Knowledge Discovery on Cryptocurrency Exchange Rate Prediction Using Machine Learning Pipelines

The popularity of cryptocurrency in recent years has gained a lot of attention among researchers and in academic working areas. The uncontrollable and untraceable nature of cryptocurrency offers a lot of attractions to the people in this domain. The nature of the financial market is non-linear and d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 5; s. 1740
Hlavní autoři: Shahbazi, Zeinab, Byun, Yung-Cheol
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 23.02.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The popularity of cryptocurrency in recent years has gained a lot of attention among researchers and in academic working areas. The uncontrollable and untraceable nature of cryptocurrency offers a lot of attractions to the people in this domain. The nature of the financial market is non-linear and disordered, which makes the prediction of exchange rates a challenging and difficult task. Predicting the price of cryptocurrency is based on the previous price inflations in research. Various machine learning algorithms have been applied to predict the digital coins’ exchange rate, but in this study, we present the exchange rate of cryptocurrency based on applying the machine learning XGBoost algorithm and blockchain framework for the security and transparency of the proposed system. In this system, data mining techniques are applied for qualified data analysis. The applied machine learning algorithm is XGBoost, which performs the highest prediction output, after accuracy measurement performance. The prediction process is designed by using various filters and coefficient weights. The cross-validation method was applied for the phase of training to improve the performance of the system.
AbstractList The popularity of cryptocurrency in recent years has gained a lot of attention among researchers and in academic working areas. The uncontrollable and untraceable nature of cryptocurrency offers a lot of attractions to the people in this domain. The nature of the financial market is non-linear and disordered, which makes the prediction of exchange rates a challenging and difficult task. Predicting the price of cryptocurrency is based on the previous price inflations in research. Various machine learning algorithms have been applied to predict the digital coins’ exchange rate, but in this study, we present the exchange rate of cryptocurrency based on applying the machine learning XGBoost algorithm and blockchain framework for the security and transparency of the proposed system. In this system, data mining techniques are applied for qualified data analysis. The applied machine learning algorithm is XGBoost, which performs the highest prediction output, after accuracy measurement performance. The prediction process is designed by using various filters and coefficient weights. The cross-validation method was applied for the phase of training to improve the performance of the system.
The popularity of cryptocurrency in recent years has gained a lot of attention among researchers and in academic working areas. The uncontrollable and untraceable nature of cryptocurrency offers a lot of attractions to the people in this domain. The nature of the financial market is non-linear and disordered, which makes the prediction of exchange rates a challenging and difficult task. Predicting the price of cryptocurrency is based on the previous price inflations in research. Various machine learning algorithms have been applied to predict the digital coins' exchange rate, but in this study, we present the exchange rate of cryptocurrency based on applying the machine learning XGBoost algorithm and blockchain framework for the security and transparency of the proposed system. In this system, data mining techniques are applied for qualified data analysis. The applied machine learning algorithm is XGBoost, which performs the highest prediction output, after accuracy measurement performance. The prediction process is designed by using various filters and coefficient weights. The cross-validation method was applied for the phase of training to improve the performance of the system.The popularity of cryptocurrency in recent years has gained a lot of attention among researchers and in academic working areas. The uncontrollable and untraceable nature of cryptocurrency offers a lot of attractions to the people in this domain. The nature of the financial market is non-linear and disordered, which makes the prediction of exchange rates a challenging and difficult task. Predicting the price of cryptocurrency is based on the previous price inflations in research. Various machine learning algorithms have been applied to predict the digital coins' exchange rate, but in this study, we present the exchange rate of cryptocurrency based on applying the machine learning XGBoost algorithm and blockchain framework for the security and transparency of the proposed system. In this system, data mining techniques are applied for qualified data analysis. The applied machine learning algorithm is XGBoost, which performs the highest prediction output, after accuracy measurement performance. The prediction process is designed by using various filters and coefficient weights. The cross-validation method was applied for the phase of training to improve the performance of the system.
Audience Academic
Author Shahbazi, Zeinab
Byun, Yung-Cheol
AuthorAffiliation Department of Computer Engineering, Major of Electronic Engineering, Institute of Information Science & Technology, Jeju National University, Jeju 63243, Korea; zeinab.sh@jejunu.ac.kr
AuthorAffiliation_xml – name: Department of Computer Engineering, Major of Electronic Engineering, Institute of Information Science & Technology, Jeju National University, Jeju 63243, Korea; zeinab.sh@jejunu.ac.kr
Author_xml – sequence: 1
  givenname: Zeinab
  orcidid: 0000-0003-1520-1799
  surname: Shahbazi
  fullname: Shahbazi, Zeinab
– sequence: 2
  givenname: Yung-Cheol
  orcidid: 0000-0003-1107-9941
  surname: Byun
  fullname: Byun, Yung-Cheol
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35270900$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAURi1URB-w4A-gSGxgMa1feXiDVA0FKgZRIbq2HOd6xqOMPdhJYf49N0xbtUVZJPpy7rGvfY_JQYgBCHnN6KkQip5lzmnJakmfkSMmuZw1GBw8-D4kxzmvKeVCiOYFORQlr6mi9IjoryH-7qFbQvHRZxtvIO2KGIp52m2HaMeUINhdcfHHrkxA6IcZoLhK0Hk7eOSusw_L4puxKx-gWIBJYQqu_BZ6TPJL8tyZPsOr2_cJuf508XP-Zbb4_vlyfr6Y2ZI2w0w0nIIyvJLGirppGXOuaiVwcE1ljVOOCyfBSdNVlqqybI3olFVQGufaSooTcrn3dtGs9Tb5jUk7HY3X_4KYltqkwdseNHWlKKVtpZGVVLgAdCXlnQMQDe1Ui64Pe9d2bDfQWQhDMv0j6eM_wa_0Mt7oRjFZVSUK3t0KUvw1Qh70Bs8W-t4EiGPWvBJNzbiqKKJvn6DrOKaARzVRda0Y51N3p3tqabABH1zEdS0-HWy8xWFwHvPzukEplzXDgjcPW7jf-93FI3C2B2yKOSdw2vrBTFeKZt9rRvU0Wvp-tLDi_ZOKO-n_7F-Hhs6w
CitedBy_id crossref_primary_10_1016_j_asoc_2025_113029
crossref_primary_10_1016_j_compeleceng_2024_109368
crossref_primary_10_3390_math10060888
crossref_primary_10_1016_j_engappai_2025_111086
crossref_primary_10_3390_e24111644
crossref_primary_10_3390_s22239083
crossref_primary_10_3390_forecast6030034
crossref_primary_10_1016_j_procs_2024_09_435
crossref_primary_10_1016_j_ribaf_2022_101799
crossref_primary_10_3390_s22249580
crossref_primary_10_3390_data7110149
crossref_primary_10_1002_spy2_417
Cites_doi 10.1109/Cybermatics_2018.2018.00208
10.1016/j.cam.2019.112395
10.1016/j.ejor.2019.01.040
10.1109/FSKD.2017.8393351
10.1002/nem.2130
10.1142/9789811223785_0008
10.1109/ICDMW.2018.00016
10.1016/j.asoc.2021.107738
10.1007/s10479-021-04420-6
10.3390/math9010056
10.1016/j.physa.2018.07.017
10.1016/j.frl.2018.03.013
10.1145/3368691.3368728
10.1007/s10660-019-09362-7
10.1145/2939672.2939785
10.1016/j.compag.2021.106573
10.1007/978-3-030-66433-6_20
10.1109/ACCESS.2020.2990659
10.1016/j.procs.2021.04.037
10.1109/JSYST.2019.2927707
10.3390/s21051640
10.1007/s00521-020-05129-6
10.1016/j.asoc.2018.11.038
10.1080/14697688.2019.1622295
10.18178/ijmlc.2020.10.1.901
10.1002/cjs.11547
10.1007/978-3-030-65117-6_6
10.1109/ACCESS.2017.2779181
10.1109/TSP.2019.2907260
10.1109/TETC.2020.2983007
10.1016/j.indmarman.2019.02.021
10.1007/978-981-16-1342-5_50
10.1080/07421222.2018.1550550
10.1109/ACCESS.2021.3133937
10.1109/ISI.2019.8823249
10.1109/IJCNN52387.2021.9534453
10.1080/14697688.2019.1634277
10.1109/Blockchain.2019.00011
10.1063/5.0002759
10.1016/j.eswa.2018.05.011
10.1109/ACCESS.2021.3139586
10.1109/ACCESS.2020.3001676
10.1016/j.chaos.2018.11.014
10.3390/su14020641
10.1016/j.asoc.2021.107507
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K6~
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22051740
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Entrepreneurship Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Entrepreneurship
Business Premium Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0f5354cb4a4649ef8ed502dfee380d9b
PMC8914665
A781292471
35270900
10_3390_s22051740
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X5
7XB
8FK
AZQEC
BEZIV
COVID
DWQXO
K6~
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-3820e9a264ac378b11ff6b4e2ef86caf9f23f4ef4ad6c0955ba3d9c9e5affb643
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771516700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:49 EDT 2025
Tue Nov 04 02:00:30 EST 2025
Sun Nov 09 14:21:19 EST 2025
Tue Oct 07 07:24:24 EDT 2025
Tue Nov 04 18:30:36 EST 2025
Mon Jul 21 06:04:13 EDT 2025
Tue Nov 18 21:39:48 EST 2025
Sat Nov 29 07:16:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords cryptocurrency
exchange rate prediction
blockchain
XGBoost
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-3820e9a264ac378b11ff6b4e2ef86caf9f23f4ef4ad6c0955ba3d9c9e5affb643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1107-9941
0000-0003-1520-1799
OpenAccessLink https://doaj.org/article/0f5354cb4a4649ef8ed502dfee380d9b
PMID 35270900
PQID 2637791224
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0f5354cb4a4649ef8ed502dfee380d9b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8914665
proquest_miscellaneous_2638712960
proquest_journals_2637791224
gale_infotracacademiconefile_A781292471
pubmed_primary_35270900
crossref_citationtrail_10_3390_s22051740
crossref_primary_10_3390_s22051740
PublicationCentury 2000
PublicationDate 20220223
PublicationDateYYYYMMDD 2022-02-23
PublicationDate_xml – month: 2
  year: 2022
  text: 20220223
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mallqui (ref_47) 2019; 75
ref_50
ref_14
Kanniainen (ref_17) 2019; 19
Langenheldt (ref_38) 2019; 36
Dey (ref_40) 2020; 48
ref_11
ref_10
Wang (ref_45) 2020; 30
ref_51
Chen (ref_43) 2020; 365
ref_15
Shahbazi (ref_26) 2020; 86
Nakano (ref_1) 2018; 510
ref_24
ref_23
Jay (ref_42) 2020; 8
Atsalakis (ref_12) 2019; 276
ref_21
Shahbazi (ref_27) 2021; 6
Zhang (ref_19) 2019; 67
ref_29
ref_28
Kristjanpoller (ref_3) 2018; 109
Shahbazi (ref_16) 2021; 10
Weytjens (ref_25) 2021; 21
Lahmiri (ref_20) 2019; 118
(ref_8) 2018; 27
Shahbazi (ref_22) 2021; 9
ref_35
Tan (ref_9) 2021; 187
ref_33
ref_32
Michalski (ref_34) 2020; 8
Saad (ref_41) 2019; 14
ref_30
Koo (ref_49) 2021; 110
Sirignano (ref_18) 2019; 19
Jang (ref_2) 2017; 6
ref_37
Linoy (ref_39) 2021; 31
Vo (ref_13) 2020; 60
Mendis (ref_31) 2020; 9
Xueshuo (ref_36) 2021; 109
ref_46
ref_44
Jamil (ref_7) 2022; 192
ref_48
ref_5
ref_4
ref_6
References_xml – ident: ref_5
– ident: ref_35
  doi: 10.1109/Cybermatics_2018.2018.00208
– volume: 365
  start-page: 112395
  year: 2020
  ident: ref_43
  article-title: Bitcoin price prediction using machine learning: An approach to sample dimension engineering
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112395
– volume: 276
  start-page: 770
  year: 2019
  ident: ref_12
  article-title: Bitcoin price forecasting with neuro-fuzzy techniques
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.01.040
– ident: ref_23
  doi: 10.1109/FSKD.2017.8393351
– volume: 60
  start-page: 555
  year: 2020
  ident: ref_13
  article-title: A high-frequency algorithmic trading strategy for cryptocurrency
  publication-title: J. Comput. Inf. Syst.
– volume: 31
  start-page: e2130
  year: 2021
  ident: ref_39
  article-title: De-anonymizing Ethereum blockchain smart contracts through code attribution
  publication-title: Int. J. Netw. Manag.
  doi: 10.1002/nem.2130
– ident: ref_14
  doi: 10.1142/9789811223785_0008
– ident: ref_37
  doi: 10.1109/ICDMW.2018.00016
– volume: 110
  start-page: 107738
  year: 2021
  ident: ref_49
  article-title: Prediction of Bitcoin price based on manipulating distribution strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107738
– ident: ref_51
  doi: 10.1007/s10479-021-04420-6
– ident: ref_11
  doi: 10.3390/math9010056
– volume: 510
  start-page: 587
  year: 2018
  ident: ref_1
  article-title: Bitcoin technical trading with artificial neural network
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2018.07.017
– volume: 27
  start-page: 259
  year: 2018
  ident: ref_8
  article-title: Semi-strong efficiency of Bitcoin
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2018.03.013
– ident: ref_21
  doi: 10.1145/3368691.3368728
– volume: 21
  start-page: 371
  year: 2021
  ident: ref_25
  article-title: Cash flow prediction: MLP and LSTM compared to ARIMA and Prophet
  publication-title: Electron. Commer. Res.
  doi: 10.1007/s10660-019-09362-7
– ident: ref_4
– ident: ref_46
  doi: 10.1145/2939672.2939785
– ident: ref_48
– volume: 192
  start-page: 106573
  year: 2022
  ident: ref_7
  article-title: Optimal smart contract for autonomous greenhouse environment based on IoT blockchain network in agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106573
– ident: ref_15
  doi: 10.1007/978-3-030-66433-6_20
– volume: 8
  start-page: 82804
  year: 2020
  ident: ref_42
  article-title: Stochastic neural networks for cryptocurrency price prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990659
– volume: 187
  start-page: 89
  year: 2021
  ident: ref_9
  article-title: Research on the Development of Digital Currencies under the COVID-19 Epidemic
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.04.037
– volume: 6
  start-page: 42
  year: 2021
  ident: ref_27
  article-title: Twitter Sentiment Analysis Using Natural Language Processing and Machine Learning Techniques
  publication-title: Proc. KIIT Conf.
– volume: 14
  start-page: 321
  year: 2019
  ident: ref_41
  article-title: Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2019.2927707
– ident: ref_6
  doi: 10.3390/s21051640
– ident: ref_44
  doi: 10.1007/s00521-020-05129-6
– ident: ref_24
– volume: 75
  start-page: 596
  year: 2019
  ident: ref_47
  article-title: Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.038
– volume: 19
  start-page: 1449
  year: 2019
  ident: ref_18
  article-title: Universal features of price formation in financial markets: Perspectives from deep learning
  publication-title: Quant. Financ.
  doi: 10.1080/14697688.2019.1622295
– ident: ref_28
  doi: 10.18178/ijmlc.2020.10.1.901
– volume: 48
  start-page: 561
  year: 2020
  ident: ref_40
  article-title: On the role of local blockchain network features in cryptocurrency price formation
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.11547
– ident: ref_10
  doi: 10.1007/978-3-030-65117-6_6
– volume: 6
  start-page: 5427
  year: 2017
  ident: ref_2
  article-title: An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779181
– volume: 67
  start-page: 3001
  year: 2019
  ident: ref_19
  article-title: Deeplob: Deep convolutional neural networks for limit order books
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2907260
– volume: 9
  start-page: 2201
  year: 2020
  ident: ref_31
  article-title: A blockchain-powered decentralized and secure computing paradigm
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2020.2983007
– volume: 86
  start-page: 30
  year: 2020
  ident: ref_26
  article-title: Analyzing the Performance of User Generated Contents in B2B Firms Based on Big Data and Machine Learning
  publication-title: Ind. Mark. Manag.
  doi: 10.1016/j.indmarman.2019.02.021
– ident: ref_29
  doi: 10.1007/978-981-16-1342-5_50
– volume: 36
  start-page: 37
  year: 2019
  ident: ref_38
  article-title: Regulating cryptocurrencies: A supervised machine learning approach to de-anonymizing the bitcoin blockchain
  publication-title: J. Manag. Inf. Syst.
  doi: 10.1080/07421222.2018.1550550
– volume: 9
  start-page: 162651
  year: 2021
  ident: ref_22
  article-title: Improving the Cryptocurrency Price Prediction Performance Based on Reinforcement Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133937
– ident: ref_32
  doi: 10.1109/ISI.2019.8823249
– ident: ref_50
  doi: 10.1109/IJCNN52387.2021.9534453
– volume: 19
  start-page: 2033
  year: 2019
  ident: ref_17
  article-title: Forecasting jump arrivals in stock prices: New attention-based network architecture using limit order book data
  publication-title: Quant. Financ.
  doi: 10.1080/14697688.2019.1634277
– ident: ref_33
  doi: 10.1109/Blockchain.2019.00011
– volume: 30
  start-page: 073127
  year: 2020
  ident: ref_45
  article-title: Using networks and partial differential equations to forecast bitcoin price movement
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/5.0002759
– volume: 109
  start-page: 1
  year: 2018
  ident: ref_3
  article-title: A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.05.011
– volume: 10
  start-page: 5790
  year: 2021
  ident: ref_16
  article-title: Blockchain-based Event Detection and Trust Verification Using Natural Language Processing and Machine Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3139586
– volume: 8
  start-page: 109639
  year: 2020
  ident: ref_34
  article-title: Revealing the character of nodes in a blockchain with supervised learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001676
– volume: 118
  start-page: 35
  year: 2019
  ident: ref_20
  article-title: Cryptocurrency forecasting with deep learning chaotic neural networks
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.11.014
– ident: ref_30
  doi: 10.3390/su14020641
– volume: 109
  start-page: 107507
  year: 2021
  ident: ref_36
  article-title: AWAP: Adaptive weighted attribute propagation enhanced community detection model for bitcoin de-anonymization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107507
SSID ssj0023338
Score 2.4640906
Snippet The popularity of cryptocurrency in recent years has gained a lot of attention among researchers and in academic working areas. The uncontrollable and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1740
SubjectTerms Algorithms
Artificial intelligence
Blockchain
Crypto-currencies
cryptocurrency
Data Mining
Deep learning
Digital currencies
exchange rate prediction
Feature selection
Financial markets
Foreign exchange rates
Germany
Humans
Inflation (Finance)
Information management
Knowledge Discovery
Literature reviews
Machine Learning
Market positioning
Neural networks
Peer to peer computing
Volatility
XGBoost
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egIIOQ4BLVGzsPn1AprZCAaoUA7c2yHbushJIl2SL23zPjeNONQFy42j7Ymoe_sWe-IeRFVUokqjJpLjOTiqpwYFIyT8GUag34ofKB1Ofrh_L0tFos5Dw-uPUxrXLrE4OjrluLb-QHWYHUePgP9Hr1I8WuUfi7GltoXCZXsG026nm5uAi4OMRfA5sQh9D-oMeiUkDgbHIHBar-Px3yzo00zZbcuX5Obv7vxm-RGxF40sNBU26TS665Q67v0BHeJer99oGNvl32FpM7N7Rt6FG3Wa1bG5ic7IYe_xqqheknwKl03uFXD4qXhvQD-jGkZzoamVvP6Hy5wqJ3198jX06OPx-9S2MDhtQCblunHOCBkxowk7a8rMxs5n1hhMucrwqrvfQZ98J5oevCIped0byWVrpce28A69wne03buIeECmaY11mdOSOFz73hPLfeaoldiyrDEvJqKxJlIzs5Nsn4riBKQempUXoJeT4uXQ2UHH9b9AblOi5AFu0w0HZnKhqlYj7nubBGaFEICYdydc6y2jvHK1ZLk5CXqBUKbR02Y3UsWYAjIWuWOiwBHkEAW84Ssr8VvopOoFcXkk_Is3EazBf_ZHTj2vOwBkLWDOLIhDwY9GzcM2DjkkkGM-VEAyeHms40y2-BIryScAMW-aN_b-sxuZZhNQdW6PN9srfuzt0TctX-XC_77mmwpd-M3CuS
  priority: 102
  providerName: ProQuest
Title Knowledge Discovery on Cryptocurrency Exchange Rate Prediction Using Machine Learning Pipelines
URI https://www.ncbi.nlm.nih.gov/pubmed/35270900
https://www.proquest.com/docview/2637791224
https://www.proquest.com/docview/2638712960
https://pubmed.ncbi.nlm.nih.gov/PMC8914665
https://doaj.org/article/0f5354cb4a4649ef8ed502dfee380d9b
Volume 22
WOSCitedRecordID wos000771516700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4QCHFZ9LlqUyCAku0bqxE8fH3aUrELSKVoDKKbIdGyqhtGq6iF747cw4adQIJC5ccrB9sMcznjfxzDMhL3OpkKjKxKlKTCzyzIFJqTQGU6o04IfcB1Kfzx_kbJbP56rYe-oLc8JaeuBWcKfMpzwV1ggtMqGcz12VsqTyzvGcVcrg6cuk2gVTXajFIfJqeYQ4BPWnDZaTAvZmA-8TSPr_PIr3fNEwT3LP8VzeI4cdYqRn7UzvkxuufkDu7vEIPiTl-92fMfpm0VjMytzSZU0v1tvVZmkDBZPd0snPtsyXXgHApMUa72hwX2jIG6DTkFfpaEe5-pUWixVWq7vmEfl0Ofl48TbuXk6ILQCuTczBrzulAexoy2VuxmPvMyNcAvLLrPbKJ9wL54WuMoskdEbzSlnlUu29AZDymBzUy9o9IVQww7xOqsQZJXzqDeep9VYrfG4oNywir3cSLW1HK46vW3wvIbxA4Ze98CPyoh-6ark0_jboHLelH4D016EBlKLslKL8l1JE5BVuaolGCpOxuqs1gCUh3VV5JgHXQOQpxxE52e172VlvUyYZ0jDinWNEnvfdYHd4maJrt7wOYyDWTCAAjMhRqyb9nAHUSqYY9MiBAg0WNeypF98Ct3euwHVl6fH_kMJTcifBYg0swOcn5GCzvnbPyG37Y7No1iNyU85l-OYjcut8MiuuRsGI4Dv9NYG24t20-PIbAjMkxA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tCxJw4P0ILGAQCC7RpnFePiC07EO7areq0IJ6M7ZjL5VQUpou0D_Fb2Qmj24rELc9cI2tyE6-edkz3wC8zFJBRFXaj0Wo_ShLLIqUiH0UpVyh_5C5mtTn0yAdDrPxWIw24FdXC0NplZ1OrBV1Xho6I98OE6LGo3ugd9NvPnWNotvVroVGA4u-XfzAkK16e7SH__dVGB7sn-we-m1XAd-gMzL3Odo8KxQ6AsrwNNO9nnOJjmxoXZYY5YQLuYusi1SeGCJo04rnwggbK-c0GnB87yW4jHo8pWAvHZ8HeBzjvYa9iHMRbFdUxIoef7Bm8-rWAH8agBULuJ6duWLuDm7-bx_qFtxoHWu200jCbdiwxR24vkK3eBdkvztAZHuTylDy6oKVBdudLabz0tRMVWbB9n821dDsA_rhbDSjqyyCL6vTK9hxnX5qWctMe8pGkykV9dvqHny8kB3eh82iLOxDYFGgA6fCPLRaRC52mvPYOKMEdWXKdODBmw4C0rTs69QE5KvEKIzQIpdo8eDFcuq0oRz526T3hKPlBGIJrx-Us1PZKh0ZuJjHkdGRipJI4KZsHgdh7qzlWZAL7cFrQqEkXYaLMaotycAtESuY3EnR_cMAPe15sNWBTbZKrpLnSPPg-XIY1RPdOanClmf1HAzJQ4yTPXjQ4Hq5ZvT900AEOJKuIX5tU-sjxeRLTYGeCbTwSfzo38t6BlcPT44HcnA07D-GayFVrhAbAd-CzfnszD6BK-b7fFLNntZyzODzRcvDb8Xti8Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxA8cB8EBhgEgpeoqZ2bHxAa6yqqblWEYBpPme3YoxJKStMB_Wv8Os7JjVYg3vbAa2xFdvKdm33Odwh5HkcCiaqUGwimXD8ODYiUCFwQpUyC_xDbitTn-DCaTuOTE5FskZ9tLQymVbY6sVLUWaHxjLzPQqTGw3ugvm3SIpLh6M38q4sdpPCmtW2nUUNkYlbfIXwrX4-H8K9fMDY6-LD_zm06DLgaHJOly8H-GSHBKZCaR7EaDKwNlW-YsXGopRWWcesb68ss1EjWpiTPhBYmkNYqMObw3ktkG1xyn_XIdjI-Sj514R6H6K_mMuJceP0SS1rB__c2LGDVKOBPc7BmDzdzNdeM3-jG__zZbpLrjctN92oZuUW2TH6bXFsjYrxD0kl7tEiHs1JjWuuKFjndX6zmy0JXHFZ6RQ9-1HXS9D146DRZ4CUXAptWiRf0qEpMNbThrD2jyWyO5f6mvEs-XsgOd0gvL3Jzn1DfU56VLGNGCd8GVnEeaKulwH5NsfIc8qqFQ6obXnZsD_IlhfgMkZN2yHHIs27qvCYj-dukt4ipbgLyh1cPisVZ2qij1LMBD3ytfOmHvoBNmSzwWGaN4bGXCeWQl4jIFLUcLEbLplgDtoR8YeleBI4hhO7RwCG7LfDSRv2V6W_UOeRpNwyKC2-jZG6K82oOBOsMImiH3Ksx3q0ZooLIEx6MRBvo39jU5kg--1yRo8cCbH8YPPj3sp6QKyAG6eF4OnlIrjIsaUGaAr5LesvFuXlELutvy1m5eNwINSWnFy0QvwACC5YT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Discovery+on+Cryptocurrency+Exchange+Rate+Prediction+Using+Machine+Learning+Pipelines&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zeinab+Shahbazi&rft.au=Yung-Cheol+Byun&rft.date=2022-02-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft.spage=1740&rft_id=info:doi/10.3390%2Fs22051740&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0f5354cb4a4649ef8ed502dfee380d9b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon