiKguWG1s2mtii4rnVhAlOqWh4UytTgmVViELj2giak0owqqhQLGdn2fWB2wS1lTtoh4p3Mign_wVCbCU4c7ozsm5MXjcca0EM50pXvCYC68oUtWBlroH1-cDajXVvGg3Go-qeQZ_feLeRbdhLIZggjAPg_B4Qw6_RpEH2LmnTdcob6LukBa1wnhNcgvTjC-k2jNFDqyZVKYqypJO7i4OqVWDAeRugrobVmN5pGCbrID4vBaEVpTmGhA9PLTy-_WFwQHB5EOgYUorGSu0GNf0YkF0nCZbTaMrH0YSMTy8yHqD_a_8CJVPkhQ
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128315
crossref_primary_10_3390_electronics12163380
crossref_primary_10_3390_logistics7040080
crossref_primary_10_3390_en15228595
crossref_primary_10_3390_electronics13040782
crossref_primary_10_1109_TCDS_2022_3168807
crossref_primary_10_3390_iot4030017
crossref_primary_10_1007_s11301_024_00405_4
crossref_primary_10_3389_frobt_2024_1342130
Cites_doi 10.1097/SLA.0000000000002693
10.1109/TCDS.2018.2817283
10.1016/j.procir.2019.03.162
10.1115/IMECE1996-0367
10.1109/ICMLA.2018.00100
10.1109/TII.2014.2300753
10.1007/BF00992698
10.3390/robotics8040100
10.1145/3005745.3005750
10.1109/ICASSP.2013.6638947
10.1109/TAEECE.2013.6557278
10.1109/ACCESS.2020.2987861
10.1016/j.ssci.2018.05.008
10.1109/TITS.2013.2255286
10.1613/jair.301
10.1109/ACCESS.2018.2852809
10.1007/s11740-012-0418-2
10.1021/acscentsci.7b00492
10.1109/INDIN.2014.6945523
10.1109/ACCESS.2020.3042874
10.1109/TCSS.2019.2922593
10.1109/TII.2014.2306782
10.1109/ACCESS.2020.2978077
10.1109/TII.2020.3007764
10.1109/ACCESS.2018.2800641
10.1109/URAI.2011.6145931
10.1109/TII.2012.2187910
10.1109/ACCESS.2017.2773127
10.1109/TNNLS.2017.2654539
10.21236/ADA457057
10.4028/www.scientific.net/AMM.198-199.922
10.1109/ACCESS.2020.2964042
10.1109/ICARSC.2019.8733621
10.1109/ACCESS.2020.2974101
10.1109/MSP.2010.939038
10.1109/ACCESS.2021.3052024
10.1109/ACCESS.2019.2937219
10.1109/ACCESS.2020.2970433
10.1109/ICSGRC.2018.8657642
10.1016/j.engfailanal.2021.105264
10.1109/TNN.1998.712192
10.1109/JSYST.2020.3023041
10.1109/ACCESS.2019.2896880
10.1016/j.matpr.2021.02.326
10.1016/j.engappai.2004.08.018
10.1016/j.proeng.2014.03.054
10.3390/s20205911
10.1109/ICISET.2018.8745656
10.1016/B978-0-12-802398-3.00002-7
10.1109/IRC.2019.00120
10.1109/ISCO.2016.7727034
10.3390/app9153057
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22030941
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bde5bd40c81e44ac94b180c9e6b8375c
PMC8838134
A781292250
35161688
10_3390_s22030941
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-3b8f11a9f142df7dc1f6945fc1384228d4dbae7688a686c0be82519832a28a353
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755580300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:20 EDT 2025
Tue Nov 04 01:58:39 EST 2025
Wed Oct 01 14:32:56 EDT 2025
Tue Oct 07 07:22:04 EDT 2025
Tue Nov 04 18:30:35 EST 2025
Thu Apr 03 06:56:52 EDT 2025
Sat Nov 29 07:13:08 EST 2025
Tue Nov 18 20:58:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords autonomous moving robot
smart manufacturing
speech recognition
obstacle-free path planning
Q-learning algorithm
reinforcement learning (RL)
safety response
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-3b8f11a9f142df7dc1f6945fc1384228d4dbae7688a686c0be82519832a28a353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2994-0699
0000-0003-3025-336X
OpenAccessLink https://doaj.org/article/bde5bd40c81e44ac94b180c9e6b8375c
PMID 35161688
PQID 2627867725
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bde5bd40c81e44ac94b180c9e6b8375c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8838134
proquest_miscellaneous_2629055107
proquest_journals_2627867725
gale_infotracacademiconefile_A781292250
pubmed_primary_35161688
crossref_citationtrail_10_3390_s22030941
crossref_primary_10_3390_s22030941
PublicationCentury 2000
PublicationDate 20220126
PublicationDateYYYYMMDD 2022-01-26
PublicationDate_xml – month: 1
  year: 2022
  text: 20220126
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sehr (ref_49) 2021; 17
Rajkumar (ref_59) 2021; 46
ref_57
ref_12
ref_11
ref_55
Zhou (ref_36) 2017; 3
He (ref_52) 2014; 10
Peres (ref_10) 2020; 8
ref_18
Zhao (ref_8) 2020; 8
ref_16
Husnjak (ref_48) 2014; 69
Mannucci (ref_25) 2018; 29
Li (ref_51) 2014; 10
Dhounchak (ref_19) 2017; 3
Oviatt (ref_54) 2000; 43
Wang (ref_31) 2005; 18
ref_24
ref_22
Garcia (ref_56) 2019; 81
Bajic (ref_1) 2021; 15
Wang (ref_35) 2020; 8
ref_29
ref_27
Becerra (ref_21) 2017; 5
Ou (ref_2) 2018; 6
Verl (ref_20) 2012; 6
Hashimoto (ref_41) 2018; 268
Chan (ref_30) 2012; 8
Abdulhai (ref_38) 2013; 14
ref_34
Zhang (ref_50) 2020; 8
ref_32
ref_39
ref_37
Watkins (ref_44) 1992; 8
Wiedemann (ref_23) 2021; 9
Tang (ref_53) 2020; 8
Hald (ref_60) 2018; 109
Guo (ref_47) 2018; 6
Wang (ref_40) 2012; 198–199
Valle (ref_28) 2019; 11
Kaelbling (ref_33) 1996; 4
ref_46
ref_45
Nassif (ref_17) 2019; 7
ref_43
Erol (ref_26) 2020; 7
ref_42
Wang (ref_14) 2020; 8
ref_3
Xie (ref_13) 2019; 7
ref_9
ref_5
Yu (ref_15) 2011; 28
ref_4
ref_7
Dabous (ref_58) 2021; 122
ref_6
References_xml – volume: 268
  start-page: 70
  year: 2018
  ident: ref_41
  article-title: Artificial intelligence in surgery: Promises and perils
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0000000000002693
– volume: 11
  start-page: 363
  year: 2019
  ident: ref_28
  article-title: Personalized Robot Assistant for Support in Dressing
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2817283
– volume: 81
  start-page: 600
  year: 2019
  ident: ref_56
  article-title: A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.03.162
– ident: ref_6
  doi: 10.1115/IMECE1996-0367
– ident: ref_11
  doi: 10.1109/ICMLA.2018.00100
– ident: ref_39
– volume: 10
  start-page: 2233
  year: 2014
  ident: ref_52
  article-title: Internet of Things in industries: A survey
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2300753
– volume: 8
  start-page: 279
  year: 1992
  ident: ref_44
  article-title: Technical note: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– ident: ref_3
  doi: 10.3390/robotics8040100
– ident: ref_37
  doi: 10.1145/3005745.3005750
– ident: ref_42
– ident: ref_12
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref_7
  doi: 10.1109/TAEECE.2013.6557278
– volume: 8
  start-page: 74129
  year: 2020
  ident: ref_35
  article-title: Energy Efficient Two-Tier Data Dissemination Based on Q-Learning for Wireless Sensor Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987861
– volume: 109
  start-page: 1
  year: 2018
  ident: ref_60
  article-title: Social influence and safe behavior in manufacturing
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2018.05.008
– volume: 14
  start-page: 1140
  year: 2013
  ident: ref_38
  article-title: Multiagent Reinforcement Learning for Integrated Network of Adaptive Traffic Signal Controllers (MARLIN-ATSC): Methodology and Large-Scale Application on Downtown Toronto
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2255286
– volume: 4
  start-page: 237
  year: 1996
  ident: ref_33
  article-title: Reinforcement learning: A survey
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.301
– volume: 6
  start-page: 39385
  year: 2018
  ident: ref_47
  article-title: Lossy Compression for Embedded Computer Vision Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2852809
– volume: 6
  start-page: 643
  year: 2012
  ident: ref_20
  article-title: Globalized cyber physical production systems
  publication-title: Prod. Eng.
  doi: 10.1007/s11740-012-0418-2
– volume: 3
  start-page: 337
  year: 2017
  ident: ref_36
  article-title: Optimizing chemical reactions with deep reinforcement learning
  publication-title: ACS Central Sci.
  doi: 10.1021/acscentsci.7b00492
– ident: ref_55
  doi: 10.1109/INDIN.2014.6945523
– volume: 8
  start-page: 220121
  year: 2020
  ident: ref_10
  article-title: Industrial Artificial Intelligence in Industry 4.0—Systematic Review, Challenges and Outlook
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3042874
– volume: 7
  start-page: 234
  year: 2020
  ident: ref_26
  article-title: Toward Artificial Emotional Intelligence for Cooperative Social Human–Machine Interaction
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2019.2922593
– volume: 10
  start-page: 1497
  year: 2014
  ident: ref_51
  article-title: QoS-aware scheduling of services-oriented Internet of Things
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2306782
– volume: 8
  start-page: 47824
  year: 2020
  ident: ref_8
  article-title: The Experience-Memory Q-Learning Algorithm for Robot Path Planning in Unknown Environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978077
– volume: 17
  start-page: 3523
  year: 2021
  ident: ref_49
  article-title: Programmable Logic Controllers in the Context of Industry 4.0
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3007764
– volume: 6
  start-page: 14699
  year: 2018
  ident: ref_2
  article-title: Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2800641
– ident: ref_45
  doi: 10.1109/URAI.2011.6145931
– volume: 8
  start-page: 869
  year: 2012
  ident: ref_30
  article-title: Enhancement of Speech Recognitions for Control Automation Using an Intelligent Particle Swarm Optimization
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2012.2187910
– volume: 5
  start-page: 26754
  year: 2017
  ident: ref_21
  article-title: Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2773127
– volume: 29
  start-page: 1069
  year: 2018
  ident: ref_25
  article-title: Safe Exploration Algorithms for Reinforcement Learning Controllers
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2654539
– ident: ref_34
– ident: ref_16
  doi: 10.21236/ADA457057
– volume: 198–199
  start-page: 922
  year: 2012
  ident: ref_40
  article-title: Multi-Agent Dam Management Model Based on Improved Reinforcement Learning Technology
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.198-199.922
– volume: 8
  start-page: 9124
  year: 2020
  ident: ref_53
  article-title: Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964042
– ident: ref_9
  doi: 10.1109/ICARSC.2019.8733621
– volume: 8
  start-page: 46335
  year: 2020
  ident: ref_14
  article-title: Feature Extraction and Analysis of Natural Language Processing for Deep Learning English Language
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974101
– volume: 28
  start-page: 145
  year: 2011
  ident: ref_15
  article-title: Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939038
– ident: ref_18
– volume: 9
  start-page: 13159
  year: 2021
  ident: ref_23
  article-title: Robotic Information Gathering with Reinforcement Learning Assisted by Domain Knowledge: An Application to Gas Source Localization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052024
– volume: 7
  start-page: 119465
  year: 2019
  ident: ref_13
  article-title: Matching Real-World Facilities to Building Information Modeling Data Using Natural Language Processing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937219
– volume: 8
  start-page: 24258
  year: 2020
  ident: ref_50
  article-title: Deep Interactive Reinforcement Learning for Path Following of Autonomous Underwater Vehicle
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970433
– ident: ref_4
  doi: 10.1109/ICSGRC.2018.8657642
– volume: 122
  start-page: 105264
  year: 2021
  ident: ref_58
  article-title: Integration of failure mode, effects, and criticality analysis with multi-criteria decision-making in engineering applications: Part I—Manufacturing industry
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105264
– volume: 3
  start-page: 498
  year: 2017
  ident: ref_19
  article-title: Applications of Safety in Manufacturing Industry
  publication-title: Int. J. Sci. Res. Sci. Eng. Technol.
– ident: ref_32
  doi: 10.1109/TNN.1998.712192
– ident: ref_29
– volume: 15
  start-page: 546
  year: 2021
  ident: ref_1
  article-title: Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2020.3023041
– ident: ref_46
– volume: 7
  start-page: 19143
  year: 2019
  ident: ref_17
  article-title: Speech Recognition Using Deep Neural Networks: A Systematic Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896880
– volume: 46
  start-page: 7783
  year: 2021
  ident: ref_59
  article-title: Job safety hazard identification and risk analysis in the foundry division of a gear manufacturing industry
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.02.326
– volume: 18
  start-page: 73
  year: 2005
  ident: ref_31
  article-title: Application of reinforcement learning for agent-based production scheduling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2004.08.018
– volume: 69
  start-page: 778
  year: 2014
  ident: ref_48
  article-title: Possibilities of Using Speech Recognition Systems of Smart Terminal Devices in Traffic Environment
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.03.054
– ident: ref_5
  doi: 10.3390/s20205911
– ident: ref_27
  doi: 10.1109/ICISET.2018.8745656
– volume: 43
  start-page: 45
  year: 2000
  ident: ref_54
  article-title: Perceptual user interfaces: Multimodal interfaces that process what comes naturally
  publication-title: Commun. ACM
– ident: ref_57
  doi: 10.1016/B978-0-12-802398-3.00002-7
– ident: ref_43
  doi: 10.1109/IRC.2019.00120
– ident: ref_22
  doi: 10.1109/ISCO.2016.7727034
– ident: ref_24
  doi: 10.3390/app9153057
SSID ssj0023338
Score 2.4292777
Snippet The industrial manufacturing sector is undergoing a tremendous revolution moving from traditional production processes to intelligent techniques. Under this...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 941
SubjectTerms Algorithms
Artificial intelligence
Automation
autonomous moving robot
Collaboration
Computational linguistics
Data mining
Electronics industry
Emergency procedures
Factories
Humans
Industry
Language processing
Machine learning
Manufacturing
Natural language interfaces
obstacle-free path planning
Q-learning algorithm
reinforcement learning (RL)
Robotics
Robotics industry
Robots
safety response
smart manufacturing
Speech
Speech Perception
Speech recognition software
Voice recognition
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagywEOvJcNLMggJLhEGydO4pxQFnXFgVZLC2hvke3Y3UrbpNukSPwa_iozqZttBeLCMckoGWfG87BnPhPyNrUCvZj2U6WUz60RvmTc-twk4D4sj2VXRPP9czoei4uL7NwtuDWurHJrEztDXdYa18hPwiRMEXstjD8sr308NQp3V90RGrfJASKV8QE5OB2Ozyd9yhVBBrbBE4oguT9pwhC3FDjb80IdWP-fJnnHJ-3XS-44oLMH_8v6Q3LfhZ403-jKI3LLVI_JvR1AwifkV17R4Q7mP51Ka9qfdLKppDV0ZLBTeN4sKAS7VFY0X7fYFlGvGzrqFifopFZ1S-cVlXS6AMWkI1mtsX-ia4ikw5vOOtrVK9AvvgN5ndH8agaMt5cLeHVJp0sDn6OTbY1TXT0l386GXz9-8t0RDr6GyK_1IyUsYzKzjIelTUvNbJLx2GoWCQQfK3mppIGUR8hEJDpQpmulBTMjQyGjODokg6quzBGhkGgalaWhRkRDxSNlpIVrlUFKqkvOPPJ-K9JCO3xzPGbjqoA8B6Vf9NL3yJuedLkB9fgb0SnqRU-AONzdjXo1K9y0LlRpYlXyQAtmOJc644qJQGcmUZD5x9oj71CrCrQWwIyWrukBhoS4W0WeQoCVgU0NPHK8VZ7CmZGmuNEcj7zuH4MBwF0dWRkQLtJkAcS9QeqRZxs97XmOYgjo4ed6JN3T4L1B7T-p5pcdyLgQEMtF_Pm_2XpB7obYDxIwP0yOyaBdrc1Lckf_aOfN6pWbjb8BqX9DCg
  priority: 102
  providerName: ProQuest
Title An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/35161688
https://www.proquest.com/docview/2627867725
https://www.proquest.com/docview/2629055107
https://pubmed.ncbi.nlm.nih.gov/PMC8838134
https://doaj.org/article/bde5bd40c81e44ac94b180c9e6b8375c
Volume 22
WOSCitedRecordID wos000755580300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: PROQUEST
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BwgEOiG8CSzUgJLhEGydO7By7qCuQaFVaQOUU2Y69W2mbrtoUiQt_hb_KOElLK5C4cImU2Epsz9gzL555BnglnPRWzIRCax1yZ2WoGHchtxmZD8dT1QTRfPkgRiM5m-XjvaO-fExYSw_cDtyJLm2qSx4ZySznyuRcMxmZ3GaasFVq_OpLXs8WTHVQKyHk1fIIJQTqT9Zx7LcSODuwPg1J_59L8Z4tOoyT3DM8Z3fhTucxYr9t6T24Zqv7cHuPR_AB_OxXONij6sepcrb-jpM2ANbi0PoE3_l6geSjoqqwv6l9NgPBfhw2_xRwstTLGucVKpwuaFhwqKqNT3to8hhx8DshDpswA_wYdtys59i_PF-u5vXFgl5d4vTK0udwsg1NWlYP4fPZ4NPbd2F38kJoyGGrw0RLx5jKHeNx6URpmMtynjrDEuk5w0peamUJqUiVycxE2jYZsLQ6qFiqJE0ewVG1rOwTQMKHVuciNp6IUPNEW-XoXueEJE3JWQBvthIpTEdL7k_HuCwInnjhFTvhBfByV_Wq5eL4W6VTL9ZdBU-f3TwgpSo6pSr-pVQBvPZKUfhJTo0xqstVoC55uqyiL8gvymkpjAI43upN0c3-dRFnsfA8gXEawItdMc1bvxmjKkvC9XXyiNzVSATwuFWzXZuTlPxwGtwAxIECHnTqsKSaXzTc4FKSC5bwp_9jFJ7Brdgne0QsjLNjOKpXG_scbppv9Xy96sF1MRPNVfbgxulgNJ70mklI1-GPAT0bvx-Ov_4C4Iw6qA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDQl44H4JDDAIBC_REsdJnAeECnRatbYq7YbGU7Adu6u0JqVJQfs1_AN-I8e5rRWItz3wmMRKHOc7t_ic7yD0MtTMWDFph0IIm2rFbO5SbVMVgPnQ1OdlEs3nfjgcspOTaLSFfjW1MCatstGJpaJOMmn-ke-RgISGe4347xbfbNM1yuyuNi00KlgcqvMfELLlb3sf4fu-ImS_e_ThwK67CtgSnJHC9gTTrssj7VKS6DCRrg4i6mvpeszwYSU0EVyBF854wALpCFVWdwLyOWG87BIBKn-HAtjZNtoZ9QajL22I50HEV_EXeV7k7OWEmC0M6m5YvbI5wJ8mYM0GbuZnrhm8_Zv_21LdQjdq1xp3Klm4jbZUegddXyNcvIt-dlLcXetpgCdcq-Icj6tMYYUHylRCz_I5Bmce8xR3VoUp-8hWOR6UP1_wOBNZgWcp5ngyB8HDA56uTH1IWfCJuxeVg7jMx8Cf7JrEdoo7Z1NYqOJ0DrdO8GSh4HF43ORwZek9dHwpK3QfbadZqh4iDIG0ElFIpGFsFNQTims4FhGE3DKhroXeNBCKZc3fbtqInMUQxxm0xS3aLPSiHbqoSEv-Nui9wWE7wPCMlyey5TSu1VYsEuWLhDqSuYpSLiMqXObISAWCeaEvLfTaoDg22hAmI3ld1AGvZHjF4k4IDmQENsOx0G4D1rhWk3l8gVQLPW8vg4Izu1Y8VfBxzZjIAb_eCS30oJKLds6eDwELLK6Fwg2J2XipzSvp7LQkUWcMfFWPPvr3tJ6hqwdHg37c7w0PH6NrxNS-OK5Ngl20XSxX6gm6Ir8Xs3z5tNYEGH29bIn6DY8tnuM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDSF44H4JDDAIBC9RE8dJnAeECmtFtbUqLaDxFGzH7iqtSWlS0H4N_4Nfx3FuawXibQ88JrESxznX-HzfQeh5qJnxYtIOhRA21YrZ3KXapioA96Gpz8sims9H4WjEjo-j8Q761WBhTFllYxNLQ51k0vwj75CAhIZ7jfgdXZdFjA_6b5bfbNNByuy0Nu00KhE5VGc_IH3LXw8O4Fu_IKTf-_juvV13GLAlBCaF7QmmXZdH2qUk0WEiXR1E1NfS9ZjhxkpoIriCiJzxgAXSEapEeoIWcMJ42TECzP8ehOQUdGxvPBiOv7TpngfZX8Vl5HmR08kJMdsZ1N3ygGWjgD_dwYY_3K7V3HB-_ev_87LdQNfqkBt3Kx25iXZUegtd3SBivI1-dlPc2-h1gKdcq-IMT6oKYoWHyiCk5_kCQ5CPeYq768LAQbJ1joflTxk8yURW4HmKOZ4uQCHxkKdrgxspgaC4d44oxGWdBv5g1-S2M9w9ncFCFScLuHWCp0sFj8OTprYrS--gTxeyQnfRbpql6j7CkGArEYVEGiZHQT2huIZjEUEqLhPqWuhVI06xrHndTXuR0xjyOyN5cSt5FnrWDl1WZCZ_G_TWyGQ7wPCPlyey1SyuzVksEuWLhDqSuYpSLiMqXObISAWCeaEvLfTSSHRsrCRMRvIa7AGvZPjG4m4IgWUEvsSx0H4juHFtPvP4XGot9LS9DIbP7GbxVMHHNWMiB-J9J7TQvUpH2jl7PiQysLgWCre0Z-ultq-k85OSXJ0xiGE9-uDf03qCLoMaxUeD0eFDdIUYSIzj2iTYR7vFaq0eoUvyezHPV49ro4DR14tWqN8J-qej
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Experimental+Safety+Response+Mechanism+for+an+Autonomous+Moving+Robot+in+a+Smart+Manufacturing+Environment+Using+Q-Learning+Algorithm+and+Speech+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kiangala%2C+Kahiomba+Sonia&rft.au=Wang%2C+Zenghui&rft.date=2022-01-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=3&rft.spage=941&rft_id=info:doi/10.3390%2Fs22030941&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22030941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon