Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor...
Uloženo v:
| Vydáno v: | Frontiers in cell and developmental biology Ročník 9; s. 719643 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Frontiers Media S.A
14.09.2021
|
| Témata: | |
| ISSN: | 2296-634X, 2296-634X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels. |
|---|---|
| AbstractList | Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels. Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels. |
| Author | Hucteau, Elyse Pagano, Allan F. Mallard, Joris Hureau, Thomas J. |
| AuthorAffiliation | 3 Faculté des Sciences du Sport, Centre Européen d’Enseignement de Recherche et d’Innovation en Physiologie de l’Exercice (CEERIPE), Université de Strasbourg , Strasbourg , France 1 Institut de Cancérologie Strasbourg Europe (ICANS) , Strasbourg , France 2 Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg , Strasbourg , France |
| AuthorAffiliation_xml | – name: 3 Faculté des Sciences du Sport, Centre Européen d’Enseignement de Recherche et d’Innovation en Physiologie de l’Exercice (CEERIPE), Université de Strasbourg , Strasbourg , France – name: 1 Institut de Cancérologie Strasbourg Europe (ICANS) , Strasbourg , France – name: 2 Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg , Strasbourg , France |
| Author_xml | – sequence: 1 givenname: Joris surname: Mallard fullname: Mallard, Joris – sequence: 2 givenname: Elyse surname: Hucteau fullname: Hucteau, Elyse – sequence: 3 givenname: Thomas J. surname: Hureau fullname: Hureau, Thomas J. – sequence: 4 givenname: Allan F. surname: Pagano fullname: Pagano, Allan F. |
| BookMark | eNp1ks1u1DAUhSNUREvpA7Dzks0M_k1iFkgQaBlRVCSoxM5y7JuMS2IPdgLqmhev0xkkisTKln3Op2uf87Q48sFDUTwneM1YLV92BoZhTTEl64rIkrNHxQmlslyVjH87-mt_XJyldIMxJlRUomZPimPGhRSkIifF7y_fYYBJD-jTnMwA6B2Y4K2bXPDO98h59DaCThNqtDcQ0Wc9OfBTQtfeQuzDImq2MIZpC1Hvbl-hZo4xK9BHH34NYHtA2lu08cn12-w7j2FEV4v6gEzPisedHhKcHdbT4vr8_dfmw-ry6mLTvLlcGYHraUUMFmVLoWSlIVZ0rZSWaMErwF1rRMU6QWoiGHQArZWE0xokNdIaLawWlJ0Wmz3XBn2jdtGNOt6qoJ26PwixVzpOLv-CogZbUbK21kB4RUFLUxvMqaCVYZizzHq9Z-3mdgRr8oOjHh5AH954t1V9-KlqXpU1lhnw4gCI4ccMaVKjS0uk2kOYk8pZ1VkpBM_Sai81MaQUoVPGTXpJKJPdoAhWSyPUfSPU0gi1b0R2kn-cfwb8v-cOljm-Ag |
| CitedBy_id | crossref_primary_10_3390_nu16070979 crossref_primary_10_3390_cancers14081982 crossref_primary_10_3390_antiox13070821 crossref_primary_10_3390_cancers15010034 crossref_primary_10_3390_cancers15245856 crossref_primary_10_1186_s13102_025_01066_w crossref_primary_10_3390_nu17152487 crossref_primary_10_1002_ijc_34152 crossref_primary_10_1152_japplphysiol_00504_2021 crossref_primary_10_3390_cancers16101912 crossref_primary_10_2215_CJN_0000000745 crossref_primary_10_1249_MSS_0000000000003452 crossref_primary_10_1007_s11914_022_00749_4 crossref_primary_10_1002_cncr_34533 crossref_primary_10_1242_dmm_050398 crossref_primary_10_1002_jcsm_12991 crossref_primary_10_1016_j_soncn_2024_151676 crossref_primary_10_3389_fnut_2024_1366768 crossref_primary_10_1080_01635581_2022_2159044 crossref_primary_10_3390_ijms25094675 crossref_primary_10_1002_jcsm_13414 crossref_primary_10_3390_biomedicines11030905 crossref_primary_10_1007_s10549_024_07559_5 crossref_primary_10_1016_j_mam_2024_101260 crossref_primary_10_3390_ijms25147533 crossref_primary_10_1177_15347354221138574 crossref_primary_10_1016_j_clnu_2023_08_002 crossref_primary_10_1016_j_pcad_2022_10_005 crossref_primary_10_1002_ejsc_12130 crossref_primary_10_1016_j_heliyon_2023_e22180 crossref_primary_10_1007_s10522_024_10182_y crossref_primary_10_1038_s41598_025_96108_1 crossref_primary_10_3390_cancers14102512 crossref_primary_10_1249_MSS_0000000000003506 crossref_primary_10_1080_01635581_2023_2276486 |
| Cites_doi | 10.1038/s41580-020-0230-3 10.1038/nrdp.2017.105 10.1016/S0039-6060(99)70131-5 10.1038/sj.gt.3303016 10.1016/j.lungcan.2011.09.012 10.1016/j.critrevonc.2018.06.011 10.1002/jcsm.12138 10.2174/156800909789057015 10.1038/sj.sc.3101968 10.1111/j.1582-4934.2009.00864.x 10.5301/tj.5000393 10.1016/j.breast.2018.04.009 10.3390/ijerph18052591 10.1002/jmri.23512 10.1016/j.lungcan.2011.10.009 10.1038/srep26991 10.1038/s41467-020-20123-1 10.1179/016164110X12556180205997 10.1038/s41556-018-0151-y 10.1016/j.ejca.2009.10.008 10.1007/s10863-017-9718-8 10.1139/apnm-2019-0352 10.1155/2016/6729268 10.1186/s40959-019-0038-5 10.1016/j.cell.2004.09.027 10.1007/s13539-014-0137-y 10.1007/s00520-012-1600-y 10.2522/ptj.20100329 10.1186/s12885-019-5448-0 10.1002/(SICI)1097-0185(20000301)258:3<305::AID-AR10>3.0.CO;2-A 10.1096/fj.201600250RR 10.3945/ajcn.2009.28047 10.1002/mus.23753 10.1016/j.bbagen.2012.11.009 10.3389/fphys.2019.01074 10.1096/fj.13-240580 10.1007/s00520-012-1697-z 10.1002/jcsm.12232 10.1152/japplphysiol.00210.2014 10.1113/jphysiol.2012.230185 10.1002/jcsm.12539 10.1152/ajpcell.00002.2018 10.1101/gad.412606 10.1007/s004410000280 10.1002/jcsm.12259 10.3389/fonc.2020.01304 10.1016/j.clnesp.2021.02.007 10.1016/j.bbrc.2009.12.123 10.1096/fj.201800683RR 10.1016/j.clnu.2007.06.005 10.3389/fcell.2021.636498 10.1111/apha.12263 10.1249/MSS.0000000000001916 10.1038/srep30340 10.3322/caac.21660 10.1002/rco2.23 10.1038/s41598-019-46178-9 10.3389/fphys.2019.00041 10.1007/s10549-018-4663-8 10.3892/or_00000328 10.33549/physiolres.931272 10.1016/j.freeradbiomed.2014.11.006 10.18632/oncotarget.9779 10.1002/jcsm.12461 10.1158/1535-7163.MCT-16-0324 10.1158/1078-0432.CCR-18-1565 10.1096/fj.201700968R 10.1002/jcsm.12265 10.1080/01635581.2018.1502330 10.1002/jcsm.12165 10.1101/gad.276733.115 10.1016/j.ajpath.2012.12.023 10.1002/jcsm.12618 10.1152/ajpregu.00716.2007 10.1007/s10549-017-4574-0 10.1038/srep32695 10.1249/MSS.0000000000001970 10.1242/dmm.010389 10.1016/j.biochi.2018.04.009 10.3945/ajcn.112.047860 10.1186/s13395-019-0193-2 10.1016/s0021-9290(02)00418-9 10.1186/2044-5040-2-14 10.1016/j.jss.2016.06.076 10.1097/01.SLA.0000055225.96357.71 10.1186/1471-2407-12-265 10.1016/j.nut.2019.03.012 10.1371/journal.pone.0083618 10.3892/ijo.2018.4661 10.1161/JAHA.113.000432 10.1007/s10549-020-05624-3 10.1016/j.exger.2005.04.003 10.1007/s00018-014-1689-x 10.1002/jcsm.12267 10.3945/ajcn.113.058388 10.1080/15548627.2020.1797280 10.1007/s10585-006-9010-5 10.3322/caac.21268 10.1016/j.biocel.2013.06.011 10.1073/pnas.251541198 10.1200/JCO.2014.59.1081 10.1096/fj.201801862R 10.1152/physrev.00061.2017 10.3892/or.2019.7205 10.3389/fphys.2014.00068 10.1152/ajpendo.00257.2016 10.1111/febs.12253 10.1016/j.critrevonc.2019.102839 10.1038/nrc3829 10.1097/MCO.0000000000000048 10.1152/jappl.1961.16.6.977 10.1111/apha.12224 10.1002/jcsm.12489 10.1002/mus.21945 10.1371/journal.pone.0024650 10.1152/japplphysiol.00355.2011 10.3390/ijms22052567 10.1038/sj.bjc.6601981 10.1016/S1470-2045(10)70218-7 10.1002/path.4801 10.2174/2211738507666190122111224 10.1083/jcb.9.2.493 10.1016/j.exger.2016.10.003 10.3390/cancers11091264 10.1007/s10549-019-05303-y 10.1007/s004240050392 10.1113/jphysiol.2014.286518 10.1038/srep08717 10.1152/japplphysiol.00778.2005 10.1038/bjc.1993.126 10.1001/jamaoncol.2018.0137 10.1172/JCI116897 10.1002/jcsm.12633 10.1152/ajpcell.00344.2015 10.1002/jcsm.12528 10.1002/jcsm.12104 10.3389/fphys.2021.673404 10.1016/j.freeradbiomed.2016.02.021 10.17987/jcsm-cr.v2i1.26 10.1093/ajcn/nqz347 10.3390/ijerph17197289 10.1007/s00520-010-0832-y 10.1007/s10549-019-05352-3 10.1136/bmj.289.6445.584 10.1371/journal.pone.0013604 10.1016/j.febslet.2004.05.066 10.4048/jbc.2020.23.e8 10.1186/s12885-017-3116-9 10.3892/ijmm.2010.557 10.3892/ijmm.8.3.279 10.3390/nu11112724 10.1002/jcp.24611 10.4081/ejtm.2018.7590 10.1172/JCI68523 10.1046/j.1532-5415.2002.50217.x 10.1249/MSS.0000000000002260 10.1096/fj.03-0610com 10.1002/jcsm.12642 10.3892/ijo.2013.1998 10.1242/jcs.086629 10.1634/theoncologist.2017-0672 10.1371/journal.pone.0205467 10.1152/ajpendo.1995.268.5.E996 10.1371/journal.pone.0181086 10.1007/s00421-020-04556-6 10.1007/s00520-017-3902-6 10.1054/bjoc.2001.1700 10.1186/s12967-016-1003-9 10.1002/jcsm.12310 10.18632/oncotarget.17387 10.1007/s00520-016-3402-0 10.1111/j.1349-7006.2001.tb01141.x 10.3390/antiox10040588 10.1016/j.chest.2019.10.014 10.1111/apha.13400 10.1152/jappl.2001.90.6.2157 10.1016/j.biocel.2004.10.017 10.1111/acel.12399 10.1158/1078-0432.CCR-07-1147 10.14814/phy2.14052 10.1007/s00432-019-02911-5 10.1007/s13539-011-0049-z 10.1074/jbc.M115.641514 10.1152/ajpregu.00299.2019 10.1152/japplphysiol.00429.2011 10.1152/ajpregu.2001.281.1.R133 10.1101/2020.04.05.026617 10.1152/ajpcell.00217.2011 10.1210/jc.2014-4318 10.18632/oncotarget.24680 10.3389/fphys.2013.00284 10.1152/physiol.00041.2007 10.1158/0008-5472.CAN-14-0057 10.1016/0022-510x(88)90132-3 10.1002/jcsm.12294 10.1155/2014/309570 10.1002/jcsm.12498 10.1016/j.cllc.2016.06.003 10.1016/j.bbrc.2018.01.092 10.1123/japa.2015-0056 10.1200/JCO.2014.56.1894 10.1093/ajcn/85.2.377 10.3390/biom9110735 10.1002/(SICI)1097-0142(19980101)82:1<42::AID-CNCR5>3.0.CO;2-M 10.1016/j.tips.2015.03.005 10.1158/0008-5472.CAN-15-3152 10.1200/JCO.2020.38.15_suppl.e24069 10.18632/oncotarget.9958 10.1172/jci.insight.125543 10.1002/jcsm.12007 10.1158/1078-0432.CCR-07-1033 10.1245/s10434-011-1720-5 10.1093/annonc/mdx809 10.1152/ajpendo.00540.2015 10.1139/apnm-2018-0473 10.1002/jcsm.12311 10.3390/ijms21134759 10.1007/s10974-019-09510-4 10.1001/jamaoncol.2019.4668 10.1002/ijc.29930 10.3109/00365517509095787 10.1016/j.cell.2015.08.031 10.1038/cddis.2014.161 10.1634/theoncologist.2016-0066 10.1111/j.1749-6632.2000.tb06416.x 10.1093/ajcn/79.5.874 10.3389/fphar.2017.00137 10.1002/14651858.CD004421.pub3 10.1371/journal.pone.0030348 10.1007/s12603-010-0081-2 10.1016/j.biocel.2013.04.014 10.1093/icvts/ivz313 10.3389/fnut.2020.00004 10.1158/1078-0432.CCR-16-2266 10.3389/fphys.2018.00167 10.1097/00000441-193211000-00002 10.1016/j.ccr.2005.10.004 10.2214/AJR.07.2732 10.1038/bjc.1996.294 10.1128/MCB.00184-19 10.1016/s0024-3205(03)00566-6 10.1016/j.jmb.2019.05.032 10.1016/j.suc.2013.01.006 10.1111/j.1365-2362.2008.01970.x 10.1016/j.bbrc.2013.05.018 10.18632/aging.100436 10.1152/ajpcell.00069.2010 10.6004/jnccn.2020.7554 10.1007/s00520-020-05858-3 10.1002/ijc.29620 10.1038/s41598-017-13504-y 10.3389/fphys.2014.00503 10.3390/ijms21207704 10.1002/jcsm.12209 10.1007/s00109-007-0177-2 10.1152/jappl.1997.83.6.1857 10.1016/j.molmet.2020.101046 10.2337/dc14-1585 10.1038/s41598-017-15040-1 10.1038/ijo.2009.170 10.1007/s00330-020-06799-5 10.3390/cancers13081806 10.3892/ol.2011.442 10.3892/or.2018.6453 10.1152/japplphysiol.00203.2020 10.1002/jcp.25851 10.1016/j.jep.2019.112222 10.1016/j.mam.2016.04.006 10.1113/expphysiol.2013.072496 10.1249/MSS.0000000000001790 10.26355/eurrev_201804_14752 10.1056/NEJM200109273451312 10.1093/gerona/60.3.324 10.1002/jcsm.12043 10.1007/s13539-012-0071-9 10.1186/s13395-016-0098-2 10.3389/fphys.2020.00071 10.1634/theoncologist.2019-0777 10.1111/cas.14520 10.1016/j.freeradbiomed.2013.08.191 10.1016/j.cell.2010.07.011 10.1002/mus.26061 10.1002/jcsm.12107 10.1158/1078-0432.CCR-16-3001 10.1001/jamacardio.2019.5586 10.1371/journal.pone.0200936 10.1093/ageing/afy169 10.1093/jncics/pky043 10.1002/(SICI)1097-4598(199811)21:11<1457::AID-MUS14>3.0.CO;2-Y |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Mallard, Hucteau, Hureau and Pagano. Copyright © 2021 Mallard, Hucteau, Hureau and Pagano. 2021 Mallard, Hucteau, Hureau and Pagano |
| Copyright_xml | – notice: Copyright © 2021 Mallard, Hucteau, Hureau and Pagano. – notice: Copyright © 2021 Mallard, Hucteau, Hureau and Pagano. 2021 Mallard, Hucteau, Hureau and Pagano |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fcell.2021.719643 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2296-634X |
| ExternalDocumentID | oai_doaj_org_article_2c0d563b8ae1472ea9c8c042527c3043 PMC8476809 10_3389_fcell_2021_719643 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c508t-1c056b2e636c1d5fb99d1a547e0fbc573f518153efeebd91428e92c9dca5da523 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704151200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-634X |
| IngestDate | Fri Oct 03 12:51:53 EDT 2025 Thu Aug 21 18:32:45 EDT 2025 Fri Sep 05 12:45:12 EDT 2025 Tue Nov 18 22:27:36 EST 2025 Sat Nov 29 05:21:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-1c056b2e636c1d5fb99d1a547e0fbc573f518153efeebd91428e92c9dca5da523 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Paola Costelli, University of Turin, Italy; Bert Blaauw, University of Padua, Italy; Amélie Rébillard, Laboratoire des Sciences du Mouvement, du Sport et de la Santé (M2S), France Edited by: Yann Simon Gallot, University of Évry Val d’Essonne, France This article was submitted to Signaling, a section of the journal Frontiers in Cell and Developmental Biology |
| OpenAccessLink | https://doaj.org/article/2c0d563b8ae1472ea9c8c042527c3043 |
| PMID | 34595171 |
| PQID | 2578768554 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2c0d563b8ae1472ea9c8c042527c3043 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8476809 proquest_miscellaneous_2578768554 crossref_citationtrail_10_3389_fcell_2021_719643 crossref_primary_10_3389_fcell_2021_719643 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-14 |
| PublicationDateYYYYMMDD | 2021-09-14 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in cell and developmental biology |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Huot (B127) 2020; 11 Fermoselle (B95) 2013; 98 Allen (B9) 1997; 83 Khal (B145) 2005; 37 Bonetto (B45) 2009; 9 Shah (B242) 2018; 23 Larsson (B151) 2019; 99 De Groef (B82) 2018; 40 Ferreira (B96) 2008; 57 McLean (B175) 2014; 5 Gilliam (B109) 2016; 311 Skorokhod (B249) 2012; 12 Wallengren (B279) 2013; 21 Gadéa (B102) 2018; 70 Liu (B160) 2019; 9 Sies (B244) 2020; 21 Smith (B251) 2000; 302 Schumacher (B237) 2019; 51 Smith (B250) 2004; 91 Rutten (B226) 2016; 7 Aleixo (B8) 2019; 177 Sirago (B247) 2017; 7 Rier (B219) 2016; 21 Chopard (B69) 2009; 13 Costelli (B73) 1993; 92 Gorgey (B114) 2007; 45 Wesolowski (B282) 2020; 30 Salazar-Degracia (B229) 2018; 149 Coletti (B70) 2016; 2016 Caan (B56) 2018; 4 Keenan (B144) 2020; 18 Acharyya (B1) 2005; 8 Loumaye (B162) 2015; 100 Nissinen (B191) 2016; 6 Martin (B169) 2015; 33 Penna (B204) 2013; 182 Yildiz Kabak (B291) 2020; 29 Biferali (B38) 2019; 10 Chen (B67) 2018; 40 Cho (B68) 2018; 13 Chacon-Cabrera (B61) 2017; 232 Barreto (B27) 2016; 7 Chacon-Cabrera (B60) 2014; 229 Schirrmacher (B234) 2019; 54 Tuttle (B267) 2011; 91 Galiano-Castillo (B103) 2016; 24 Inaba (B130) 2018; 13 Powers (B209) 2016; 98 Redden (B215) 2013; 93 Schmidt (B235) 2015; 35 Samuels (B230) 2001; 281 Jerusalem (B132) 2019; 177 Baracos (B24) 1995; 268 Matsuyama (B172) 2015; 137 Sun (B258) 2016; 311 Barreto (B26) 2017; 7 Borisov (B46) 2000; 258 Baracos (B25) 2018; 4 Wiederin (B285) 2020; 38 Op den Kamp (B196) 2013; 98 Costelli (B74) 2008; 38 Andrianjafiniony (B10) 2010; 299 Goodpaster (B113) 2000; 904 Leskinen (B155) 2009; 33 Madaro (B164) 2018; 20 Bae (B20) 2020; 246 Bodine (B40) 2013; 45 Arc-Chagnaud (B12) 2020; 11 Murton (B186) 2017; 18 Temparis (B261) 1994; 54 Petruzzelli (B205) 2016; 30 Smith (B252) 1993; 67 Straughn (B257) 2021; 9 Puig-Vilanova (B210) 2015; 79 Julienne (B139) 2012; 3 Chen (B66) 2016; 7 CeŠeiko (B58) 2020; 52 Gilliam (B108) 2013; 65 White (B283) 2011; 6 Fouladiun (B100) 2007; 13 Busquets (B53); 3 Judge (B138) 2018; 2 Bonaldo (B44) 2013; 6 Wren (B290) 2008; 190 Jubrias (B137) 1997; 434 Aggarwal (B4) 2019; 9 Lønbro (B161) 2017; 2 D’Lugos (B78) 2019; 7 Hulmi (B125) 2018; 9 Hesse (B122) 2019; 5 Gomes (B111) 2001; 98 Aversa (B19) 2016; 6 Damrauer (B80) 2018; 28 de Lima Junior (B83) 2016; 7 Enright (B93) 2003; 48 Uezumi (B271) 2011; 124 Baldwin (B21) 2013; 4 Penna (B201); 10 Puppa (B211) 2014; 28 Crouch (B75) 2017; 12 Ahmadabadi (B5) 2020; 45 Zhang (B296) 2020; 111 Huh (B124) 2020; 23 Wilson (B289) 2020 Wang (B280) 2021; 4 Kunzke (B149) 2020; 11 Ballarò (B22) 2019; 33 Tsang (B266) 2003; 73 Silva (B246) 2020; 11 Guo (B118) 2017; 8 Vainshtein (B274) 2020; 21 Kavazis (B141) 2014; 117 Nissinen (B192) 2018; 9 Cruz-Jentoft (B77) 2019; 48 Trestini (B265) 2018; 129 Lecker (B152) 2004; 18 Hiensch (B123) 2019; 229 Pigna (B207) 2016; 6 Williams (B286) 1999; 126 Beck (B30) 1991; 51 Chen (B64) 2019; 42 Ushmorov (B273) 1999; 59 Fearon (B94) 2011; 12 Zhong (B297) 2019; 10 Mallard (B165) 2020; 10 Shachar (B241) 2017; 23 Antoun (B11) 2018; 29 Dupont-Versteegden (B89) 2005; 40 Roberts (B221) 2013; 435 Brown (B51) 2017; 8 Maughan (B173) 2010; 81 Klassen (B147) 2017; 8 Chen (B63) 2016; 76 Bohlen (B41) 2018; 9 Cheema (B62) 2015; 14 Fisusi (B98) 2019; 7 Neyroud (B189) 2019; 40 Busquets (B54); 3 Emens (B91) 2018; 24 Nicolazzi (B190) 2018; 22 Ramos da Silva (B213) 2021; 42 Agarwala (B3) 2020; 157 Jones (B136) 2012; 76 Gallot (B107) 2014; 74 Ieronimakis (B129) 2016; 240 Mason (B171) 2016; 205 Dolly (B88) 2020; 11 Baltgalvis (B23) 2008; 294 Uezumi (B269); 5 Hatakeyama (B120) 2016; 6 Goodpaster (B112) 2001; 90 Padrão (B197) 2013; 45 Aleixo (B6); 181 Aleixo (B7); 145 Theret (B262) 2021; 12 Bennegård (B33) 1984; 44 Gilliam (B110) 2012; 302 Willson (B287) 2019; 9 Sandri (B231) 2008; 23 Schiaffino (B233) 2013; 280 Cespedes Feliciano (B59) 2019; 6 Guigni (B116) 2018; 315 Bregni (B49) 2016; 102 Kazemi-Bajestani (B143) 2014; 5 Bossola (B47) 2003; 237 Uezumi (B270); 5 Peel (B199) 2014; 3 Penna (B200) 2014; 17 Ishiko (B131) 2001; 8 He (B121) 2013; 123 Tarnopolsky (B260) 2011; 43 di Prampero (B87) 2003; 36 Mauro (B174) 1961; 9 Song (B254) 2004; 79 Bird (B39) 2008; 14 Berger (B35) 2015; 65 Rodriguez (B223) 2014; 71 Bergstrom (B36) 1975; 35 Johns (B134) 2017; 8 Johns (B133) 2014; 9 Levolger (B157) 2019; 9 Hyatt (B128) 2021; 10 Mijwel (B178); 169 Marzetti (B170) 2017; 87 Sorensen (B255) 2017; 8 Marcus (B167) 2010; 14 Addison (B2) 2014; 2014 Karampinos (B140) 2012; 35 Penna (B202); 431 Ryan (B227) 2018; 496 Penna (B203) 2010; 5 Pagano (B198) 2018; 9 Leto (B156) 2006; 23 Rhoads (B217) 2010; 46 Moore-Carrasco (B183) 2007; 30 Murphy (B185) 2011; 112 Quan-Jun (B212) 2017; 16 Busquets (B52) 2007; 26 Costamagna (B72) 2020; 11 Johnston (B135) 2015; 162 Scott (B240) 1996; 73 Loumaye (B163) 2017; 8 Warren (B281) 1932; 184 Benny Klimek (B34) 2010; 391 Zou (B299) 2017; 49 Tzika (B268) 2013; 43 Visser (B278) 2002; 50 Delmonico (B85) 2009; 90 van Waart (B275) 2015; 33 Urbina-Varela (B272) 2020; 21 Min (B180) 2015; 593 Bohnert (B43) 2019; 39 Beavers (B29) 2013; 97 Astrand (B15) 1961; 16 Roeland (B224) 2017; 25 Larsen (B150) 2012; 590 Deluche (B86) 2018; 26 Rochette (B222) 2015; 36 Riccardi (B218) 2020; 7 Gallagher (B104) 2014; 37 Schmitt (B236) 2007; 85 Stock (B256) 2021; 121 Lexell (B158) 1988; 84 Daly (B79) 2018; 9 Pin (B208) 2018; 9 Rossi (B225) 2020; 30 Møller (B181) 2019; 145 But-Hadzic (B55) 2021; 18 Schwarz (B238) 2017; 17 Neil (B188) 2013; 21 Visser (B277) 2005; 60 Klionsky (B148) 2021; 17 Mijwel (B179); 32 Chen (B65) 2018; 9 Bohnert (B42) 2016; 30 Yu (B294) 2014; 211 Aubrey (B17) 2014; 210 Guo (B117) 2012; 7 Zhou (B298) 2010; 142 Mehl (B177) 2005; 99 Skipworth (B248) 2011; 19 Figueras (B97) 2004; 569 Lee (B153) 2021; 13 Ranjbar (B214) 2019; 51 White (B284) 2012; 2 Bernardo (B37) 2020; 11 Wilson (B288) 2019; 25 McLoon (B176) 1998; 21 Behr (B31) 2001; 345 Hulmi (B126) 2020; 41 Smuder (B253) 2011; 111 Aversa (B18) 2012; 19 Shum (B243) 2012; 4 Reding (B216) 2019; 5 Silva (B245) 2015; 290 Cruz (B76) 2019; 19 de Castro (B81) 2019; 11 Gallot (B105) 2021; 22 Constantinou (B71) 2011; 27 Hanson (B119) 2013; 48 Manini (B166) 2007; 85 Bowen (B48) 2015; 6 Liu (B159) 2008; 15 Op den Kamp (B195) 2012; 76 Beaudry (B28) 2020; 25 Foulkes (B101) 2019; 51 Dworzak (B90) 1998; 82 Lee (B154) 2019; 11 Montalvo (B182) 2020; 318 Brioche (B50) 2016; 50 Varricchi (B276) 2018; 9 Yoshida (B292) 2001; 92 Zampieri (B295) 2010; 32 Ojima (B193) 2020; 111 Schwarzkopf (B239) 2006; 20 Argilés (B14) 2019; 66 (B187) 2019 Atherton (B16) 2016; 311 Salazar-Degracia (B228) 2016; 14 Sartori (B232) 2021; 12 Belizário (B32) 2001; 84 DeJong (B84) 2005; 14 Kawanishi (B142) 2018; 57 Cai (B57) 2004; 119 Yu (B293) 2020; 5 Marques (B168) 2020; 17 Rier (B220) 2018; 168 Gallot (B106) 2019; 33 Argilés (B13) 2014; 14 Fontes-Oliveira (B99) 2013; 1830 Gouspillou (B115) 2015; 5 Toledo (B263) 2016; 138 Op den Kamp (B194) 2015; 6 Toth (B264) 2020; 128 Pettersen (B206) 2020; 11 Khan (B146) 2019; 44 Sung (B259) 2021; 71 Emery (B92) 1984; 289 Moses (B184) 2009; 21 |
| References_xml | – volume: 21 start-page: 363 year: 2020 ident: B244 article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0230-3 – volume: 4 year: 2018 ident: B25 article-title: Cancer-associated cachexia. publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2017.105 – volume: 126 start-page: 744 year: 1999 ident: B286 article-title: The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. publication-title: Surgery doi: 10.1016/S0039-6060(99)70131-5 – volume: 15 start-page: 155 year: 2008 ident: B159 article-title: Myostatin antisense RNA-mediated muscle growth in normal and cancer cachexia mice. publication-title: Gene Ther. doi: 10.1038/sj.gt.3303016 – volume: 76 start-page: 112 year: 2012 ident: B195 article-title: Pre-cachexia in patients with stages I–III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system. publication-title: Lung Cancer doi: 10.1016/j.lungcan.2011.09.012 – volume: 129 start-page: 54 year: 2018 ident: B265 article-title: Clinical implication of changes in body composition and weight in patients with early-stage and metastatic breast cancer. publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2018.06.011 – volume: 8 start-page: 122 year: 2017 ident: B134 article-title: New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12138 – volume: 9 start-page: 608 year: 2009 ident: B45 article-title: Deacetylase inhibitors modulate the myostatin/follistatin axis without improving cachexia in tumor-bearing mice. publication-title: Curr. Cancer Drug Targets doi: 10.2174/156800909789057015 – volume: 45 start-page: 304 year: 2007 ident: B114 article-title: Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. publication-title: Spinal Cord doi: 10.1038/sj.sc.3101968 – volume: 13 start-page: 3032 year: 2009 ident: B69 article-title: Molecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures. publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2009.00864.x – volume: 102 start-page: 1 year: 2016 ident: B49 article-title: Trastuzumab cardiac toxicity: a problem we put our heart into. publication-title: Tumori doi: 10.5301/tj.5000393 – volume: 40 start-page: 23 year: 2018 ident: B82 article-title: Physical activity levels after treatment for breast cancer: two-year follow-up. publication-title: Breast Edinb. Scotl. doi: 10.1016/j.breast.2018.04.009 – volume: 18 year: 2021 ident: B55 article-title: Six-Minute walk distance in breast cancer survivors-a systematic review with meta-analysis. publication-title: Int. J. Environ. Res. Public. Health doi: 10.3390/ijerph18052591 – volume: 35 start-page: 899 year: 2012 ident: B140 article-title: Characterization of the regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based water/fat separation. publication-title: J. Magn. Reson. Imaging JMRI doi: 10.1002/jmri.23512 – volume: 76 start-page: 248 year: 2012 ident: B136 article-title: Prognostic significance of functional capacity and exercise behavior in patients with metastatic non-small cell lung cancer. publication-title: Lung Cancer doi: 10.1016/j.lungcan.2011.10.009 – volume: 6 year: 2016 ident: B207 article-title: Aerobic exercise and pharmacological treatments counteract cachexia by modulating autophagy in colon cancer. publication-title: Sci. Rep. doi: 10.1038/srep26991 – volume: 12 year: 2021 ident: B232 article-title: Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. publication-title: Nat. Commun. doi: 10.1038/s41467-020-20123-1 – volume: 32 start-page: 20 year: 2010 ident: B295 article-title: Subclinical myopathy in patients affected with newly diagnosed colorectal cancer at clinical onset of disease: evidence from skeletal muscle biopsies. publication-title: Neurol. Res. doi: 10.1179/016164110X12556180205997 – volume: 20 start-page: 917 year: 2018 ident: B164 article-title: Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0151-y – volume: 46 start-page: 191 year: 2010 ident: B217 article-title: Expression of NF-kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients. publication-title: Eur. J. Cancer Oxf. Engl. 1990 doi: 10.1016/j.ejca.2009.10.008 – volume: 49 start-page: 325 year: 2017 ident: B299 article-title: Manganese superoxide dismutase (SOD2): is there a center in the universe of mitochondrial redox signaling? publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-017-9718-8 – volume: 45 start-page: 555 year: 2020 ident: B5 article-title: The effects of high-intensity interval training and saffron aqueous extract supplementation on alterations of body weight and apoptotic indices in skeletal muscle of 4T1 breast cancer-bearing mice with cachexia. publication-title: Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. doi: 10.1139/apnm-2019-0352 – volume: 2016 year: 2016 ident: B70 article-title: Spontaneous physical activity downregulates Pax7 in cancer cachexia. publication-title: Stem Cells Int. doi: 10.1155/2016/6729268 – volume: 5 year: 2019 ident: B216 article-title: Increased skeletal intermuscular fat is associated with reduced exercise capacity in cancer survivors: a cross-sectional study. publication-title: Cardio Oncol. doi: 10.1186/s40959-019-0038-5 – volume: 119 start-page: 285 year: 2004 ident: B57 article-title: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. publication-title: Cell doi: 10.1016/j.cell.2004.09.027 – volume: 5 start-page: 95 year: 2014 ident: B143 article-title: Concurrent evolution of cancer cachexia and heart failure: bilateral effects exist. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1007/s13539-014-0137-y – volume: 21 start-page: 873 year: 2013 ident: B188 article-title: Cardiorespiratory and neuromuscular deconditioning in fatigued and non-fatigued breast cancer survivors. publication-title: Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer doi: 10.1007/s00520-012-1600-y – volume: 91 start-page: 923 year: 2011 ident: B267 article-title: Lower physical activity is associated with higher intermuscular adipose tissue in people with type 2 diabetes and peripheral neuropathy. publication-title: Phys. Ther. doi: 10.2522/ptj.20100329 – volume: 19 year: 2019 ident: B76 article-title: A leucine-rich diet modulates the mTOR cell signalling pathway in the gastrocnemius muscle under different Walker-256 tumour growth conditions. publication-title: BMC Cancer doi: 10.1186/s12885-019-5448-0 – volume: 258 start-page: 305 year: 2000 ident: B46 article-title: Cell death in denervated skeletal muscle is distinct from classical apoptosis. publication-title: Anat. Rec. doi: 10.1002/(SICI)1097-0185(20000301)258:3<305::AID-AR10>3.0.CO;2-A – volume: 30 start-page: 3053 year: 2016 ident: B42 article-title: Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. doi: 10.1096/fj.201600250RR – volume: 90 start-page: 1579 year: 2009 ident: B85 article-title: Longitudinal study of muscle strength, quality, and adipose tissue infiltration. publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2009.28047 – volume: 48 start-page: 393 year: 2013 ident: B119 article-title: Longitudinal characterization of functional, morphologic, and biochemical adaptations in mouse skeletal muscle with hindlimb suspension. publication-title: Muscle Nerve doi: 10.1002/mus.23753 – volume: 1830 start-page: 2770 year: 2013 ident: B99 article-title: Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency? publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.11.009 – volume: 10 year: 2019 ident: B38 article-title: Fibro-Adipogenic progenitors cross-talk in skeletal muscle: the social network. publication-title: Front. Physiol. doi: 10.3389/fphys.2019.01074 – volume: 28 start-page: 998 year: 2014 ident: B211 article-title: Skeletal muscle glycoprotein 130’s role in Lewis lung carcinoma-induced cachexia. publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. doi: 10.1096/fj.13-240580 – volume: 21 start-page: 1569 year: 2013 ident: B279 article-title: Diagnostic criteria of cancer cachexia: relation to quality of life, exercise capacity and survival in unselected palliative care patients. publication-title: Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer doi: 10.1007/s00520-012-1697-z – volume: 8 start-page: 926 year: 2017 ident: B51 article-title: Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12232 – volume: 117 start-page: 223 year: 2014 ident: B141 article-title: Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. publication-title: J. Appl. Physiol. Bethesda Md 1985 doi: 10.1152/japplphysiol.00210.2014 – volume: 590 start-page: 3349 year: 2012 ident: B150 article-title: Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.230185 – volume: 11 start-page: 783 year: 2020 ident: B72 article-title: Interleukin-4 administration improves muscle function, adult myogenesis, and lifespan of colon carcinoma-bearing mice. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12539 – volume: 315 start-page: C744 year: 2018 ident: B116 article-title: Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00002.2018 – volume: 20 start-page: 3440 year: 2006 ident: B239 article-title: Muscle cachexia is regulated by a p53–PW1/Peg3-dependent pathway. publication-title: Genes Dev. doi: 10.1101/gad.412606 – volume: 302 start-page: 235 year: 2000 ident: B251 article-title: Nuclear DNA fragmentation and morphological alterations in adult rabbit skeletal muscle after short-term immobilization. publication-title: Cell Tissue Res. doi: 10.1007/s004410000280 – volume: 9 start-page: 335 year: 2018 ident: B198 article-title: Short-term disuse promotes fatty acid infiltration into skeletal muscle. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12259 – volume: 10 year: 2020 ident: B165 article-title: Evolution of physical status from diagnosis to the end of first-line treatment in breast, lung, and colorectal cancer patients: the PROTECT-01 cohort study protocol. publication-title: Front. Oncol. doi: 10.3389/fonc.2020.01304 – volume: 42 start-page: 105 year: 2021 ident: B213 article-title: Performance of functionality measures and phase angle in women exposed to chemotherapy for early breast cancer. publication-title: Clin. Nutr. ESPEN doi: 10.1016/j.clnesp.2021.02.007 – volume: 391 start-page: 1548 year: 2010 ident: B34 article-title: Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.12.123 – volume: 33 start-page: 1946 year: 2019 ident: B106 article-title: PERK regulates skeletal muscle mass and contractile function in adult mice. publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. doi: 10.1096/fj.201800683RR – volume: 26 start-page: 614 year: 2007 ident: B52 article-title: Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. publication-title: Clin. Nutr. Edinb. Scotl. doi: 10.1016/j.clnu.2007.06.005 – volume: 59 start-page: 3527 year: 1999 ident: B273 article-title: Differential reconstitution of mitochondrial respiratory chain activity and plasma redox state by cysteine and ornithine in a model of cancer cachexia. publication-title: Cancer Res. – volume: 9 year: 2021 ident: B257 article-title: Withaferin a and ovarian cancer antagonistically regulate skeletal muscle mass. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.636498 – volume: 211 start-page: 201 year: 2014 ident: B294 article-title: Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal muscle. publication-title: Acta Physiol. Oxf. Engl. doi: 10.1111/apha.12263 – volume: 51 start-page: 1387 year: 2019 ident: B214 article-title: Combined exercise training positively affects muscle wasting in tumor-bearing mice. publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000001916 – volume: 6 year: 2016 ident: B19 article-title: Autophagy is induced in the skeletal muscle of cachectic cancer patients. publication-title: Sci. Rep. doi: 10.1038/srep30340 – volume: 71 start-page: 209 year: 2021 ident: B259 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. publication-title: CA. Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 4 start-page: 24 year: 2021 ident: B280 article-title: Aging-associated skeletal muscle defects in HER2/Neu transgenic mammary tumor model. publication-title: JCSM Rapid Commun. doi: 10.1002/rco2.23 – volume: 9 year: 2019 ident: B157 article-title: Inhibition of activin-like kinase 4/5 attenuates cancer cachexia associated muscle wasting. publication-title: Sci. Rep. doi: 10.1038/s41598-019-46178-9 – year: 2019 ident: B187 publication-title: Cancer Stat Facts: Female Breast Cancer. – volume: 10 ident: B201 article-title: The skeletal muscle as an active player against cancer cachexia. publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00041 – volume: 169 start-page: 93 ident: B178 article-title: Highly favorable physiological responses to concurrent resistance and high-intensity interval training during chemotherapy: the OptiTrain breast cancer trial. publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-018-4663-8 – volume: 21 start-page: 1091 year: 2009 ident: B184 article-title: Pro-inflammatory cytokine release by peripheral blood mononuclear cells from patients with advanced pancreatic cancer: relationship to acute phase response and survival. publication-title: Oncol. Rep. doi: 10.3892/or_00000328 – volume: 57 start-page: 601 year: 2008 ident: B96 article-title: Evidences of apoptosis during the early phases of soleus muscle atrophy in hindlimb suspended mice. publication-title: Physiol. Res. doi: 10.33549/physiolres.931272 – volume: 79 start-page: 91 year: 2015 ident: B210 article-title: Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.11.006 – volume: 7 start-page: 43442 year: 2016 ident: B27 article-title: Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. publication-title: Oncotarget doi: 10.18632/oncotarget.9779 – volume: 10 start-page: 1083 year: 2019 ident: B297 article-title: The systemic activin response to pancreatic cancer: implications for effective cancer cachexia therapy. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12461 – volume: 16 start-page: 334 year: 2017 ident: B212 article-title: Selumetinib attenuates skeletal muscle wasting in murine cachexia model through ERK inhibition and AKT activation. publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-16-0324 – volume: 25 start-page: 2336 year: 2019 ident: B288 article-title: Human breast cancer Xenograft model implicates peroxisome proliferator-activated receptor signaling as driver of cancer-induced muscle fatigue. publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. doi: 10.1158/1078-0432.CCR-18-1565 – volume: 32 start-page: 5495 ident: B179 article-title: Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer. publication-title: FASEB J. doi: 10.1096/fj.201700968R – volume: 9 start-page: 417 year: 2018 ident: B125 article-title: Prevention of chemotherapy-induced cachexia by ACVR2B ligand blocking has different effects on heart and skeletal muscle. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12265 – volume: 70 start-page: 997 year: 2018 ident: B102 article-title: Prospective study on body composition, energy balance and biological factors changes in post-menopausal women with breast cancer receiving adjuvant chemotherapy including taxanes. publication-title: Nutr. Cancer doi: 10.1080/01635581.2018.1502330 – volume: 8 start-page: 305 year: 2017 ident: B147 article-title: Muscle strength in breast cancer patients receiving different treatment regimes. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12165 – volume: 30 start-page: 489 year: 2016 ident: B205 article-title: Mechanisms of metabolic dysfunction in cancer-associated cachexia. publication-title: Genes Dev. doi: 10.1101/gad.276733.115 – volume: 182 start-page: 1367 year: 2013 ident: B204 article-title: Autophagic degradation contributes to muscle wasting in cancer cachexia. publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.12.023 – volume: 11 start-page: 1813 year: 2020 ident: B37 article-title: Characterization of cachexia in the human fibrosarcoma HT-1080 mouse tumour model. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12618 – volume: 294 start-page: R393 year: 2008 ident: B23 article-title: Interleukin-6 and cachexia in ApcMin/+ mice. publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00716.2007 – volume: 168 start-page: 95 year: 2018 ident: B220 article-title: Changes in body composition and muscle attenuation during taxane-based chemotherapy in patients with metastatic breast cancer. publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-017-4574-0 – volume: 6 year: 2016 ident: B191 article-title: Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative capacity or atrogenes. publication-title: Sci. Rep. doi: 10.1038/srep32695 – volume: 51 start-page: 1573 year: 2019 ident: B101 article-title: Persistent impairment in cardiopulmonary fitness after breast cancer chemotherapy. publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000001970 – volume: 6 start-page: 25 year: 2013 ident: B44 article-title: Cellular and molecular mechanisms of muscle atrophy. publication-title: Dis. Model. Mech. doi: 10.1242/dmm.010389 – volume: 149 start-page: 79 year: 2018 ident: B229 article-title: Effects of the beta2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia. publication-title: Biochimie doi: 10.1016/j.biochi.2018.04.009 – volume: 97 start-page: 552 year: 2013 ident: B29 article-title: Associations between body composition and gait-speed decline: results from the Health, Aging, and Body Composition study. publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.112.047860 – volume: 9 year: 2019 ident: B160 article-title: IMB0901 inhibits muscle atrophy induced by cancer cachexia through MSTN signaling pathway. publication-title: Skelet. Muscle doi: 10.1186/s13395-019-0193-2 – volume: 36 start-page: 403 year: 2003 ident: B87 article-title: Muscles in microgravity: from fibres to human motion. publication-title: J. Biomech. doi: 10.1016/s0021-9290(02)00418-9 – volume: 2 year: 2012 ident: B284 article-title: IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. publication-title: Skelet. Muscle doi: 10.1186/2044-5040-2-14 – volume: 205 start-page: 398 year: 2016 ident: B171 article-title: Preoperative cancer cachexia and short-term outcomes following surgery. publication-title: J. Surg. Res. doi: 10.1016/j.jss.2016.06.076 – volume: 237 start-page: 384 year: 2003 ident: B47 article-title: Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. publication-title: Ann. Surg. doi: 10.1097/01.SLA.0000055225.96357.71 – volume: 12 year: 2012 ident: B249 article-title: Real-imaging cDNA-AFLP transcript profiling of pancreatic cancer patients: Egr-1 as a potential key regulator of muscle cachexia. publication-title: BMC Cancer doi: 10.1186/1471-2407-12-265 – volume: 66 start-page: 11 year: 2019 ident: B14 article-title: Mediators of cachexia in cancer patients. publication-title: Nutrition doi: 10.1016/j.nut.2019.03.012 – volume: 9 year: 2014 ident: B133 article-title: Clinical classification of cancer cachexia: phenotypic correlates in human skeletal muscle. publication-title: PLoS One doi: 10.1371/journal.pone.0083618 – volume: 54 start-page: 407 year: 2019 ident: B234 article-title: From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review). publication-title: Int. J. Oncol. doi: 10.3892/ijo.2018.4661 – volume: 3 year: 2014 ident: B199 article-title: Cardiorespiratory fitness in breast cancer patients: a call for normative values. publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.113.000432 – volume: 181 start-page: 411 ident: B6 article-title: Association of body composition with function in women with early breast cancer. publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-020-05624-3 – volume: 40 start-page: 473 year: 2005 ident: B89 article-title: Apoptosis in muscle atrophy: relevance to sarcopenia. publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2005.04.003 – volume: 71 start-page: 4361 year: 2014 ident: B223 article-title: Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. publication-title: Cell. Mol. Life Sci. CMLS doi: 10.1007/s00018-014-1689-x – volume: 9 start-page: 315 year: 2018 ident: B79 article-title: Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancer. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12267 – volume: 98 start-page: 738 year: 2013 ident: B196 article-title: Nuclear transcription factor κ B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.113.058388 – volume: 17 start-page: 1 year: 2021 ident: B148 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). publication-title: Autophagy doi: 10.1080/15548627.2020.1797280 – volume: 23 start-page: 117 year: 2006 ident: B156 article-title: Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-006-9010-5 – volume: 65 start-page: 190 year: 2015 ident: B35 article-title: Screening, evaluation, and management of cancer-related fatigue: ready for implementation to practice? publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21268 – volume: 45 start-page: 2200 year: 2013 ident: B40 article-title: Disuse-induced muscle wasting. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2013.06.011 – volume: 98 start-page: 14440 year: 2001 ident: B111 article-title: Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.251541198 – volume: 33 start-page: 1918 year: 2015 ident: B275 article-title: Effect of low-intensity physical activity and moderate- to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: results of the PACES randomized clinical trial. publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2014.59.1081 – volume: 33 start-page: 5482 year: 2019 ident: B22 article-title: Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations. publication-title: FASEB J. doi: 10.1096/fj.201801862R – volume: 99 start-page: 427 year: 2019 ident: B151 article-title: Sarcopenia: aging-related loss of muscle mass and function. publication-title: Physiol. Rev. doi: 10.1152/physrev.00061.2017 – volume: 42 start-page: 479 year: 2019 ident: B64 article-title: Matrine improves skeletal muscle atrophy by inhibiting E3 ubiquitin ligases and activating the Akt/mTOR/FoxO3α signaling pathway in C2C12 myotubes and mice. publication-title: Oncol. Rep. doi: 10.3892/or.2019.7205 – volume: 5 ident: B270 article-title: Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00068 – volume: 311 start-page: E594 year: 2016 ident: B16 article-title: Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00257.2016 – volume: 280 start-page: 4294 year: 2013 ident: B233 article-title: Mechanisms regulating skeletal muscle growth and atrophy. publication-title: FEBS J. doi: 10.1111/febs.12253 – volume: 145 ident: B7 article-title: Myosteatosis and prognosis in cancer: systematic review and meta-analysis. publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2019.102839 – volume: 14 start-page: 754 year: 2014 ident: B13 article-title: Cancer cachexia: understanding the molecular basis. publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3829 – volume: 17 start-page: 241 year: 2014 ident: B200 article-title: Coming back: autophagy in cachexia. publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0000000000000048 – volume: 16 start-page: 977 year: 1961 ident: B15 article-title: Maximal oxygen uptake and heart rate in various types of muscular activity. publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1961.16.6.977 – volume: 210 start-page: 489 year: 2014 ident: B17 article-title: Measurement of skeletal muscle radiation attenuation and basis of its biological variation. publication-title: Acta Physiol. Oxf. Engl. doi: 10.1111/apha.12224 – volume: 11 start-page: 195 year: 2020 ident: B206 article-title: Autocrine activin A signalling in ovarian cancer cells regulates secretion of interleukin 6, autophagy, and cachexia. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12489 – volume: 43 start-page: 717 year: 2011 ident: B260 article-title: Suction-modified Bergström muscle biopsy technique: experience with 13,500 procedures. publication-title: Muscle Nerve doi: 10.1002/mus.21945 – volume: 6 year: 2011 ident: B283 article-title: The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse. publication-title: PLoS One doi: 10.1371/journal.pone.0024650 – volume: 112 start-page: 79 year: 2011 ident: B185 article-title: Preferential reductions in intermuscular and visceral adipose tissue with exercise-induced weight loss compared with calorie restriction. publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00355.2011 – volume: 22 year: 2021 ident: B105 article-title: Confounding roles of ER stress and the unfolded protein response in skeletal muscle atrophy. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22052567 – volume: 91 start-page: 408 year: 2004 ident: B250 article-title: Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice. publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6601981 – volume: 12 start-page: 489 year: 2011 ident: B94 article-title: Definition and classification of cancer cachexia: an international consensus. publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(10)70218-7 – volume: 240 start-page: 410 year: 2016 ident: B129 article-title: PDGFRα signalling promotes fibrogenic responses in collagen-producing cells in Duchenne muscular dystrophy. publication-title: J. Pathol. doi: 10.1002/path.4801 – volume: 7 start-page: 3 year: 2019 ident: B98 article-title: Drug combinations in breast cancer therapy. publication-title: Pharm. Nanotechnol. doi: 10.2174/2211738507666190122111224 – volume: 9 start-page: 493 year: 1961 ident: B174 article-title: Satellite cell of skeletal muscle fibers. publication-title: J. Biophys. Biochem. Cytol. doi: 10.1083/jcb.9.2.493 – volume: 87 start-page: 92 year: 2017 ident: B170 article-title: Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia. publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2016.10.003 – volume: 11 year: 2019 ident: B81 article-title: Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle. publication-title: Cancers doi: 10.3390/cancers11091264 – volume: 177 start-page: 237 year: 2019 ident: B132 article-title: HER2+ breast cancer treatment and cardiotoxicity: monitoring and management. publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-019-05303-y – volume: 434 start-page: 246 year: 1997 ident: B137 article-title: Decline in isokinetic force with age: muscle cross-sectional area and specific force. publication-title: Pflugers Arch. doi: 10.1007/s004240050392 – volume: 593 start-page: 2017 year: 2015 ident: B180 article-title: Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. publication-title: J. Physiol. doi: 10.1113/jphysiol.2014.286518 – volume: 5 year: 2015 ident: B115 article-title: Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. publication-title: Sci. Rep. doi: 10.1038/srep08717 – volume: 99 start-page: 2379 year: 2005 ident: B177 article-title: Myofiber degeneration/regeneration is induced in the cachectic ApcMin/+ mouse. publication-title: J. Appl. Physiol. Bethesda Md 1985 doi: 10.1152/japplphysiol.00778.2005 – volume: 14 start-page: 257 year: 2005 ident: B84 article-title: Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia. publication-title: Oncol. Rep. – volume: 67 start-page: 680 year: 1993 ident: B252 article-title: Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. publication-title: Br. J. Cancer doi: 10.1038/bjc.1993.126 – volume: 4 start-page: 798 year: 2018 ident: B56 article-title: Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2018.0137 – volume: 92 start-page: 2783 year: 1993 ident: B73 article-title: Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. publication-title: J. Clin. Invest. doi: 10.1172/JCI116897 – volume: 11 start-page: 1413 year: 2020 ident: B88 article-title: Cancer cachexia and skeletal muscle atrophy in clinical studies: what do we really know? publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12633 – volume: 311 start-page: C101 year: 2016 ident: B258 article-title: Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia. publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00344.2015 – volume: 11 start-page: 619 year: 2020 ident: B246 article-title: Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12528 – volume: 7 start-page: 615 year: 2016 ident: B83 article-title: Doxorubicin caused severe hyperglycaemia and insulin resistance, mediated by inhibition in AMPk signalling in skeletal muscle. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12104 – volume: 12 year: 2021 ident: B262 article-title: Evolving roles of muscle-resident fibro-adipogenic progenitors in health, regeneration, neuromuscular disorders, and aging. publication-title: Front. Physiol. doi: 10.3389/fphys.2021.673404 – volume: 98 start-page: 208 year: 2016 ident: B209 article-title: Redox control of skeletal muscle atrophy. publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.02.021 – volume: 2 start-page: 1 year: 2017 ident: B161 article-title: Lean body mass, muscle fibre size and muscle function in cancer patients during chemotherapy and 10 weeks exercise. publication-title: JCSM Clin. Rep. doi: 10.17987/jcsm-cr.v2i1.26 – volume: 111 start-page: 570 year: 2020 ident: B296 article-title: The autophagic-lysosomal and ubiquitin proteasome systems are simultaneously activated in the skeletal muscle of gastric cancer patients with cachexia. publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/nqz347 – volume: 17 year: 2020 ident: B168 article-title: Effects of chemotherapy treatment on muscle strength, quality of life, fatigue, and anxiety in women with breast cancer. publication-title: Int. J. Environ. Res. Public. Health doi: 10.3390/ijerph17197289 – volume: 19 start-page: 391 year: 2011 ident: B248 article-title: Interaction of gonadal status with systemic inflammation and opioid use in determining nutritional status and prognosis in advanced pancreatic cancer. publication-title: Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer doi: 10.1007/s00520-010-0832-y – volume: 177 start-page: 569 year: 2019 ident: B8 article-title: Muscle composition and outcomes in patients with breast cancer: meta-analysis and systematic review. publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-019-05352-3 – volume: 289 start-page: 584 year: 1984 ident: B92 article-title: Protein synthesis in muscle measured in vivo in cachectic patients with cancer. publication-title: Br. Med. J. Clin. Res. Ed doi: 10.1136/bmj.289.6445.584 – volume: 5 year: 2010 ident: B203 article-title: Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. publication-title: PLoS One doi: 10.1371/journal.pone.0013604 – volume: 569 start-page: 201 year: 2004 ident: B97 article-title: Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.05.066 – volume: 23 start-page: 80 year: 2020 ident: B124 article-title: Prognostic value of skeletal muscle depletion measured on computed tomography for overall survival in patients with non-metastatic breast cancer. publication-title: J. Breast Cancer doi: 10.4048/jbc.2020.23.e8 – volume: 17 year: 2017 ident: B238 article-title: The clinical picture of cachexia: a mosaic of different parameters (experience of 503 patients). publication-title: BMC Cancer doi: 10.1186/s12885-017-3116-9 – volume: 27 start-page: 15 year: 2011 ident: B71 article-title: Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2010.557 – volume: 8 start-page: 279 year: 2001 ident: B131 article-title: Expression of apoptosis regulatory proteins in the skeletal muscle of tumor-bearing rabbits compared with diet-restricted rabbits. publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.8.3.279 – volume: 11 year: 2019 ident: B154 article-title: Z-ajoene from crushed garlic alleviates cancer-induced skeletal muscle atrophy. publication-title: Nutrients doi: 10.3390/nu11112724 – volume: 229 start-page: 1660 year: 2014 ident: B60 article-title: Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24611 – volume: 28 year: 2018 ident: B80 article-title: Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia. publication-title: Eur. J. Transl. Myol. doi: 10.4081/ejtm.2018.7590 – volume: 123 start-page: 4821 year: 2013 ident: B121 article-title: NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. publication-title: J. Clin. Invest. doi: 10.1172/JCI68523 – volume: 50 start-page: 897 year: 2002 ident: B278 article-title: Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. publication-title: J. Am. Geriatr. Soc. doi: 10.1046/j.1532-5415.2002.50217.x – volume: 52 start-page: 1239 year: 2020 ident: B58 article-title: Heavy resistance training in breast cancer patients undergoing adjuvant therapy. publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000002260 – volume: 18 start-page: 39 year: 2004 ident: B152 article-title: Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. doi: 10.1096/fj.03-0610com – volume: 11 start-page: 1779 year: 2020 ident: B127 article-title: ACVR2B antagonism as a countermeasure to multi-organ perturbations in metastatic colorectal cancer cachexia. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12642 – volume: 43 start-page: 886 year: 2013 ident: B268 article-title: Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model. publication-title: Int. J. Oncol. doi: 10.3892/ijo.2013.1998 – volume: 124 start-page: 3654 year: 2011 ident: B271 article-title: Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. publication-title: J. Cell Sci. doi: 10.1242/jcs.086629 – volume: 35 start-page: 5623 year: 2015 ident: B235 article-title: Comparing endurance and resistance training with standard care during chemotherapy for patients with primary breast cancer. publication-title: Anticancer Res. – volume: 23 start-page: 1153 year: 2018 ident: B242 article-title: Adjuvant anthracyclines in breast cancer: what is their role? publication-title: The Oncologist doi: 10.1634/theoncologist.2017-0672 – volume: 13 year: 2018 ident: B130 article-title: Muscle regeneration is disrupted by cancer cachexia without loss of muscle stem cell potential. publication-title: PLoS One doi: 10.1371/journal.pone.0205467 – volume: 268 start-page: E996 year: 1995 ident: B24 article-title: Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. publication-title: Am. J. Physiol. doi: 10.1152/ajpendo.1995.268.5.E996 – volume: 30 start-page: 1239 year: 2007 ident: B183 article-title: The AP-1/NF-kappaB double inhibitor SP100030 can revert muscle wasting during experimental cancer cachexia. publication-title: Int. J. Oncol. – volume: 12 year: 2017 ident: B75 article-title: Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects. publication-title: PLoS One doi: 10.1371/journal.pone.0181086 – volume: 121 start-page: 369 year: 2021 ident: B256 article-title: Echo intensity as an indicator of skeletal muscle quality: applications, methodology, and future directions. publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-020-04556-6 – volume: 26 start-page: 861 year: 2018 ident: B86 article-title: Impact of body composition on outcome in patients with early breast cancer. publication-title: Support. Care Cancer doi: 10.1007/s00520-017-3902-6 – volume: 84 start-page: 1135 year: 2001 ident: B32 article-title: Cleavage of caspases-1, -3, -6, -8 and -9 substrates by proteases in skeletal muscles from mice undergoing cancer cachexia. publication-title: Br. J. Cancer doi: 10.1054/bjoc.2001.1700 – volume: 14 year: 2016 ident: B228 article-title: Phenotypic and metabolic features of mouse diaphragm and gastrocnemius muscles in chronic lung carcinogenesis: influence of underlying emphysema. publication-title: J. Transl. Med. doi: 10.1186/s12967-016-1003-9 – volume: 9 start-page: 514 year: 2018 ident: B192 article-title: Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12310 – volume: 8 start-page: 39640 year: 2017 ident: B118 article-title: Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response. publication-title: Oncotarget doi: 10.18632/oncotarget.17387 – volume: 25 start-page: 365 year: 2017 ident: B224 article-title: Weight loss versus muscle loss: re-evaluating inclusion criteria for future cancer cachexia interventional trials. publication-title: Support. Care Cancer doi: 10.1007/s00520-016-3402-0 – volume: 92 start-page: 631 year: 2001 ident: B292 article-title: Expression of apoptosis regulatory proteins in the skeletal muscle of tumor-bearing rabbits. publication-title: Jpn. J. Cancer Res. Gann doi: 10.1111/j.1349-7006.2001.tb01141.x – volume: 10 year: 2021 ident: B128 article-title: Mitochondrial dysfunction is a common denominator linking skeletal muscle wasting due to disease, aging, and prolonged inactivity. publication-title: Antioxid. Basel Switz. doi: 10.3390/antiox10040588 – volume: 157 start-page: 603 year: 2020 ident: B3 article-title: Six-Minute walk test: clinical role, technique, coding, and reimbursement. publication-title: Chest doi: 10.1016/j.chest.2019.10.014 – volume: 51 start-page: 6089 year: 1991 ident: B30 article-title: Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. publication-title: Cancer Res. – volume: 229 year: 2019 ident: B123 article-title: Doxorubicin-induced skeletal muscle atrophy: elucidating the underlying molecular pathways. publication-title: Acta Physiol. Oxf. Engl. doi: 10.1111/apha.13400 – volume: 90 start-page: 2157 year: 2001 ident: B112 article-title: Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study. publication-title: J. Appl. Physiol. Bethesda Md 1985 doi: 10.1152/jappl.2001.90.6.2157 – volume: 37 start-page: 2196 year: 2005 ident: B145 article-title: Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2004.10.017 – volume: 14 start-page: 1085 year: 2015 ident: B62 article-title: Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. publication-title: Aging Cell doi: 10.1111/acel.12399 – volume: 13 start-page: 6379 year: 2007 ident: B100 article-title: Daily physical-rest activities in relation to nutritional state, metabolism, and quality of life in cancer patients with progressive cachexia. publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. doi: 10.1158/1078-0432.CCR-07-1147 – volume: 7 year: 2019 ident: B78 article-title: Chronic doxorubicin administration impacts satellite cell and capillary abundance in a muscle-specific manner. publication-title: Physiol. Rep. doi: 10.14814/phy2.14052 – volume: 145 start-page: 1449 year: 2019 ident: B181 article-title: Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-019-02911-5 – volume: 44 start-page: 386 year: 1984 ident: B33 article-title: Flux of amino acids across the leg in weight-losing cancer patients. publication-title: Cancer Res. – volume: 3 start-page: 37 ident: B54 article-title: Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1007/s13539-011-0049-z – volume: 290 start-page: 11177 year: 2015 ident: B245 article-title: Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.641514 – volume: 318 start-page: R227 year: 2020 ident: B182 article-title: Doxorubicin-induced oxidative stress differentially regulates proteolytic signaling in cardiac and skeletal muscle. publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00299.2019 – volume: 111 start-page: 1190 year: 2011 ident: B253 article-title: Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. publication-title: J. Appl. Physiol. Bethesda Md 1985 doi: 10.1152/japplphysiol.00429.2011 – volume: 281 start-page: R133 year: 2001 ident: B230 article-title: Higher skeletal muscle protein synthesis and lower breakdown after chemotherapy in cachectic mice. publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.2001.281.1.R133 – year: 2020 ident: B289 article-title: Breast cancer-associated skeletal muscle mitochondrial dysfunction and lipid accumulation is reversed by PPARG. publication-title: BioRxiv doi: 10.1101/2020.04.05.026617 – volume: 302 start-page: C195 year: 2012 ident: B110 article-title: Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00217.2011 – volume: 100 start-page: 2030 year: 2015 ident: B162 article-title: Role of Activin A and myostatin in human cancer cachexia. publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2014-4318 – volume: 9 start-page: 19584 year: 2018 ident: B65 article-title: Anti-cachectic effect of Antrodia cinnamomea extract in lung tumor-bearing mice under chemotherapy. publication-title: Oncotarget doi: 10.18632/oncotarget.24680 – volume: 4 year: 2013 ident: B21 article-title: Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00284 – volume: 23 start-page: 160 year: 2008 ident: B231 article-title: Signaling in muscle atrophy and hypertrophy. publication-title: Physiol. Bethesda Md doi: 10.1152/physiol.00041.2007 – volume: 74 start-page: 7344 year: 2014 ident: B107 article-title: Myostatin gene inactivation prevents skeletal muscle wasting in cancer. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0057 – volume: 84 start-page: 275 year: 1988 ident: B158 article-title: What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. publication-title: J. Neurol. Sci. doi: 10.1016/0022-510x(88)90132-3 – volume: 9 start-page: 701 year: 2018 ident: B41 article-title: Dysregulation of metabolic-associated pathways in muscle of breast cancer patients: preclinical evaluation of interleukin-15 targeting fatigue. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12294 – volume: 2014 year: 2014 ident: B2 article-title: Intermuscular fat: a review of the consequences and causes. publication-title: Int. J. Endocrinol. doi: 10.1155/2014/309570 – volume: 11 start-page: 226 year: 2020 ident: B149 article-title: Derangements of amino acids in cachectic skeletal muscle are caused by mitochondrial dysfunction. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12498 – volume: 18 start-page: e1 year: 2017 ident: B186 article-title: Consequences of late-stage non-small-cell lung cancer cachexia on muscle metabolic processes. publication-title: Clin. Lung Cancer doi: 10.1016/j.cllc.2016.06.003 – volume: 496 start-page: 746 year: 2018 ident: B227 article-title: 1α,25-dihydroxyvitamin D3 mitigates cancer cell mediated mitochondrial dysfunction in human skeletal muscle cells. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.01.092 – volume: 24 start-page: 508 year: 2016 ident: B103 article-title: The six-minute walk test as a measure of health in breast cancer patients. publication-title: J. Aging Phys. Act. doi: 10.1123/japa.2015-0056 – volume: 33 start-page: 90 year: 2015 ident: B169 article-title: Diagnostic criteria for the classification of cancer-associated weight loss. publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2014.56.1894 – volume: 85 start-page: 377 year: 2007 ident: B166 article-title: Reduced physical activity increases intermuscular adipose tissue in healthy young adults. publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/85.2.377 – volume: 9 year: 2019 ident: B4 article-title: Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. publication-title: Biomolecules doi: 10.3390/biom9110735 – volume: 82 start-page: 42 year: 1998 ident: B90 article-title: Effects of cachexia due to cancer on whole body and skeletal muscle protein turnover. publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19980101)82:1<42::AID-CNCR5>3.0.CO;2-M – volume: 36 start-page: 326 year: 2015 ident: B222 article-title: Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2015.03.005 – volume: 76 start-page: 5372 year: 2016 ident: B63 article-title: Differential effects of IL6 and activin a in the development of cancer-associated cachexia. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3152 – volume: 38 year: 2020 ident: B285 article-title: Pectoralis muscle wasting during chemotherapy. publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2020.38.15_suppl.e24069 – volume: 7 start-page: 51608 year: 2016 ident: B66 article-title: Combined administration of fucoidan ameliorates tumor and chemotherapy-induced skeletal muscle atrophy in bladder cancer-bearing mice. publication-title: Oncotarget doi: 10.18632/oncotarget.9958 – volume: 5 year: 2019 ident: B122 article-title: Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness. publication-title: JCI Insight doi: 10.1172/jci.insight.125543 – volume: 6 start-page: 164 year: 2015 ident: B194 article-title: Preserved muscle oxidative metabolic phenotype in newly diagnosed non-small cell lung cancer cachexia. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12007 – volume: 14 start-page: 14 year: 2008 ident: B39 article-title: Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-07-1033 – volume: 19 start-page: 1350 year: 2012 ident: B18 article-title: Changes in myostatin signaling in non-weight-losing cancer patients. publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-011-1720-5 – volume: 29 start-page: ii10 year: 2018 ident: B11 article-title: Muscle protein anabolism in advanced cancer patients: response to protein and amino acids support, and to physical activity. publication-title: Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. doi: 10.1093/annonc/mdx809 – volume: 311 start-page: E293 year: 2016 ident: B109 article-title: Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction. publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00540.2015 – volume: 44 start-page: 814 year: 2019 ident: B146 article-title: MRI quantitation of abdominal skeletal muscle correlates with CT-based analysis: implications for sarcopenia measurement. publication-title: Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. doi: 10.1139/apnm-2018-0473 – volume: 9 start-page: 685 year: 2018 ident: B208 article-title: Growth of ovarian cancer xenografts causes loss of muscle and bone mass: a new model for the study of cancer cachexia. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12311 – volume: 21 year: 2020 ident: B274 article-title: Signaling pathways that control muscle mass. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21134759 – volume: 40 start-page: 59 year: 2019 ident: B189 article-title: Colon 26 adenocarcinoma (C26)-induced cancer cachexia impairs skeletal muscle mitochondrial function and content. publication-title: J. Muscle Res. Cell Motil. doi: 10.1007/s10974-019-09510-4 – volume: 6 start-page: 264 year: 2019 ident: B59 article-title: Body composition, adherence to anthracycline and taxane-based chemotherapy, and survival after nonmetastatic breast cancer. publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2019.4668 – volume: 138 start-page: 2021 year: 2016 ident: B263 article-title: Complete reversal of muscle wasting in experimental cancer cachexia: additive effects of activin type II receptor inhibition and β-2 agonist. publication-title: Int. J. Cancer doi: 10.1002/ijc.29930 – volume: 35 start-page: 609 year: 1975 ident: B36 article-title: Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. publication-title: Scand. J. Clin. Lab. Invest. doi: 10.3109/00365517509095787 – volume: 162 start-page: 1365 year: 2015 ident: B135 article-title: Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. publication-title: Cell doi: 10.1016/j.cell.2015.08.031 – volume: 5 ident: B269 article-title: Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.161 – volume: 21 start-page: 1396 year: 2016 ident: B219 article-title: The prevalence and prognostic value of low muscle mass in cancer patients: a review of the literature. publication-title: The Oncologist doi: 10.1634/theoncologist.2016-0066 – volume: 904 start-page: 18 year: 2000 ident: B113 article-title: Composition of skeletal muscle evaluated with computed tomography. publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2000.tb06416.x – volume: 79 start-page: 874 year: 2004 ident: B254 article-title: Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/79.5.874 – volume: 8 year: 2017 ident: B255 article-title: BGP-15 protects against oxaliplatin-induced skeletal myopathy and mitochondrial reactive oxygen species production in mice. publication-title: Front. Pharmacol. doi: 10.3389/fphar.2017.00137 – volume: 9 year: 2019 ident: B287 article-title: Taxanes for adjuvant treatment of early breast cancer. publication-title: Cochrane Database Syst. Rev. doi: 10.1002/14651858.CD004421.pub3 – volume: 7 year: 2012 ident: B117 article-title: Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. publication-title: PLoS One doi: 10.1371/journal.pone.0030348 – volume: 14 start-page: 362 year: 2010 ident: B167 article-title: Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. publication-title: J. Nutr. Health Aging doi: 10.1007/s12603-010-0081-2 – volume: 81 start-page: 1339 year: 2010 ident: B173 article-title: Treatment of breast cancer. publication-title: Am. Fam. Physician – volume: 45 start-page: 1399 year: 2013 ident: B197 article-title: Bladder cancer-induced skeletal muscle wasting: disclosing the role of mitochondria plasticity. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2013.04.014 – volume: 30 start-page: 559 year: 2020 ident: B282 article-title: The 6-min walk test in the functional evaluation of patients with lung cancer qualified for lobectomy. publication-title: Interact. Cardiovasc. Thorac. Surg. doi: 10.1093/icvts/ivz313 – volume: 7 year: 2020 ident: B218 article-title: Plasma lipid profile and systemic inflammation in patients with cancer cachexia. publication-title: Front. Nutr. doi: 10.3389/fnut.2020.00004 – volume: 23 start-page: 3537 year: 2017 ident: B241 article-title: Body composition as a predictor of toxicity in patients receiving anthracycline and taxane–based chemotherapy for early-stage breast cancer. publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-2266 – volume: 9 year: 2018 ident: B276 article-title: Antineoplastic drug-induced cardiotoxicity: a redox perspective. publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00167 – volume: 184 start-page: 610 year: 1932 ident: B281 article-title: The immediate causes of death in cancer. publication-title: Am. J. Med. Sci. doi: 10.1097/00000441-193211000-00002 – volume: 8 start-page: 421 year: 2005 ident: B1 article-title: Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.10.004 – volume: 190 start-page: W8 year: 2008 ident: B290 article-title: Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. publication-title: AJR Am. J. Roentgenol. doi: 10.2214/AJR.07.2732 – volume: 73 start-page: 1560 year: 1996 ident: B240 article-title: The relationship between weight loss and interleukin 6 in non-small-cell lung cancer. publication-title: Br. J. Cancer doi: 10.1038/bjc.1996.294 – volume: 39 year: 2019 ident: B43 article-title: The toll-like receptor/MyD88/XBP1 signaling axis mediates skeletal muscle wasting during cancer cachexia. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00184-19 – volume: 73 start-page: 2047 year: 2003 ident: B266 article-title: Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. publication-title: Life Sci. doi: 10.1016/s0024-3205(03)00566-6 – volume: 431 start-page: 2674 ident: B202 article-title: Autophagy exacerbates muscle wasting in cancer cachexia and impairs mitochondrial function. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.05.032 – volume: 93 start-page: 493 year: 2013 ident: B215 article-title: Neoadjuvant chemotherapy in the treatment of breast cancer. publication-title: Surg. Clin. North Am. doi: 10.1016/j.suc.2013.01.006 – volume: 48 start-page: 783 year: 2003 ident: B93 article-title: The six-minute walk test. publication-title: Respir. Care – volume: 38 start-page: 531 year: 2008 ident: B74 article-title: Muscle myostatin signalling is enhanced in experimental cancer cachexia. publication-title: Eur. J. Clin. Invest. doi: 10.1111/j.1365-2362.2008.01970.x – volume: 435 start-page: 488 year: 2013 ident: B221 article-title: Cancer cachexia decreases specific force and accelerates fatigue in limb muscle. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.05.018 – volume: 4 start-page: 133 year: 2012 ident: B243 article-title: Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting. publication-title: Aging doi: 10.18632/aging.100436 – volume: 299 start-page: C307 year: 2010 ident: B10 article-title: Oxidative stress, apoptosis, and proteolysis in skeletal muscle repair after unloading. publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00069.2010 – volume: 18 start-page: 479 year: 2020 ident: B144 article-title: Role of immunotherapy in triple-negative breast cancer. publication-title: J. Natl. Compr. Cancer Netw. JNCCN doi: 10.6004/jnccn.2020.7554 – volume: 29 start-page: 3593 year: 2020 ident: B291 article-title: Physical activity level, exercise behavior, barriers, and preferences of patients with breast cancer-related lymphedema. publication-title: Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer doi: 10.1007/s00520-020-05858-3 – volume: 137 start-page: 2558 year: 2015 ident: B172 article-title: Tumor inoculation site affects the development of cancer cachexia and muscle wasting. publication-title: Int. J. Cancer doi: 10.1002/ijc.29620 – volume: 7 year: 2017 ident: B247 article-title: Growth hormone secretagogues hexarelin and JMV2894 protect skeletal muscle from mitochondrial damages in a rat model of cisplatin-induced cachexia. publication-title: Sci. Rep. doi: 10.1038/s41598-017-13504-y – volume: 5 year: 2014 ident: B175 article-title: Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00503 – volume: 21 year: 2020 ident: B272 article-title: Impact of mitophagy and mitochondrial unfolded protein response as new adaptive mechanisms underlying old pathologies: sarcopenia and non-alcoholic fatty liver disease. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21207704 – volume: 8 start-page: 768 year: 2017 ident: B163 article-title: Circulating Activin A predicts survival in cancer patients. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12209 – volume: 85 start-page: 647 year: 2007 ident: B236 article-title: Activity of the Akt-dependent anabolic and catabolic pathways in muscle and liver samples in cancer-related cachexia. publication-title: J. Mol. Med. Berl. Ger. doi: 10.1007/s00109-007-0177-2 – volume: 83 start-page: 1857 year: 1997 ident: B9 article-title: Growth hormone/IGF-I and/or resistive exercise maintains myonuclear number in hindlimb unweighted muscles. publication-title: J. Appl. Physiol. Bethesda Md 1985 doi: 10.1152/jappl.1997.83.6.1857 – volume: 41 year: 2020 ident: B126 article-title: Muscle NAD+ depletion and Serpina3n as molecular determinants of murine cancer cachexia-the effects of blocking myostatin and activins. publication-title: Mol. Metab. doi: 10.1016/j.molmet.2020.101046 – volume: 37 start-page: 3325 year: 2014 ident: B104 article-title: Changes in adipose tissue depots and metabolic markers following a 1-year diet and exercise intervention in overweight and obese patients with type 2 diabetes. publication-title: Diabetes Care doi: 10.2337/dc14-1585 – volume: 7 year: 2017 ident: B26 article-title: ACVR2B/Fc counteracts chemotherapy-induced loss of muscle and bone mass. publication-title: Sci. Rep. doi: 10.1038/s41598-017-15040-1 – volume: 33 start-page: 1211 year: 2009 ident: B155 article-title: Leisure-time physical activity and high-risk fat: a longitudinal population-based twin study. publication-title: Int. J. Obes. 2005 doi: 10.1038/ijo.2009.170 – volume: 30 start-page: 4234 year: 2020 ident: B225 article-title: Muscle mass loss after neoadjuvant chemotherapy in breast cancer: estimation on breast magnetic resonance imaging using pectoralis muscle area. publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06799-5 – volume: 13 year: 2021 ident: B153 article-title: Association between skeletal muscle loss and the response to neoadjuvant chemotherapy for breast cancer. publication-title: Cancers doi: 10.3390/cancers13081806 – volume: 3 start-page: 185 ident: B53 article-title: Formoterol treatment downregulates the myostatin system in skeletal muscle of cachectic tumour-bearing rats. publication-title: Oncol. Lett. doi: 10.3892/ol.2011.442 – volume: 40 start-page: 1129 year: 2018 ident: B67 article-title: Luteolin reduces cancer-induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model. publication-title: Oncol. Rep. doi: 10.3892/or.2018.6453 – volume: 128 start-page: 1654 year: 2020 ident: B264 article-title: Effect of neuromuscular electrical stimulation on skeletal muscle size and function in patients with breast cancer receiving chemotherapy. publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00203.2020 – volume: 232 start-page: 3744 year: 2017 ident: B61 article-title: Role of PARP activity in lung cancer-induced cachexia: effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25851 – volume: 246 year: 2020 ident: B20 article-title: Paeonia lactiflora root extract suppresses cancer cachexia by down-regulating muscular NF-κB signalling and muscle-specific E3 ubiquitin ligases in cancer-bearing mice. publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2019.112222 – volume: 50 start-page: 56 year: 2016 ident: B50 article-title: Muscle wasting and aging: experimental models, fatty infiltrations, and prevention. publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2016.04.006 – volume: 98 start-page: 1349 year: 2013 ident: B95 article-title: Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice. publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2013.072496 – volume: 51 start-page: 271 year: 2019 ident: B237 article-title: Validation of the 6-min walk test for predicting peak V⋅O2 in cancer survivors. publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000001790 – volume: 22 start-page: 2175 year: 2018 ident: B190 article-title: Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. publication-title: Eur. Rev. Med. Pharmacol. Sci. doi: 10.26355/eurrev_201804_14752 – volume: 345 start-page: 995 year: 2001 ident: B31 article-title: Trastuzumab and breast cancer. publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200109273451312 – volume: 60 start-page: 324 year: 2005 ident: B277 article-title: Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. publication-title: J. Gerontol. A. Biol. Sci. Med. Sci. doi: 10.1093/gerona/60.3.324 – volume: 6 start-page: 197 year: 2015 ident: B48 article-title: Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12043 – volume: 3 start-page: 265 year: 2012 ident: B139 article-title: Cancer cachexia is associated with a decrease in skeletal muscle mitochondrial oxidative capacities without alteration of ATP production efficiency. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1007/s13539-012-0071-9 – volume: 6 year: 2016 ident: B120 article-title: ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments. publication-title: Skelet. Muscle doi: 10.1186/s13395-016-0098-2 – volume: 54 start-page: 5568 year: 1994 ident: B261 article-title: Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. publication-title: Cancer Res. – volume: 11 year: 2020 ident: B12 article-title: Evaluation of an antioxidant and anti-inflammatory cocktail against human hypoactivity-induced skeletal muscle deconditioning. publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00071 – volume: 25 start-page: e852 year: 2020 ident: B28 article-title: Exercise intolerance in anthracycline-treated breast cancer survivors: the role of skeletal muscle bioenergetics, oxygenation, and composition. publication-title: The Oncologist doi: 10.1634/theoncologist.2019-0777 – volume: 111 start-page: 2954 year: 2020 ident: B193 article-title: Peptide-2 from mouse myostatin precursor protein alleviates muscle wasting in cancer-associated cachexia. publication-title: Cancer Sci. doi: 10.1111/cas.14520 – volume: 65 start-page: 988 year: 2013 ident: B108 article-title: The anticancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.08.191 – volume: 142 start-page: 531 year: 2010 ident: B298 article-title: Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. publication-title: Cell doi: 10.1016/j.cell.2010.07.011 – volume: 57 start-page: 1006 year: 2018 ident: B142 article-title: Time-course study of macrophage infiltration and inflammation in cast immobilization-induced atrophied muscle of mice. publication-title: Muscle Nerve doi: 10.1002/mus.26061 – volume: 7 start-page: 458 year: 2016 ident: B226 article-title: Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12107 – volume: 24 start-page: 511 year: 2018 ident: B91 article-title: Breast cancer immunotherapy: facts and hopes. publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. doi: 10.1158/1078-0432.CCR-16-3001 – volume: 5 start-page: 309 year: 2020 ident: B293 article-title: Long-term cardiopulmonary consequences of treatment-induced cardiotoxicity in survivors of ERBB2-positive breast cancer. publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2019.5586 – volume: 13 year: 2018 ident: B68 article-title: Prognostic value of systemic inflammatory markers and development of a nomogram in breast cancer. publication-title: PLoS One doi: 10.1371/journal.pone.0200936 – volume: 48 start-page: 16 year: 2019 ident: B77 article-title: Sarcopenia: revised European consensus on definition and diagnosis. publication-title: Age Ageing doi: 10.1093/ageing/afy169 – volume: 2 year: 2018 ident: B138 article-title: Skeletal muscle fibrosis in pancreatic cancer patients with respect to survival. publication-title: JNCI Cancer Spectr. doi: 10.1093/jncics/pky043 – volume: 21 start-page: 1457 year: 1998 ident: B176 article-title: Doxorubicin chemomyectomy as a treatment for cervical dystonia: histological assessment after direct injection into the sternocleidomastoid muscle. publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(199811)21:11<1457::AID-MUS14>3.0.CO;2-Y |
| SSID | ssj0001257583 |
| Score | 2.3511703 |
| SecondaryResourceType | review_article |
| Snippet | Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 719643 |
| SubjectTerms | cancer cachexia Cell and Developmental Biology inflammatory cytokines intermuscular adipose tissue mitochondria muscle atrophy protein turnover |
| Title | Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers |
| URI | https://www.proquest.com/docview/2578768554 https://pubmed.ncbi.nlm.nih.gov/PMC8476809 https://doaj.org/article/2c0d563b8ae1472ea9c8c042527c3043 |
| Volume | 9 |
| WOSCitedRecordID | wos000704151200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: M7P dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkLWl7aLmxlJE5IYePEiWNudNmKFWyJeKmcLMcPqIB01bRIe-aPM2Onq-YCF67J5OVvnJnPmXxDyFNTCO5Tb5LcsSbhUsOcSxueOIbi7fivZuhD9vmtmM2q-VzWO62-sCYsygPHgTvOTGqLMm8q7RgXmdPSVAY9LRMGqHjQ-UyF3CFTcXUF0pAqj58xgYXJY48L4cAHM_ZcBBGqQSAKev2DJHNYIrkTc6b75E6fLNKX8SbvkmuuvUduxfaRl_fJ7w_fIWhA9kzPNx0Y0FfIbu2iX2Oli5ZOsOZ8TU8Q2xWto4hqR0O3o69LNELFgP4vrMsXtJdrom-2S21Ut5aetR1y-I5OV8uf9B1a96fsHpBP09OPJ6-TvqlCYiAXWyfMQMrTZK7MS8Ns4RspLdMFFy71DSCX-wKCfpE771xjJQqyOZkZaY0urAba-pDstcvWHRDKc2GB0QgjvOEN5FlwSFFypq3wDEAZkXQ7wsr0iuPY-OKHAuaBoKgAikJQVARlRJ5dHXIR5Tb-ZjxB2K4MUSk7bAD_Ub3_qH_5z4g82YKuYGbhNXTrlptOhZdZiWV8IyIG3jC44nBPu_gWNLoh6JdVKg__xy0-IrfxqbFKhfHHZG-92rgjctP8Wi-61ZhcF_NqTG5MTmf1-3GYBmOsYK1hW312Xn_5AyZVD80 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+Muscle+Deconditioning+in+Breast+Cancer+Patients+Undergoing+Chemotherapy%3A+Current+Knowledge+and+Insights+From+Other+Cancers&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Mallard%2C+Joris&rft.au=Hucteau%2C+Elyse&rft.au=Hureau%2C+Thomas+J.&rft.au=Pagano%2C+Allan+F.&rft.date=2021-09-14&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=9&rft_id=info:doi/10.3389%2Ffcell.2021.719643&rft_id=info%3Apmid%2F34595171&rft.externalDocID=PMC8476809 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |