Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning

Web applications have become ubiquitous for many business sectors due to their platform independence and low operation cost. Billions of users are visiting these applications to accomplish their daily tasks. However, many of these applications are either vulnerable to web defacement attacks or creat...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 9; p. 3373
Main Authors: Alsaedi, Mohammed, Ghaleb, Fuad, Saeed, Faisal, Ahmad, Jawad, Alasli, Mohammed
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 28.04.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Web applications have become ubiquitous for many business sectors due to their platform independence and low operation cost. Billions of users are visiting these applications to accomplish their daily tasks. However, many of these applications are either vulnerable to web defacement attacks or created and managed by hackers such as fraudulent and phishing websites. Detecting malicious websites is essential to prevent the spreading of malware and protect end-users from being victims. However, most existing solutions rely on extracting features from the website’s content which can be harmful to the detection machines themselves and subject to obfuscations. Detecting malicious Uniform Resource Locators (URLs) is safer and more efficient than content analysis. However, the detection of malicious URLs is still not well addressed due to insufficient features and inaccurate classification. This study aims at improving the detection accuracy of malicious URL detection by designing and developing a cyber threat intelligence-based malicious URL detection model using two-stage ensemble learning. The cyber threat intelligence-based features are extracted from web searches to improve detection accuracy. Cybersecurity analysts and users reports around the globe can provide important information regarding malicious websites. Therefore, cyber threat intelligence-based (CTI) features extracted from Google searches and Whois websites are used to improve detection performance. The study also proposed a two-stage ensemble learning model that combines the random forest (RF) algorithm for preclassification with multilayer perceptron (MLP) for final decision making. The trained MLP classifier has replaced the majority voting scheme of the three trained random forest classifiers for decision making. The probabilistic output of the weak classifiers of the random forest was aggregated and used as input for the MLP classifier for adequate classification. Results show that the extracted CTI-based features with the two-stage classification outperform other studies’ detection models. The proposed CTI-based detection model achieved a 7.8% accuracy improvement and 6.7% reduction in false-positive rates compared with the traditional URL-based model.
AbstractList Web applications have become ubiquitous for many business sectors due to their platform independence and low operation cost. Billions of users are visiting these applications to accomplish their daily tasks. However, many of these applications are either vulnerable to web defacement attacks or created and managed by hackers such as fraudulent and phishing websites. Detecting malicious websites is essential to prevent the spreading of malware and protect end-users from being victims. However, most existing solutions rely on extracting features from the website’s content which can be harmful to the detection machines themselves and subject to obfuscations. Detecting malicious Uniform Resource Locators (URLs) is safer and more efficient than content analysis. However, the detection of malicious URLs is still not well addressed due to insufficient features and inaccurate classification. This study aims at improving the detection accuracy of malicious URL detection by designing and developing a cyber threat intelligence-based malicious URL detection model using two-stage ensemble learning. The cyber threat intelligence-based features are extracted from web searches to improve detection accuracy. Cybersecurity analysts and users reports around the globe can provide important information regarding malicious websites. Therefore, cyber threat intelligence-based (CTI) features extracted from Google searches and Whois websites are used to improve detection performance. The study also proposed a two-stage ensemble learning model that combines the random forest (RF) algorithm for preclassification with multilayer perceptron (MLP) for final decision making. The trained MLP classifier has replaced the majority voting scheme of the three trained random forest classifiers for decision making. The probabilistic output of the weak classifiers of the random forest was aggregated and used as input for the MLP classifier for adequate classification. Results show that the extracted CTI-based features with the two-stage classification outperform other studies’ detection models. The proposed CTI-based detection model achieved a 7.8% accuracy improvement and 6.7% reduction in false-positive rates compared with the traditional URL-based model.
Web applications have become ubiquitous for many business sectors due to their platform independence and low operation cost. Billions of users are visiting these applications to accomplish their daily tasks. However, many of these applications are either vulnerable to web defacement attacks or created and managed by hackers such as fraudulent and phishing websites. Detecting malicious websites is essential to prevent the spreading of malware and protect end-users from being victims. However, most existing solutions rely on extracting features from the website's content which can be harmful to the detection machines themselves and subject to obfuscations. Detecting malicious Uniform Resource Locators (URLs) is safer and more efficient than content analysis. However, the detection of malicious URLs is still not well addressed due to insufficient features and inaccurate classification. This study aims at improving the detection accuracy of malicious URL detection by designing and developing a cyber threat intelligence-based malicious URL detection model using two-stage ensemble learning. The cyber threat intelligence-based features are extracted from web searches to improve detection accuracy. Cybersecurity analysts and users reports around the globe can provide important information regarding malicious websites. Therefore, cyber threat intelligence-based (CTI) features extracted from Google searches and Whois websites are used to improve detection performance. The study also proposed a two-stage ensemble learning model that combines the random forest (RF) algorithm for preclassification with multilayer perceptron (MLP) for final decision making. The trained MLP classifier has replaced the majority voting scheme of the three trained random forest classifiers for decision making. The probabilistic output of the weak classifiers of the random forest was aggregated and used as input for the MLP classifier for adequate classification. Results show that the extracted CTI-based features with the two-stage classification outperform other studies' detection models. The proposed CTI-based detection model achieved a 7.8% accuracy improvement and 6.7% reduction in false-positive rates compared with the traditional URL-based model.Web applications have become ubiquitous for many business sectors due to their platform independence and low operation cost. Billions of users are visiting these applications to accomplish their daily tasks. However, many of these applications are either vulnerable to web defacement attacks or created and managed by hackers such as fraudulent and phishing websites. Detecting malicious websites is essential to prevent the spreading of malware and protect end-users from being victims. However, most existing solutions rely on extracting features from the website's content which can be harmful to the detection machines themselves and subject to obfuscations. Detecting malicious Uniform Resource Locators (URLs) is safer and more efficient than content analysis. However, the detection of malicious URLs is still not well addressed due to insufficient features and inaccurate classification. This study aims at improving the detection accuracy of malicious URL detection by designing and developing a cyber threat intelligence-based malicious URL detection model using two-stage ensemble learning. The cyber threat intelligence-based features are extracted from web searches to improve detection accuracy. Cybersecurity analysts and users reports around the globe can provide important information regarding malicious websites. Therefore, cyber threat intelligence-based (CTI) features extracted from Google searches and Whois websites are used to improve detection performance. The study also proposed a two-stage ensemble learning model that combines the random forest (RF) algorithm for preclassification with multilayer perceptron (MLP) for final decision making. The trained MLP classifier has replaced the majority voting scheme of the three trained random forest classifiers for decision making. The probabilistic output of the weak classifiers of the random forest was aggregated and used as input for the MLP classifier for adequate classification. Results show that the extracted CTI-based features with the two-stage classification outperform other studies' detection models. The proposed CTI-based detection model achieved a 7.8% accuracy improvement and 6.7% reduction in false-positive rates compared with the traditional URL-based model.
Audience Academic
Author Alsaedi, Mohammed
Saeed, Faisal
Alasli, Mohammed
Ghaleb, Fuad
Ahmad, Jawad
AuthorAffiliation 3 DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
4 School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK; j.ahmad@napier.ac.uk
1 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
2 College of Computer Science and Engineering, Taibah University, P.O. Box 344, Medina 41411, Saudi Arabia; masadi@taibahu.edu.sa (M.A.); fsaeed@taibahu.edu.sa (F.S.); masali@taibahu.edu.sa (M.A.)
AuthorAffiliation_xml – name: 3 DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
– name: 4 School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK; j.ahmad@napier.ac.uk
– name: 2 College of Computer Science and Engineering, Taibah University, P.O. Box 344, Medina 41411, Saudi Arabia; masadi@taibahu.edu.sa (M.A.); fsaeed@taibahu.edu.sa (F.S.); masali@taibahu.edu.sa (M.A.)
– name: 1 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Alsaedi
  fullname: Alsaedi, Mohammed
– sequence: 2
  givenname: Fuad
  orcidid: 0000-0002-1468-0655
  surname: Ghaleb
  fullname: Ghaleb, Fuad
– sequence: 3
  givenname: Faisal
  orcidid: 0000-0002-2822-1708
  surname: Saeed
  fullname: Saeed, Faisal
– sequence: 4
  givenname: Jawad
  orcidid: 0000-0001-6289-8248
  surname: Ahmad
  fullname: Ahmad, Jawad
– sequence: 5
  givenname: Mohammed
  surname: Alasli
  fullname: Alasli, Mohammed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35591061$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URD_gwB9AkbjAIa0_Yse5IJWlwEpbIaHu2fLHJPUqsYudReq_x8uWVVshH2yNH7-eeWdO0VGIARB6S_A5Yx2-yJTijrGWvUAnpKFNLUvg6NH5GJ3mvMGYMsbkK3TMOO8IFuQErRf3BlJ1c5tAz9UyzDCOfoBgof6sM7jqWo_e-rjN1frnqvoCM9jZx1BdRwdjtc4-DNVVyDCZEaoV6BRK5DV62esxw5uH_Qytv17dLL7Xqx_flovLVW05lnNNSc8Il063bcm_4643TSc1p62lmmpmtRDGWNZQCx2jRvKWi07IpsPSCmLZGVrudV3UG3WX_KTTvYraq7-BmAal0-ztCMpx3ktsHNWWN1I2xhJHZbGEUMNlb4rWp73W3dZM4CyEOenxiejTm-Bv1RB_q-IkEQ0pAh8eBFL8tYU8q8lnW_zUAYp_igrRth3njBb0_TN0E7cpFKt2FCMYC7kTPN9Tgy4F-NDH8q8ty8HkbRmB3pf4ZSuJIFiypjx497iEQ-7_2l2Aj3vApphzgv6AEKx2o6QOo1TYi2es9bPe9b5k4cf_vPgDMifHjA
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110839
crossref_primary_10_3390_s23167273
crossref_primary_10_3390_s23020679
crossref_primary_10_3390_fi15100325
crossref_primary_10_32604_cmc_2023_042090
crossref_primary_10_35940_ijitee_D1068_14050425
crossref_primary_10_4018_IJSWIS_369823
crossref_primary_10_1080_19393555_2025_2495033
crossref_primary_10_1109_ACCESS_2024_3384840
crossref_primary_10_7717_peerj_cs_2640
crossref_primary_10_1109_ACCESS_2024_3412331
crossref_primary_10_1007_s12046_024_02486_z
crossref_primary_10_1016_j_cose_2024_103754
crossref_primary_10_3390_s23208499
crossref_primary_10_32604_cmc_2024_051598
crossref_primary_10_1109_ACCESS_2023_3348071
crossref_primary_10_3390_electronics13122379
crossref_primary_10_1007_s42452_025_06773_0
crossref_primary_10_3390_su152416811
crossref_primary_10_55969_paradigmplus_v3n3a2
crossref_primary_10_1016_j_cosrev_2025_100810
crossref_primary_10_3390_app12157441
crossref_primary_10_3233_JIFS_236422
crossref_primary_10_1016_j_joitmc_2024_100375
crossref_primary_10_1007_s11042_024_18169_0
crossref_primary_10_1007_s40998_023_00690_x
crossref_primary_10_3390_info13110527
Cites_doi 10.1016/j.ins.2019.11.008
10.1016/j.procs.2021.10.082
10.1109/ACCESS.2021.3093094
10.1016/j.iot.2021.100357
10.1016/j.cose.2021.102374
10.1016/j.procs.2020.01.035
10.1109/ACCESS.2019.2960449
10.1016/j.procs.2021.07.040
10.1016/j.aasri.2013.10.020
10.1016/j.ins.2021.09.038
10.1007/978-3-030-62582-5_21
10.1109/ISCTT51595.2020.00060
10.1109/ACCESS.2020.3004814
10.1016/j.comnet.2018.03.006
10.1007/978-3-319-69155-8_9
10.1145/3357384.3357891
10.1016/j.cose.2020.102114
10.1016/j.cose.2021.102218
10.1016/j.cose.2018.01.013
10.1016/j.procs.2020.03.294
10.1016/j.asoc.2020.106991
10.1016/j.comcom.2021.04.023
10.3390/s22020410
10.1016/j.jcss.2014.02.005
10.1109/COINS51742.2021.9524269
10.1016/j.eswa.2020.113584
10.3233/JIFS-169429
10.1016/j.comnet.2021.108591
10.1016/j.matpr.2021.04.041
10.1145/3373017.3373020
10.1109/TNSM.2014.2377295
10.1016/j.is.2020.101494
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22093373
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d55f80bd2ac54884bc1d2800212b58fb
PMC9101641
A781610834
35591061
10_3390_s22093373
Genre Journal Article
GrantInformation_xml – fundername: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia
  grantid: 168 /442
– fundername: Taibah University
  grantid: 168 /442
– fundername: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia
  grantid: 168/442
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-21f3158da7709395dfb498a527c2a2a3ca66bbc342ce932b857569684908c61c3
IEDL.DBID BENPR
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795281100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:36 EDT 2025
Tue Nov 04 01:56:39 EST 2025
Sun Nov 09 13:39:30 EST 2025
Tue Oct 07 07:09:54 EDT 2025
Tue Nov 04 18:29:24 EST 2025
Wed Feb 19 02:26:28 EST 2025
Sat Nov 29 07:14:29 EST 2025
Tue Nov 18 22:24:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords ensemble learning
cyber threat intelligence
malicious URLs
internet security
cybersecurity
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-21f3158da7709395dfb498a527c2a2a3ca66bbc342ce932b857569684908c61c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1468-0655
0000-0001-6289-8248
0000-0002-2822-1708
OpenAccessLink https://www.proquest.com/docview/2663100681?pq-origsite=%requestingapplication%
PMID 35591061
PQID 2663100681
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d55f80bd2ac54884bc1d2800212b58fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9101641
proquest_miscellaneous_2667795532
proquest_journals_2663100681
gale_infotracacademiconefile_A781610834
pubmed_primary_35591061
crossref_primary_10_3390_s22093373
crossref_citationtrail_10_3390_s22093373
PublicationCentury 2000
PublicationDate 20220428
PublicationDateYYYYMMDD 2022-04-28
PublicationDate_xml – month: 4
  year: 2022
  text: 20220428
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Rameem (ref_10) 2021; 23
Guo (ref_4) 2021; 2021
Motiur (ref_38) 2020; 167
Rakesh (ref_22) 2015; 9
Goldani (ref_33) 2021; 101
Kim (ref_23) 2018; 77
ref_36
Marchal (ref_40) 2014; 11
Subasi (ref_9) 2021; 194
Huang (ref_18) 2021; 104
He (ref_24) 2021; 9
ref_31
Gupta (ref_11) 2021; 175
ref_30
Mbona (ref_37) 2022; 582
Patil (ref_25) 2018; 18
Kim (ref_21) 2018; 137
Wang (ref_27) 2020; 513
ref_39
ref_16
ref_15
Samarasinghe (ref_20) 2021; 101
Mondal (ref_13) 2021; 62
Vinodini (ref_8) 2021; 47
Nepal (ref_1) 2014; 80
Vinayakumar (ref_28) 2018; 34
Wazirali (ref_12) 2021; 201
Ranganayakulu (ref_41) 2013; 4
Haynes (ref_14) 2021; 191
ref_42
Agarwal (ref_35) 2019; 165
Chauhan (ref_32) 2021; 1
ref_2
Li (ref_26) 2020; 91
ref_29
Bhansali (ref_19) 2021; 109
Nasralla (ref_3) 2020; 8
Liu (ref_7) 2019; 7
ref_5
Phung (ref_17) 2021; 13
ref_6
Huang (ref_34) 2020; 159
References_xml – volume: 2021
  start-page: 1
  year: 2021
  ident: ref_4
  article-title: Internet of Things Based Intelligent Techniques in Workable Computing: An Overview
  publication-title: Sci. Program.
– volume: 513
  start-page: 600
  year: 2020
  ident: ref_27
  article-title: Deep and broad URL feature mining for android malware detection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.11.008
– volume: 194
  start-page: 272
  year: 2021
  ident: ref_9
  article-title: A Comparative Evaluation of Ensemble Classifiers for Malicious Webpage Detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.10.082
– volume: 23
  start-page: 1
  year: 2021
  ident: ref_10
  article-title: Detecting Covid-19 chaos driven phishing/malicious URL attacks by a fuzzy logic and data mining based intelligence system
  publication-title: Egypt. Inform. J.
– volume: 9
  start-page: 93089
  year: 2021
  ident: ref_24
  article-title: An Effective Cost-Sensitive XGBoost Method for Malicious URLs Detection in Imbalanced Dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093094
– volume: 62
  start-page: 102967
  year: 2021
  ident: ref_13
  article-title: SeizeMaliciousURL: A novel learning approach to detect malicious URLs
  publication-title: J. Inf. Secur. Appl.
– volume: 13
  start-page: 100357
  year: 2021
  ident: ref_17
  article-title: Detection of malicious javascript on an imbalanced dataset
  publication-title: Internet Things
  doi: 10.1016/j.iot.2021.100357
– volume: 109
  start-page: 102374
  year: 2021
  ident: ref_19
  article-title: Discovering Features for Detecting Malicious Websites: An Empirical Study
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102374
– volume: 1
  start-page: 100051
  year: 2021
  ident: ref_32
  article-title: Optimization and improvement of fake news detection using deep learning approaches for societal benefit
  publication-title: J. Inf. Manag. Data Insights
– ident: ref_5
– volume: 165
  start-page: 377
  year: 2019
  ident: ref_35
  article-title: Analysis of Classifiers for Fake News Detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.01.035
– volume: 7
  start-page: 182004
  year: 2019
  ident: ref_7
  article-title: A survey of exploitation and detection methods of XSS vulnerabilities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960449
– volume: 191
  start-page: 127
  year: 2021
  ident: ref_14
  article-title: Lightweight URL-based phishing detection using natural language processing transformers for mobile devices
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.07.040
– volume: 4
  start-page: 125
  year: 2013
  ident: ref_41
  article-title: Detecting Malicious URLs in E-mail–An Implementation
  publication-title: AASRI Procedia
  doi: 10.1016/j.aasri.2013.10.020
– volume: 582
  start-page: 369
  year: 2022
  ident: ref_37
  article-title: Feature selection using Benford’s law to support detection of malicious social media bots
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.09.038
– ident: ref_15
  doi: 10.1007/978-3-030-62582-5_21
– volume: 9
  start-page: 304
  year: 2015
  ident: ref_22
  article-title: Detection of URL based attacks using reduced feature set and modified C4. 5 algorithm
  publication-title: Adv. Nat. Appl.Sci.
– ident: ref_30
  doi: 10.1109/ISCTT51595.2020.00060
– volume: 18
  start-page: 11
  year: 2018
  ident: ref_25
  article-title: Malicious URLs detection using decision tree classifiers and majority voting technique
  publication-title: Cybern. Inf. Technol.
– volume: 8
  start-page: 119795
  year: 2020
  ident: ref_3
  article-title: Defenses against perception-layer attacks on iot smart furniture for impaired people
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004814
– volume: 137
  start-page: 119
  year: 2018
  ident: ref_21
  article-title: WebMon: ML-and YARA-based malicious webpage detection
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.03.006
– ident: ref_6
– ident: ref_36
  doi: 10.1007/978-3-319-69155-8_9
– ident: ref_42
  doi: 10.1145/3357384.3357891
– volume: 101
  start-page: 102114
  year: 2021
  ident: ref_20
  article-title: On cloaking behaviors of malicious websites
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.102114
– ident: ref_31
– ident: ref_29
– volume: 104
  start-page: 102218
  year: 2021
  ident: ref_18
  article-title: JSContana: Malicious JavaScript detection using adaptable context analysis and key feature extraction
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102218
– volume: 77
  start-page: 790
  year: 2018
  ident: ref_23
  article-title: Malicious URL protection based on attackers’ habitual behavioral analysis
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.01.013
– volume: 167
  start-page: 2410
  year: 2020
  ident: ref_38
  article-title: PhishStack: Evaluation of Stacked Generalization in Phishing URLs Detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.294
– volume: 101
  start-page: 106991
  year: 2021
  ident: ref_33
  article-title: Detecting fake news with capsule neural networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106991
– volume: 175
  start-page: 47
  year: 2021
  ident: ref_11
  article-title: A novel approach for phishing URLs detection using lexical based machine learning in a real-time environment
  publication-title: Comput.Commun.
  doi: 10.1016/j.comcom.2021.04.023
– ident: ref_2
  doi: 10.3390/s22020410
– volume: 80
  start-page: 973
  year: 2014
  ident: ref_1
  article-title: A survey of emerging threats in cybersecurity
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2014.02.005
– ident: ref_16
  doi: 10.1109/COINS51742.2021.9524269
– volume: 159
  start-page: 113584
  year: 2020
  ident: ref_34
  article-title: Fake news detection using an ensemble learning model based on Self-Adaptive Harmony Search algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113584
– volume: 34
  start-page: 1333
  year: 2018
  ident: ref_28
  article-title: Evaluating deep learning approaches to characterize and classify malicious URL’s
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169429
– volume: 201
  start-page: 108591
  year: 2021
  ident: ref_12
  article-title: Sustaining accurate detection of phishing URLs using SDN and feature selection approaches
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108591
– volume: 47
  start-page: 163
  year: 2021
  ident: ref_8
  article-title: Lexical features based malicious URL detection using machine learning techniques
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.04.041
– ident: ref_39
  doi: 10.1145/3373017.3373020
– volume: 11
  start-page: 458
  year: 2014
  ident: ref_40
  article-title: PhishStorm: Detecting phishing with streaming analytics
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2014.2377295
– volume: 91
  start-page: 101494
  year: 2020
  ident: ref_26
  article-title: Improving malicious URLs detection via feature engineering: Linear and nonlinear space transformation methods
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2020.101494
SSID ssj0023338
Score 2.609155
Snippet Web applications have become ubiquitous for many business sectors due to their platform independence and low operation cost. Billions of users are visiting...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3373
SubjectTerms Algorithms
Analysis
Computational linguistics
Computer hackers
Computer Security
cyber threat intelligence
cybersecurity
Cyberterrorism
Database searching
Decision making
ensemble learning
Identity theft
Intelligence
Internet of Things
internet security
Internet software
Internet/Web search services
Language processing
Machine Learning
malicious URLs
Natural language interfaces
Neural Networks, Computer
Online searching
Phishing
Spyware
Technology application
URLs
Web applications
Websites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hxIEeKih9pKWVqSrRSwS249g5AgWBBKhCbMXNsh0HkJZQ7S6V-u87k2SjRK3UC9fYB3senm_i8TcAXyiGmsgz-msTUzzwfOrLTKdR5sG4KlSqaff241xfXpqbm-L7oNUX1YS19MCt4PZKpSqz70vhAoJrk_nAS2EaZnKvTOXp9EXUs0ymulRLYubV8ghJTOr35kJQ5q7lKPo0JP1_H8WDWDSukxwEnpMNeNkhRnbQrnQTVmL9Cl4MeAS3YHL028cZu74jBMjOBiyb6SFGqZJdINoOVO3KJlfn7FtcNAVYNaNOaFPWlA2w43oeH_w0so5y9fY1TE6Or49O065fQhoQZi1SwSvJlSmd1rjbQpWVzwrjlNBBOOFkcHnufZCZCBFhm6fmnMSNQ3d_IedBvoHV-rGO74Bh0mEKJSOXHr3aeyd56SpVVD53DkFbAl-XcrShIxOnnhZTi0kFidz2Ik_gcz_1Z8ug8a9Jh6SMfgKRXjcf0BRsZwr2f6aQwC6p0pJr4mKC614Y4JaI5MoeaIP4FjFnlsD2Utu289m5RahCtx254Qns9MPobXSF4uqISqI5WhdKSZHA29Y4-jUjcisowU5Aj8xmtKnxSH1_1zB6F_QPJePvn0MKH2Bd0BON_SwVZhtWF7On-BHWwq_F_Xz2qXGTPwqWFl0
  priority: 102
  providerName: Directory of Open Access Journals
Title Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/35591061
https://www.proquest.com/docview/2663100681
https://www.proquest.com/docview/2667795532
https://pubmed.ncbi.nlm.nih.gov/PMC9101641
https://doaj.org/article/d55f80bd2ac54884bc1d2800212b58fb
Volume 22
WOSCitedRecordID wos000795281100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjgd44PcgMCqDkOAl2mLHsfOE1tGJSWtVTSsqT5HtONukko62IPHC385d6oZWIF54yUPsBzvnu_vufPkO4A35UO2TlLI2PkaDZ2Nbpir2InPaVK6STbu3T2dqONSTST4KCbdFKKtc28TGUJczRznyA3QklIvOdPL-5mtMXaPodjW00NiBXWIqSzuw2-sPR-dtyCUwAlvxCQkM7g8WnFMEr8SWF2rI-v80yRs-abtecsMBndz_36U_gHsBerKj1Vl5CLd8_QjubhASPobx8Q_r5-ziiqAkO92g64x76O5KNkDY7qhslo3Pz9gHv2wquWpGLdWmrKk_YP164b_YqWeBu_XyCYxP-hfHH-PQeCF2iNeWMU8qkUhdGqXwc-WyrGyaayO5ctxwI5zJMmudSLnziP8sdfkkkh26RHRZ4sQedOpZ7Z8Bw-hF51L4RFg0D9YakZSmknllM2MQ_UXwbi2IwgVWcmqOMS0wOiGZFa3MInjdTr1ZUXH8bVKPpNlOIPbs5sVsflkEZSxKKSt9aEtuHAZsOrUuKblu2O6t1JWN4C2dhYJ0HBfjTPhVAbdEbFnFkdIIlBG8phHsr0VeBOVfFL_lHcGrdhjVlu5iTO1RSDRHqVxKwSN4ujpd7ZoRAuYUqUegts7d1qa2R-rrq4YaPKdkTJo8__eyXsAdTn9xHKYx1_vQWc6_-Zdw231fXi_mXdhRE9U8dTfoU7dJVeBz8LOP70ang9HnX1NbK1M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tCxJw4P0ILGAQCC7RNnYcOweE9qmttlsh1KLegu04uyuVdGkLaP8Uv5GZPLqtQNz2wDWxIk88nplvPP4G4DX5UO2jmLI2PkSDZ0Obxyr0InHaFK6QVbu3zz3V7-vRKP24Br_auzBUVtnaxMpQ5xNHOfJNdCSUi0509OHsW0hdo-h0tW2hUavFoT__iZBt9r67i-v7hvP9vcHOQdh0FQgdBiPzkEeFiKTOjVKI5lOZFzZOtZFcOW64Ec4kibVOxNx5DG4stbAkBhk6IXNJ5AR-9wpcRbEUlZCp0QXAE4j3avYiIdLO5oxzyhcoseLzqtYAfzqAJQ-4Wp255O72b_9vP-oO3GoCa7ZV74S7sObLe3BziW7xPgx3zq2fssEJBcqsu0RGGm6jM8_ZEYISR0XBbPipx3b9vKpTKxk1jBuzqrqC7ZUz_9WOPWuYaY8fwPBS5HoI6-Wk9I-BITbTqRQ-EhaNn7VGRLkpZFrYxBiMbQN41y585hrOdWr9Mc4Qe5GOZAsdCeDVYuhZTTTyt0HbpD2LAcQNXj2YTI-zxtRkuZSF7ticG4dwVMfWRTnXFZe_lbqwAbwl3cvIguFknGkuYqBIxAWWbSmNMABD8ziAjVbFssa0zbIL_Qrg5eI1GiU6aTKlx0WiMUqlUgoewKNamxdzxgA3pTxEAGpFz1eEWn1Tnp5UxOcppZri6Mm_p_UCrh8MjnpZr9s_fAo3ON1X6cQh1xuwPp9-98_gmvsxP51Nn1e7l8GXy94FvwEePH7Z
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDSF44PcgMMAgELxEbew4cR4Q2tZVVOuqCq3TeMpsx9kmlXS0BbR_jb-OuyQNrUC87YHXxors5vPdfefzdwCvyYcqF4SUtXE-GjzjmyyMfSciq3Ruc1m2ezvqx4OBOj5Ohmvwc3EXhsoqFzaxNNTZxFKOvIWOhHLRkQpaeV0WMex0P1x89amDFJ20LtppVBDZd5c_kL7N3vc6-K3fcN7dO9z96NcdBnyLgcnc50EuAqkyHcfI7BOZ5SZMlJY8tlxzLayOImOsCLl1GOgYamdJajJ0WmajwAp87zXYwJA8xD22MewdDD83dE8g-6u0jIRI2q0Z55Q9iMWKBywbBfzpDpb84Wqt5pLz6975n_-2u3C7DrnZdrVH7sGaK-7DrSUhxgcw2r00bsoOzyiEZr0lmVJ_B918xg6QrlgqF2ajT33WcfOygq1g1EpuzMq6C7ZXzNwXM3as1qw9fQijK1nXJqwXk8I9BoasTSVSuEAYNIvGaBFkOpdJbiKtMer14N0CBKmt1dipKcg4RVZGeEkbvHjwqhl6UUmQ_G3QDiGpGUCq4eUPk-lpWhuhNJMyV22TcW2RqKrQ2CDjqlT5N1LlxoO3hMOUbBtOxur6igYuiVTC0u1YIUHAoD30YGsBt7Q2erP0N9Y8eNk8RnNFZ1C6cPiRaEwcJ1IK7sGjCtnNnDH0TShD4UG8gvmVRa0-Kc7PSkn0hJJQYfDk39N6ATcQ_Gm_N9h_Cjc5XWRphz5XW7A-n35zz-C6_T4_n02f11uZwclVb4Nf2LuJKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyber+Threat+Intelligence-Based+Malicious+URL+Detection+Model+Using+Ensemble+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alsaedi%2C+Mohammed&rft.au=Ghaleb%2C+Fuad+A&rft.au=Saeed%2C+Faisal&rft.au=Ahmad%2C+Jawad&rft.date=2022-04-28&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=9&rft_id=info:doi/10.3390%2Fs22093373&rft.externalDocID=A781610834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon