Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm
The Brillouin Optical Time-Domain Analyzer assisted by the AdaBoost Algorithm for Brillouin frequency shift (BFS) extraction is proposed and experimentally demonstrated. The Brillouin gain spectrum classification under different BFS is realized by iteratively updating the weak classifier in the form...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 22; číslo 9; s. 3354 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
27.04.2022
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The Brillouin Optical Time-Domain Analyzer assisted by the AdaBoost Algorithm for Brillouin frequency shift (BFS) extraction is proposed and experimentally demonstrated. The Brillouin gain spectrum classification under different BFS is realized by iteratively updating the weak classifier in the form of a decision tree, forming several base classifiers and combining them into a strong classifier. Based on the pseudo-Voigt curve training set with noise, the performance of the AdaBoost Algorithm is studied, and the influence of different signal-to-noise ratio (SNR), frequency range, and frequency step is also studied. Results show that the performance of BFS extraction decreases with the decrease in SNR, the reduction in frequency range, and the increase in frequency step. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s22093354 |