Deep Convolutional Variational Autoencoder as a 2D-Visualization Tool for Partial Discharge Source Classification in Hydrogenerators

Hydrogenerators are strategic assets for power utilities. Their reliability and availability can lead to significant benefits. For decades, monitoring and diagnosis of hydrogenerators have been at the core of maintenance strategies. A significant part of generator diagnosis relies on Partial Dischar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 8; s. 5438 - 5454
Hlavní autori: Zemouri, Ryad, Levesque, Melanie, Amyot, Normand, Hudon, Claude, Kokoko, Olivier, Tahan, Souheil Antoine
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hydrogenerators are strategic assets for power utilities. Their reliability and availability can lead to significant benefits. For decades, monitoring and diagnosis of hydrogenerators have been at the core of maintenance strategies. A significant part of generator diagnosis relies on Partial Discharge (PD) measurements, because the main cause of hydrogenerator breakdown comes from failure of its high voltage stator, which is a major component of hydrogenerators. A study of all stator failure mechanisms reveals that more than 85% of them involve the presence of PD activity. PD signal can be detected from the lead of the hydrogenerator while it is running, thus allowing for on-line diagnosis. Hydro-Québec has been collecting more than 33 000 unlabeled PD measurement files over the last decades. Up to now, this diagnostic technique has been quantified based on global PD amplitudes and integrated PD energy irrespective of the source of the PD signal. Several PD sources exist and they all have different relative risk, but in order to recognize the nature of the PD, or its source, the judgement of experts is required. In this paper, we propose a new method based on visual data analysis to build a PD source classifier with a minimum of labeled data. A convolutional variational autoencoder has been used to help experts to visually select the best training data set in order to improve the performances of the PD source classifier.
AbstractList Hydrogenerators are strategic assets for power utilities. Their reliability and availability can lead to significant benefits. For decades, monitoring and diagnosis of hydrogenerators have been at the core of maintenance strategies. A significant part of generator diagnosis relies on Partial Discharge (PD) measurements, because the main cause of hydrogenerator breakdown comes from failure of its high voltage stator, which is a major component of hydrogenerators. A study of all stator failure mechanisms reveals that more than 85% of them involve the presence of PD activity. PD signal can be detected from the lead of the hydrogenerator while it is running, thus allowing for on-line diagnosis. Hydro-Québec has been collecting more than 33 000 unlabeled PD measurement files over the last decades. Up to now, this diagnostic technique has been quantified based on global PD amplitudes and integrated PD energy irrespective of the source of the PD signal. Several PD sources exist and they all have different relative risk, but in order to recognize the nature of the PD, or its source, the judgement of experts is required. In this paper, we propose a new method based on visual data analysis to build a PD source classifier with a minimum of labeled data. A convolutional variational autoencoder has been used to help experts to visually select the best training data set in order to improve the performances of the PD source classifier.
Hydrogenerators are strategic assets for power utilities. Their reliability and availability can lead to significant benefits. For decades, monitoring and diagnosis of hydrogenerators have been at the core of maintenance strategies. A significant part of generator diagnosis relies on Partial Discharge (PD) measurements, because the main cause of hydrogenerator breakdown comes from failure of its high voltage stator, which is a major component of hydrogenerators. A study of all stator failure mechanisms reveals that more than 85 % of them involve the presence of PD activity. PD signal can be detected from the lead of the hydrogenerator while it is running, thus allowing for on-line diagnosis. Hydro-Québec has been collecting more than 33 000 unlabeled PD measurement files over the last decades. Up to now, this diagnostic technique has been quantified based on global PD amplitudes and integrated PD energy irrespective of the source of the PD signal. Several PD sources exist and they all have different relative risk, but in order to recognize the nature of the PD, or its source, the judgement of experts is required. In this paper, we propose a new method based on visual data analysis to build a PD source classifier with a minimum of labeled data. A convolutional variational autoencoder has been used to help experts to visually select the best training data set in order to improve the performances of the PD source classifier.
Author Amyot, Normand
Zemouri, Ryad
Kokoko, Olivier
Tahan, Souheil Antoine
Levesque, Melanie
Hudon, Claude
Author_xml – sequence: 1
  givenname: Ryad
  orcidid: 0000-0002-3283-9391
  surname: Zemouri
  fullname: Zemouri, Ryad
  email: ryad.zemouri@cnam.fr
  organization: CEDRIC Laboratory of the Conservatoire National des Arts et Métiers (CNAM), HESAM Université, Paris Cedex 03, France
– sequence: 2
  givenname: Melanie
  orcidid: 0000-0002-7815-0872
  surname: Levesque
  fullname: Levesque, Melanie
  organization: Institut de Recherche d'Hydro-Québec (IREQ), Varennes, QC, Canada
– sequence: 3
  givenname: Normand
  orcidid: 0000-0003-0529-3685
  surname: Amyot
  fullname: Amyot, Normand
  organization: Institut de Recherche d'Hydro-Québec (IREQ), Varennes, QC, Canada
– sequence: 4
  givenname: Claude
  orcidid: 0000-0002-3924-5772
  surname: Hudon
  fullname: Hudon, Claude
  organization: Institut de Recherche d'Hydro-Québec (IREQ), Varennes, QC, Canada
– sequence: 5
  givenname: Olivier
  orcidid: 0000-0003-1654-8620
  surname: Kokoko
  fullname: Kokoko, Olivier
  organization: Institut de Recherche d'Hydro-Québec (IREQ), Varennes, QC, Canada
– sequence: 6
  givenname: Souheil Antoine
  orcidid: 0000-0002-9228-5255
  surname: Tahan
  fullname: Tahan, Souheil Antoine
  organization: École de Technologie Supérieure, Montréal, QC, Canada
BackLink https://hal.science/hal-02462252$$DView record in HAL
BookMark eNp9kc1uEzEUhUeoSJTSJ-jGEisWCeN_exlNCqkUCaSUbq07M3dSR8M42JNKZc2D42QCAhZ4Y-vofEe-97wuLoYwYFHc0HJOaWnfL6rqdrOZs5LaObOKaS1fFJeMKjvjkquLP96viuuUdmU-JktSXxY_loh7UoXhKfSH0YcBevIA0cP5vTiMAYcmtBgJJAKELWcPPh2g999PHnIfQk-6EMlniKPPyNKn5hHiFskmHGKDpOohJd_5ZgL8QFbPbQxbHDDCGGJ6U7zsoE94fb6vii8fbu-r1Wz96eNdtVjPGlmaccY6zVtstc2TYq1rCUZICqUyqECWLVWqQYmsbTVT0nAtOTK00CpjNIqWXxV3U24bYOf20X-F-OwCeHcSQty64wxNjw5FrTrBOrBWC1VrU1PDheUma3XHec56N2U9Qv9X1GqxdketZEIxJtkTzd63k3cfw7cDptHt8mbyepNjQgpNNRUmu-zkamJIKWLnGj-eVjZG8L2jpTv27aa-3bFvd-47s_wf9teX_k_dTJRHxN-EsUKUSvKfIb644A
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_en15145005
crossref_primary_10_1109_TDEI_2023_3306324
crossref_primary_10_1109_TDEI_2020_009070
crossref_primary_10_1088_1757_899X_1207_1_012009
crossref_primary_10_1109_TIA_2023_3281311
crossref_primary_10_1016_j_compind_2023_103983
crossref_primary_10_3390_s20041214
crossref_primary_10_1007_s00170_020_06338_y
crossref_primary_10_1007_s00202_021_01306_5
crossref_primary_10_1016_j_eswa_2022_119479
crossref_primary_10_3390_en15217966
crossref_primary_10_3390_s23031208
crossref_primary_10_1186_s12859_021_04339_6
crossref_primary_10_3390_en15186762
crossref_primary_10_3390_su12166421
crossref_primary_10_1177_1748006X211035623
crossref_primary_10_3390_en15010326
crossref_primary_10_1109_TPWRS_2023_3267463
crossref_primary_10_1016_j_aei_2025_103361
crossref_primary_10_1109_TR_2022_3190639
crossref_primary_10_1109_ACCESS_2024_3502546
crossref_primary_10_1109_ACCESS_2025_3550097
crossref_primary_10_3390_en16124544
crossref_primary_10_3390_s25072175
crossref_primary_10_1007_s10845_021_01822_y
crossref_primary_10_1016_j_eswa_2022_118910
crossref_primary_10_3390_en13225992
crossref_primary_10_1109_ACCESS_2024_3368866
crossref_primary_10_1109_TDEI_2024_3431431
crossref_primary_10_3390_en15072325
Cites_doi 10.3390/en12132485
10.1109/EIC.2009.5166352
10.1016/j.procs.2018.08.150
10.1016/j.cageo.2019.04.006
10.1007/s10462-016-9526-2
10.1016/S0003-2670(01)95359-0
10.3390/s18103512
10.1016/j.media.2017.07.005
10.3390/en10111694
10.1049/joe.2018.0249
10.1016/j.ress.2018.07.006
10.1016/j.neucom.2019.03.013
10.1137/18M1216134
10.1109/ACCESS.2019.2916648
10.1109/ACCESS.2019.2894764
10.1177/1475921718788299
10.1016/j.jprocont.2019.01.008
10.1016/j.neunet.2019.05.003
10.1016/j.patcog.2018.12.015
10.1016/j.knosys.2018.09.005
10.1016/j.patcog.2016.11.008
10.3390/app9081526
10.1109/TNNLS.2018.2855446
10.1109/ACCESS.2018.2890693
10.1109/MLSP.2012.6349808
10.1109/TVCG.2019.2903943
10.1016/j.knosys.2019.01.017
10.1016/j.jprocont.2018.02.004
10.1109/TDEI.2005.1430399
10.1109/ACCESS.2018.2848210
10.1007/s13748-016-0094-0
10.1016/j.compchemeng.2019.106515
10.1016/0169-7439(87)80084-9
10.1016/j.engappai.2019.04.013
10.1109/TKDE.2008.239
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Attribution
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Attribution
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
1XC
VOOES
DOA
DOI 10.1109/ACCESS.2019.2962775
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2169-3536
EndPage 5454
ExternalDocumentID oai_doaj_org_article_e4b6f42fa99746b78b183493842fbf33
oai:HAL:hal-02462252v1
10_1109_ACCESS_2019_2962775
8944065
Genre orig-research
GrantInformation_xml – fundername: Institut de Recherche d’Hydro-Québec (IREQ)
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c508t-2f73ded79019eb7b5a8451a068e6a50d166ce5e2dd726583753e2e9ad6887e4d3
IEDL.DBID DOA
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524677500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:40 EDT 2025
Sat Nov 29 15:08:10 EST 2025
Sun Jun 29 13:22:37 EDT 2025
Sat Nov 29 02:41:44 EST 2025
Tue Nov 18 21:48:02 EST 2025
Wed Aug 27 02:41:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords model interpretation
feature extraction
convolutional variational autoencoder
Hydrogenerators
diagnosis
generative model
data visualization
partial discharges
deep neural networks
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-2f73ded79019eb7b5a8451a068e6a50d166ce5e2dd726583753e2e9ad6887e4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3283-9391
0000-0002-7815-0872
0000-0003-1654-8620
0000-0003-0529-3685
0000-0002-9228-5255
0000-0002-3924-5772
OpenAccessLink https://doaj.org/article/e4b6f42fa99746b78b183493842fbf33
PQID 2454717148
PQPubID 4845423
PageCount 17
ParticipantIDs proquest_journals_2454717148
crossref_citationtrail_10_1109_ACCESS_2019_2962775
ieee_primary_8944065
hal_primary_oai_HAL_hal_02462252v1
crossref_primary_10_1109_ACCESS_2019_2962775
doaj_primary_oai_doaj_org_article_e4b6f42fa99746b78b183493842fbf33
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref10
fanny (ref11) 2018; 135
im (ref27) 2015
ref16
ref19
zemouri (ref49) 2019
barrios (ref47) 2019; 12
luo (ref43) 2017; 10
bengio (ref26) 2014
ref50
settles (ref5) 2009
han (ref1) 2019
ref46
ref45
ref48
ref42
krogh (ref6) 0
ref41
ref44
blei (ref38) 2016
ref8
ref7
ref9
ref4
ref40
lévesque (ref3) 2017; 8
kingma (ref36) 2013
ref35
ref34
ref31
ref30
zeiler (ref18) 2014
ref33
ref32
b?aszczy?ski (ref12) 2018; 138
ref2
ref39
kingma (ref37) 2017
ref24
van der maaten (ref20) 2008; 9
ref23
ref22
ref21
ref28
ref29
selvaraju (ref17) 2016
mishra (ref25) 2017
References_xml – volume: 12
  start-page: 2485
  year: 2019
  ident: ref47
  article-title: Partial discharge classification using deep learning methods-Survey of recent progress
  publication-title: Energies
  doi: 10.3390/en12132485
– ident: ref2
  doi: 10.1109/EIC.2009.5166352
– volume: 135
  start-page: 60
  year: 2018
  ident: ref11
  article-title: Deep learning for imbalance data classification using class expert generative adversarial network
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.08.150
– ident: ref30
  doi: 10.1016/j.cageo.2019.04.006
– start-page: 818
  year: 2014
  ident: ref18
  article-title: Visualizing and understanding convolutional networks
  publication-title: Vision Computer
– ident: ref50
  doi: 10.1007/s10462-016-9526-2
– ident: ref46
  doi: 10.1016/S0003-2670(01)95359-0
– ident: ref48
  doi: 10.3390/s18103512
– ident: ref15
  doi: 10.1016/j.media.2017.07.005
– volume: 138
  year: 2018
  ident: ref12
  article-title: Improving bagging ensembles for class imbalanced data by active learning
  publication-title: Advances in Feature Selection for Data and Pattern Recognition
– volume: 10
  start-page: 1694
  year: 2017
  ident: ref43
  article-title: A review of online partial discharge measurement of large generators
  publication-title: Energies
  doi: 10.3390/en10111694
– year: 2013
  ident: ref36
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– year: 2017
  ident: ref37
  article-title: Variational inference & deep learning: A new synthesis
– ident: ref42
  doi: 10.1049/joe.2018.0249
– year: 2017
  ident: ref25
  article-title: A generative model for zero shot learning using conditional variational autoencoders
  publication-title: arXiv 1709 00663
– ident: ref4
  doi: 10.1016/j.ress.2018.07.006
– ident: ref33
  doi: 10.1016/j.neucom.2019.03.013
– year: 2016
  ident: ref17
  article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization
  publication-title: arXiv 1610 02391
– ident: ref22
  doi: 10.1137/18M1216134
– ident: ref21
  doi: 10.1109/ACCESS.2019.2916648
– ident: ref34
  doi: 10.1109/ACCESS.2019.2894764
– ident: ref29
  doi: 10.1177/1475921718788299
– ident: ref32
  doi: 10.1016/j.jprocont.2019.01.008
– year: 2016
  ident: ref38
  article-title: Variational inference: A review for statisticians
  publication-title: arXiv 1601 00670
– ident: ref23
  doi: 10.1016/j.neunet.2019.05.003
– ident: ref28
  doi: 10.1016/j.patcog.2018.12.015
– ident: ref41
  doi: 10.1016/j.knosys.2018.09.005
– ident: ref19
  doi: 10.1016/j.patcog.2016.11.008
– ident: ref16
  doi: 10.3390/app9081526
– ident: ref7
  doi: 10.1109/TNNLS.2018.2855446
– start-page: 231
  year: 0
  ident: ref6
  article-title: Neural network ensembles, cross validation and active learning
  publication-title: Proc 7th Int Conf Neural Inf Process Syst (NIPS)
– volume: 8
  start-page: 7
  year: 2017
  ident: ref3
  article-title: Improvement of a hydrogenerator prognostic model by using partial discharge measurement analysis
  publication-title: Proc Annu Conf Prognostics Health Manage Soc
– year: 2009
  ident: ref5
  article-title: Active learning literature survey
– year: 2019
  ident: ref1
  article-title: Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans
– ident: ref8
  doi: 10.1109/ACCESS.2018.2890693
– year: 2014
  ident: ref26
  article-title: How auto-encoders could provide credit assignment in deep networks via target propagation
  publication-title: arXiv 1407 7906
– ident: ref13
  doi: 10.1109/MLSP.2012.6349808
– ident: ref14
  doi: 10.1109/TVCG.2019.2903943
– ident: ref24
  doi: 10.1016/j.knosys.2019.01.017
– ident: ref40
  doi: 10.1016/j.jprocont.2018.02.004
– ident: ref44
  doi: 10.1109/TDEI.2005.1430399
– year: 2019
  ident: ref49
  article-title: A new growing pruning deep learning neural network algorithm (GP-DLNN)
  publication-title: Neural Comput Appl
– ident: ref35
  doi: 10.1109/ACCESS.2018.2848210
– ident: ref9
  doi: 10.1007/s13748-016-0094-0
– year: 2015
  ident: ref27
  article-title: Denoising criterion for variational auto-encoding framework
  publication-title: arXiv 1511 06406
– ident: ref39
  doi: 10.1016/j.compchemeng.2019.106515
– ident: ref45
  doi: 10.1016/0169-7439(87)80084-9
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref20
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref31
  doi: 10.1016/j.engappai.2019.04.013
– ident: ref10
  doi: 10.1109/TKDE.2008.239
SSID ssj0000816957
Score 2.394782
Snippet Hydrogenerators are strategic assets for power utilities. Their reliability and availability can lead to significant benefits. For decades, monitoring and...
SourceID doaj
hal
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5438
SubjectTerms Classifiers
Computer Science
convolutional variational autoencoder
Data analysis
Data visualization
deep neural networks
Diagnosis
Diagnostic systems
Discharge
Failure mechanisms
feature extraction
generative model
Hydrogenerators
Machine Learning
Maintenance engineering
model interpretation
Partial discharges
Stators
Training
Training data
Utilities
Visualization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZJ6KE99JWWOE2LKD3GyVq2JOu43W3YQwiBpiE3IVnjdiHYYb270Ht-eGdkx6S0FHozQmNsvvG8PPqGsU9QKQW6CqnOPSYosqxTk0uXVkGidyxqb6qI9Lm-uChvbszlDjsez8IAQGw-gxO6jP_yQ1ttqFR2WpoC_Y_cZbtaq_6s1lhPoQESRuqBWCibmNPpbIbvQN1b5kTQjBnqJXzkfCJHP7qUH9QBGUer_GGPo5M5e_F_j_eSPR-CST7t0X_FdqB5zZ49ohjcZ_dzgDs-a5vtoGO4_xrz46EGyKebdUtclgFW3HXccTFPr5cdHbXsD2jyq7a95Rja8kvSMhSZL7vIrwT8a6z88zhYk1qOeoFlwxc_w6r9HhmtaZrPG_bt7MvVbJEOkxfSCgO2dSpqnQcIGoMFA1576cpCZm6iSlBOTkKmVAUSRAhaYAiTY84DAowLCm0WFCF_y_aatoEDxg1CXhvnM6IOK4rKBSl1rVQNzkAZfMLEAyS2GmjJaTrGrY3pycTYHkdLONoBx4Qdj0J3PSvHv7d_JqzHrUSpHRcQPjt8oRYKr-pC1M5giqW8Lj1au8LkJa75Os8T9hE15bd7LKbnltYwzlFoF8U2S9g-6cW4a1CJhB09KJYdbERnBXGp0fz58vDvUu_YU0HZfSz4HLG99WoD79mTartedqsPUf1_AfjVA-Q
  priority: 102
  providerName: IEEE
Title Deep Convolutional Variational Autoencoder as a 2D-Visualization Tool for Partial Discharge Source Classification in Hydrogenerators
URI https://ieeexplore.ieee.org/document/8944065
https://www.proquest.com/docview/2454717148
https://hal.science/hal-02462252
https://doaj.org/article/e4b6f42fa99746b78b183493842fbf33
Volume 8
WOSCitedRecordID wos000524677500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SPOhB1CpurSWIR8fOZCa_jutuyx5qKVhLbyGZvNGFMlN2tgtePPmH-15muqwIevGyh5AM2bzHe98LL9_H2DuolQJdx0yXAQsUaZrMltJndZSYHasm2DpZ-kyfn5vra3uxI_VFPWEDPfBwcMdQBdVUovEWka8K2gR0wsqWBsdCUyaez1zbnWIqxWBTKCv1SDNU5PZ4OpvhP6JeLvtBkOIMdRbupKLE2I8J5hv1QyahlT-ic0o5p0_ZkxEr8umwx2fsAbTP2eMdBsF99nMOcMtnXbsZXQjnX2H5O17x8enduiOqyggr7nvuuZhnV8ueXlIO7y_5ZdfdcESu_ILOApfMl32iTwL-OV3s86SbSR1Fw4Jlyxff46r7mgirSaznBftyenI5W2SjsEJWIx5bZ6LRZYSoEQtYCDpIbypZ-FwZUF7msVCqBgkiRi0QoZRY0oAA66PCkARVLF-yvbZr4RXjFi3aWB8KYgarqtpHKXWjVAPegolhwsT9Gbt6ZB0n8Ysbl6qP3LrBMI4M40bDTNj77aLbgXTj79M_kvG2U4kxOw2gH7nRj9y__GjC3qLpf_vGYnrmaAxhjMKwJzbFhO2TZ2xnGVshIMINHN57ihtDQO8EUaWRvLw5-B_7e80eCSr10-3PIdtbr-7gDXtYb9bLfnWUvB9_P_04OUpvGH8Bi8QIeg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLXGQAIe-BqIwAAL8bhsjRM78WNpmYoo1STKtDfLiW-g0pRMTVuJd3449zpeNARC4q2y7KrVublfuT6HsXdQKQV55eI8LbFAkUUd61TauHISo2NWl7rySM_zxaK4uNBne-xouAsDAH74DI7po3-X79pqS62yk0JnGH_kLXablLPCba2ho0ISElrmgVooGemT8WSC_4Lmt_SxIJUZmia8EX48Sz8Gle80A-nFVf7wyD7MnD78vx_4iD0I6SQf9_g_ZnvQPGH3b5AMHrCfU4ArPmmbXbAy3H-OFXLoAvLxdtMSm6WDNbcdt1xM4_NVR5ct-yuafNm2lxyTW35GdoZHpqvOMywB_-J7_9xLa9LQUX9g1fDZD7duv3lOa9Lzecq-nn5YTmZx0F6IK0zZNrGo89SByzFd0FDmpbRFJhM7UgUoK0cuUaoCCcK5XGASk2LVAwK0dQq9FmQufcb2m7aB54xrBL3WtkyIPCzLKuukzGularAaCldGTFxDYqpATE76GJfGFygjbXocDeFoAo4ROxoOXfW8HP_e_p6wHrYSqbZfQPhMeEYNZKWqM1FbjUWWKvOiRH-X6bTAtbJO04i9RUv57Ttm47mhNcx0FHpGsUsidkB2MewKJhGxw2vDMsFLdEYQmxop0Bcv_n7qDbs7W36em_nHxaeX7J6gWt-3fw7Z_ma9hVfsTrXbrLr1a_8o_AKfmQct
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Variational+Autoencoder+as+a+2D-Visualization+Tool+for+Partial+Discharge+Source+Classification+in+Hydrogenerators&rft.jtitle=IEEE+access&rft.au=Zemouri%2C+Ryad&rft.au=Levesque%2C+Melanie&rft.au=Amyot%2C+Normand&rft.au=Hudon%2C+Claude&rft.date=2020&rft.pub=IEEE&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=5438&rft.epage=5454&rft_id=info:doi/10.1109%2FACCESS.2019.2962775&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02462252v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon