A Clustering Scheme Based on the Binary Whale Optimization Algorithm in FANET

With the continuous development of Unmanned Aerial Vehicle (UAV) technology, UAVs are widely used in military and civilian fields. Multi-UAV networks are often referred to as flying ad hoc networks (FANET). Dividing multiple UAVs into clusters for management can reduce energy consumption, maximize n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 24; číslo 10; s. 1366
Hlavní autoři: Yan, Yonghang, Xia, Xuewen, Zhang, Lingli, Li, Zhijia, Qin, Chunbin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 27.09.2022
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the continuous development of Unmanned Aerial Vehicle (UAV) technology, UAVs are widely used in military and civilian fields. Multi-UAV networks are often referred to as flying ad hoc networks (FANET). Dividing multiple UAVs into clusters for management can reduce energy consumption, maximize network lifetime, and enhance network scalability to a certain extent, so UAV clustering is an important direction for UAV network applications. However, UAVs have the characteristics of limited energy resources and high mobility, which bring challenges to UAV cluster communication networking. Therefore, this paper proposes a clustering scheme for UAV clusters based on the binary whale optimization (BWOA) algorithm. First, the optimal number of clusters in the network is calculated based on the network bandwidth and node coverage constraints. Then, the cluster heads are selected based on the optimal number of clusters using the BWOA algorithm, and the clusters are divided based on the distance. Finally, the cluster maintenance strategy is set to achieve efficient maintenance of clusters. The experimental simulation results show that the scheme has better performance in terms of energy consumption and network lifetime compared with the BPSO and K-means-based schemes.
AbstractList With the continuous development of Unmanned Aerial Vehicle (UAV) technology, UAVs are widely used in military and civilian fields. Multi-UAV networks are often referred to as flying ad hoc networks (FANET). Dividing multiple UAVs into clusters for management can reduce energy consumption, maximize network lifetime, and enhance network scalability to a certain extent, so UAV clustering is an important direction for UAV network applications. However, UAVs have the characteristics of limited energy resources and high mobility, which bring challenges to UAV cluster communication networking. Therefore, this paper proposes a clustering scheme for UAV clusters based on the binary whale optimization (BWOA) algorithm. First, the optimal number of clusters in the network is calculated based on the network bandwidth and node coverage constraints. Then, the cluster heads are selected based on the optimal number of clusters using the BWOA algorithm, and the clusters are divided based on the distance. Finally, the cluster maintenance strategy is set to achieve efficient maintenance of clusters. The experimental simulation results show that the scheme has better performance in terms of energy consumption and network lifetime compared with the BPSO and K-means-based schemes.
With the continuous development of Unmanned Aerial Vehicle (UAV) technology, UAVs are widely used in military and civilian fields. Multi-UAV networks are often referred to as flying ad hoc networks (FANET). Dividing multiple UAVs into clusters for management can reduce energy consumption, maximize network lifetime, and enhance network scalability to a certain extent, so UAV clustering is an important direction for UAV network applications. However, UAVs have the characteristics of limited energy resources and high mobility, which bring challenges to UAV cluster communication networking. Therefore, this paper proposes a clustering scheme for UAV clusters based on the binary whale optimization (BWOA) algorithm. First, the optimal number of clusters in the network is calculated based on the network bandwidth and node coverage constraints. Then, the cluster heads are selected based on the optimal number of clusters using the BWOA algorithm, and the clusters are divided based on the distance. Finally, the cluster maintenance strategy is set to achieve efficient maintenance of clusters. The experimental simulation results show that the scheme has better performance in terms of energy consumption and network lifetime compared with the BPSO and K-means-based schemes.With the continuous development of Unmanned Aerial Vehicle (UAV) technology, UAVs are widely used in military and civilian fields. Multi-UAV networks are often referred to as flying ad hoc networks (FANET). Dividing multiple UAVs into clusters for management can reduce energy consumption, maximize network lifetime, and enhance network scalability to a certain extent, so UAV clustering is an important direction for UAV network applications. However, UAVs have the characteristics of limited energy resources and high mobility, which bring challenges to UAV cluster communication networking. Therefore, this paper proposes a clustering scheme for UAV clusters based on the binary whale optimization (BWOA) algorithm. First, the optimal number of clusters in the network is calculated based on the network bandwidth and node coverage constraints. Then, the cluster heads are selected based on the optimal number of clusters using the BWOA algorithm, and the clusters are divided based on the distance. Finally, the cluster maintenance strategy is set to achieve efficient maintenance of clusters. The experimental simulation results show that the scheme has better performance in terms of energy consumption and network lifetime compared with the BPSO and K-means-based schemes.
Audience Academic
Author Qin, Chunbin
Li, Zhijia
Zhang, Lingli
Xia, Xuewen
Yan, Yonghang
AuthorAffiliation 1 School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
3 Beijing Aerospace Automatic Control Institute, Beijing 100854, China
4 School of Artificial Intelligence, Henan University, Kaifeng 475004, China
2 Henan Province Engineering Research Center of Spatial Information Processing, Henan University, Kaifeng 475004, China
AuthorAffiliation_xml – name: 1 School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
– name: 3 Beijing Aerospace Automatic Control Institute, Beijing 100854, China
– name: 4 School of Artificial Intelligence, Henan University, Kaifeng 475004, China
– name: 2 Henan Province Engineering Research Center of Spatial Information Processing, Henan University, Kaifeng 475004, China
Author_xml – sequence: 1
  givenname: Yonghang
  orcidid: 0000-0002-8606-793X
  surname: Yan
  fullname: Yan, Yonghang
– sequence: 2
  givenname: Xuewen
  orcidid: 0000-0003-4241-0553
  surname: Xia
  fullname: Xia, Xuewen
– sequence: 3
  givenname: Lingli
  surname: Zhang
  fullname: Zhang, Lingli
– sequence: 4
  givenname: Zhijia
  orcidid: 0000-0003-1472-5718
  surname: Li
  fullname: Li, Zhijia
– sequence: 5
  givenname: Chunbin
  orcidid: 0000-0002-8238-5922
  surname: Qin
  fullname: Qin, Chunbin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37420386$$D View this record in MEDLINE/PubMed
BookMark eNptkstu1DAUhiNURC-w4AVQJDZ0Ma3vTjZIYdRCpUIXFLG0HPsk41FiD3aCBE9fd6aM2gp5Yfucz7_P7bg48MFDUbzF6IzSGp0DYRhhKsSL4gijul4witDBo_NhcZzSGiFCCRavikMqGUG0EkfF16ZcDnOaIDrfl9_NCkYoP-kEtgy-nFb54ryOf8qfKz1AebOZ3Oj-6sllbzP0IbppNZbOl5fNt4vb18XLTg8J3jzsJ8WPy4vb5ZfF9c3nq2VzvTAcVdMCC4EE4sJIXVUdorKWhOREkKWAMGYdt6alVU1BE93yDnNZd4ITKnQnWYvoSXG107VBr9UmujGHqIJ2amsIsVc6Ts4MoIRtKVhiKWeWaRAVEA6GYyYxbrkUWevjTmsztyNYA36Kengi-tTj3Ur14beqBcK57lngw4NADL9mSJMaXTIwDNpDmJMiFeVEVlLgjL5_hq7DHH0ulSKSVEwQLu8Fz3ZUn0uunO9C_tfkZWF0Jre-c9neSJbhmmxTePc4hX3s_9qcgdMdYGJIKUK3RzBS9yOk9iOU2fNnrHHTtuE5Cjf858Ud3NnDbw
CitedBy_id crossref_primary_10_1016_j_adhoc_2023_103355
crossref_primary_10_1016_j_cie_2025_111200
crossref_primary_10_1109_ACCESS_2024_3419904
crossref_primary_10_3390_app13095602
crossref_primary_10_1016_j_procs_2025_01_054
crossref_primary_10_1016_j_vehcom_2024_100805
crossref_primary_10_3390_drones9090654
crossref_primary_10_3390_s25010072
crossref_primary_10_1016_j_asoc_2024_111929
Cites_doi 10.1109/ACCESS.2021.3124710
10.1109/ACCESS.2021.3130417
10.3390/s22093236
10.1007/s13042-017-0731-3
10.1007/s11432-019-2984-7
10.1109/MWC.2018.1800160
10.1109/ACCESS.2019.2902940
10.1016/j.advengsoft.2016.01.008
10.5055/jem.0496
10.1109/TVT.2020.2973294
10.1109/MSPEC.2017.7802742
10.1109/ACCESS.2019.2955993
10.1109/ACCESS.2020.3000222
10.1109/COMST.2020.2982452
10.1109/ICC.2017.7996485
10.1109/EIT51626.2021.9491898
10.1007/s11432-018-9579-3
10.1109/JIOT.2019.2925567
10.1109/ACCESS.2021.3053605
10.3390/s18051413
10.1109/TWC.2014.2337315
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e24101366
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_6db3ed2d354d4ae68e25ec514711b576
PMC9601410
A745709276
37420386
10_3390_e24101366
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: science and technology research project of the Henan province
  grantid: 222102240014
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-16606056c7a88f03797223900d3e0114f5dcb3893ea2ab5f1579f65236af74b03
IEDL.DBID M7S
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000872566700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:41:52 EDT 2025
Tue Nov 04 02:07:26 EST 2025
Sun Nov 09 11:08:06 EST 2025
Fri Jul 25 12:00:16 EDT 2025
Tue Nov 04 18:17:56 EST 2025
Thu Apr 03 06:52:14 EDT 2025
Sat Nov 29 07:11:19 EST 2025
Tue Nov 18 22:24:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords UAV clusters
clustering
FANET
binary whale optimization algorithm (BWOA)
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-16606056c7a88f03797223900d3e0114f5dcb3893ea2ab5f1579f65236af74b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8238-5922
0000-0003-4241-0553
0000-0002-8606-793X
0000-0003-1472-5718
OpenAccessLink https://www.proquest.com/docview/2728462570?pq-origsite=%requestingapplication%
PMID 37420386
PQID 2728462570
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_6db3ed2d354d4ae68e25ec514711b576
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9601410
proquest_miscellaneous_2835278761
proquest_journals_2728462570
gale_infotracacademiconefile_A745709276
pubmed_primary_37420386
crossref_primary_10_3390_e24101366
crossref_citationtrail_10_3390_e24101366
PublicationCentury 2000
PublicationDate 20220927
PublicationDateYYYYMMDD 2022-09-27
PublicationDate_xml – month: 9
  year: 2022
  text: 20220927
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mirjalili (ref_17) 2016; 95
Reddy (ref_19) 2018; 2
Daneshvar (ref_23) 2019; 7
Schneider (ref_4) 2017; 54
Bhandari (ref_7) 2020; 8
Khan (ref_11) 2021; 64
Raza (ref_24) 2020; 14
ref_16
ref_15
Asaamoning (ref_14) 2021; 9
Basset (ref_21) 2019; 10
Pham (ref_20) 2020; 69
Khan (ref_10) 2019; 7
Macedo (ref_18) 2021; 9
Braverman (ref_5) 2021; 19
Lakew (ref_1) 2020; 22
Zheng (ref_25) 2014; 13
ref_3
Arafat (ref_12) 2019; 6
Arafat (ref_13) 2021; 9
Zhao (ref_2) 2019; 26
ref_9
ref_8
ref_6
Cao (ref_22) 2015; 32
References_xml – volume: 9
  start-page: 149814
  year: 2021
  ident: ref_18
  article-title: Overview on Binary Optimization Using Swarm-Inspired Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3124710
– volume: 9
  start-page: 158574
  year: 2021
  ident: ref_14
  article-title: A Dynamic Clustering Mechanism with Load-Balancing for Flying Ad Hoc Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3130417
– ident: ref_9
  doi: 10.3390/s22093236
– volume: 10
  start-page: 495
  year: 2019
  ident: ref_21
  article-title: A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0731-3
– volume: 14
  start-page: 2670
  year: 2020
  ident: ref_24
  article-title: Adaptive K-means clustering for flying ad-hoc networks
  publication-title: KSII Trans. Internet Inf. Syst.
– ident: ref_16
– volume: 64
  start-page: 76
  year: 2021
  ident: ref_11
  article-title: Intelligent cluster routing scheme for flying ad hoc networks
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-019-2984-7
– volume: 26
  start-page: 45
  year: 2019
  ident: ref_2
  article-title: UAV-assisted emergency networks in disasters
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2018.1800160
– volume: 7
  start-page: 31446
  year: 2019
  ident: ref_10
  article-title: BICSF: Bio-Inspired Clustering Scheme for FANETs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902940
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_17
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 19
  start-page: 33
  year: 2021
  ident: ref_5
  article-title: Unmanned aerial systems (UAS) in urban search and rescue-methodology, capacity development, and integration
  publication-title: J. Emerg. Manag.
  doi: 10.5055/jem.0496
– volume: 69
  start-page: 4285
  year: 2020
  ident: ref_20
  article-title: Whale Optimization Algorithm with Applications to Resource Allocation in Wireless Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2973294
– volume: 54
  start-page: 32
  year: 2017
  ident: ref_4
  article-title: Air traffic control for delivery drones [Top Tech 2017]
  publication-title: IEEE Spectr.
  doi: 10.1109/MSPEC.2017.7802742
– volume: 7
  start-page: 170019
  year: 2019
  ident: ref_23
  article-title: Energy-Efficient Routing in WSN: A Centralized Cluster-Based Approach via Grey Wolf Optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955993
– volume: 8
  start-page: 106364
  year: 2020
  ident: ref_7
  article-title: Mobility and Location-aware Stable Clustering Scheme for UAV Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000222
– volume: 22
  start-page: 1071
  year: 2020
  ident: ref_1
  article-title: Routing in Flying Ad Hoc Networks: A Comprehensive Survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2982452
– volume: 2
  start-page: 293
  year: 2018
  ident: ref_19
  article-title: Binary whale optimization algorithm and its application to unit commitment problem
  publication-title: Neural Comput. Appl.
– ident: ref_15
  doi: 10.1109/ICC.2017.7996485
– volume: 32
  start-page: 147
  year: 2015
  ident: ref_22
  article-title: Clustering Algrothrim of WSN Based on Binary Particle Swarm Optimization
  publication-title: Microelectron. Comput.
– ident: ref_8
  doi: 10.1109/EIT51626.2021.9491898
– ident: ref_3
  doi: 10.1007/s11432-018-9579-3
– volume: 6
  start-page: 8958
  year: 2019
  ident: ref_12
  article-title: Localization and Clustering Based on Swarm Intelligence in UAV Networks for Emergency Communications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2925567
– volume: 9
  start-page: 18649
  year: 2021
  ident: ref_13
  article-title: Bio-Inspired Approaches for Energy-Efficient Localization and Clustering in UAV Networks for Monitoring Wildfires in Remote Areas
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053605
– ident: ref_6
  doi: 10.3390/s18051413
– volume: 13
  start-page: 6180
  year: 2014
  ident: ref_25
  article-title: Performance analysis of group-synchronized DCF for dense IEEE 802.11 networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2014.2337315
SSID ssj0023216
Score 2.337608
Snippet With the continuous development of Unmanned Aerial Vehicle (UAV) technology, UAVs are widely used in military and civilian fields. Multi-UAV networks are often...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1366
SubjectTerms Ad hoc networks
Ad hoc networks (Computer networks)
Algorithms
Analysis
binary whale optimization algorithm (BWOA)
Clustering
Clustering (Computers)
Communication
Drone aircraft
Energy consumption
Energy resources
Energy sources
FANET
Intelligence
Maintenance
Management
Mathematical optimization
Methods
Optimization
Optimization algorithms
Surveillance
Technology application
UAV clusters
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMXBOIVWJBBSHCJNn7Ejo_paisuFCQWsTcrftFKbbrqtvx-ZpI0agQSF67JKLFn7PlmZM83hLyHEEjoKqWceSTVjkbmzgefJ-aNdk4L7lLXbEIvFtXNjfl60uoL74T19MC94i5UcCIGHkQpg2yiqiIvoweY14w5CJbR-xbaHJOpIdUSnKmeR0hAUn8RAaeQnExN0Kcj6f_TFZ9g0fSe5AnwzB-Rh0PESOt-pI_Jvdg-IZ9rerk-IMkBQA_9BprfRDoDRAp021II6uisK7SlP5bwW_oFHMNmqLik9frndrfaLzd01dJ5vbi6fkq-z6-uLz_lQ2eE3ENAtc-ZgrwDQhevm6pKhdBGA8yboggiYoaTyuAdhiKx4Y0rEyu1SQpyTtUkLV0hnpGzdtvGF4SCSQoTpQCfHaR2qfGSO5FSNNr4ihUZ-XjUmPUDbTh2r1hbSB9QuXZUbkbejaK3PVfG34RmqPZRAOmtuwdgdDsY3f7L6Bn5gEazuAlhML4ZaglgSkhnZWstS5gWR8nzo13tsDvvLNcAygr792Xk7fga9hUeljRt3B5ABkNT8GaKZeR5vwzGMQsteSEq-LieLJDJpKZv2tWy4-6GhBFv1r78H1p4RR5wLMbAMzJ9Ts72u0N8Te77X_vV3e5NtyF-Aw2gDws
  priority: 102
  providerName: Directory of Open Access Journals
Title A Clustering Scheme Based on the Binary Whale Optimization Algorithm in FANET
URI https://www.ncbi.nlm.nih.gov/pubmed/37420386
https://www.proquest.com/docview/2728462570
https://www.proquest.com/docview/2835278761
https://pubmed.ncbi.nlm.nih.gov/PMC9601410
https://doaj.org/article/6db3ed2d354d4ae68e25ec514711b576
Volume 24
WOSCitedRecordID wos000872566700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYxoELH-Jj2UZlEBJcosV2EscnlE6t4LBSsSHKKYode63UJqMfHPnbeS91wyoQFy491E_tS35-X_74PULeQAokZOZcyAySalsVh9pUJnTMKKm1FFy7ttmEHI2yyUSN_YLbyh-r3PnE1lFXjcE18nMuwZGm2HPt_e33ELtG4e6qb6FxQI6QJYG1R_euuoJLcJZu2YQElPbnFqIVUpSlezGoper_0yHfiUj7pyXvhJ_ho_9V_DF56BNPmm9nyhNyz9ZPyWVOL-Yb5EqACEavAMCFpX0IbBVtagq5Ie2393Xp1ynoTT-Bf1n4i5s0n9_A36ynCzqr6TAfDa6fkS_DwfXFh9A3WAgN5GXrkKVQvkAGZGSZZS4SUknIFlQUVcJioeSSymjMaGzJS504lkjlUihd09LJWEfiOTmsm9oeEwrIRsrGAlx_FUvtShNzLZyzSiqTsSgg73avvDCefRybYMwLqEIQnaJDJyCvO9HbLeXG34T6iFsngCzZ7RfN8qbwRleklRa24pVI4ioubZpZnlgDKaJkTEOhFZC3iHqBtgzKmNJfSYBHQlasIpcxwKY4Sp7twC28ka-K38gG5FU3DOaJey5lbZsNyGCGC04xZQF5sZ1Hnc5CxjwSGfy43Jthew-1P1LPpi0FONSdeED35N9qnZIHHG9r4CaaPCOH6-XGviT3zY_1bLXskQM5yXrkqD8YjT_32sWIXms_-PlzACPjj5fjb78Aw6sjZw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYJLAfFKKWAQCC5REzuJ4wNC2dJVq7YLUhfRW4gdu7vSblL2AeJP8RuZyYtGIG49cE1Glp18mW8m9nxDyEsIgbiIrXV9jaLaRgau0rl2ra-lUEpwpmzVbEKMRvHZmfy4QX62tTB4rLL1iZWjzkuN_8h3mQBHGmHPtXcXX13sGoW7q20LjRoWR-bHd0jZlm8P38P7fcXYcH-8d-A2XQVcDcHIyvUjiNmB9rXI4th6XEgBFCk9L-cGswMb5lohjZuMZSq0fiikjSBfizIrAuVxGPcauQ5hBJPVUcHTLsHjzI9q9SIOA-4aYEeURIt6nFe1BviTAC4xYP905iW6G97-3x7UHbLVBNY0qb-Eu2TDFPfISUL3ZmvUggCGpqcA0LmhAyDunJYFhdiXDqp6ZPp5As-JfgD_OW8KU2kyO4dlrSZzOi3oMBntj--TT1eyggdksygL84hQQK4nTcCB2vJAKJvpgClurZFC6tj3HPKmfcWpbtTVscnHLIUsC9GQdmhwyIvO9KKWFPmb0QBx0hmgCnh1oVycp41TSaNccZOznIdBHmQmig0LjYYQWPi-gkTSIa8RZSn6KpiMzpqSC1gSqn6liQgAJpKh5U4LprRxYsv0N5Ic8ry7De4H95SywpRrsMEIHpx-5DvkYY3bbs5cBMzjMQwueojuLap_p5hOKolzyKvxAPL2v6f1jNw8GJ8cp8eHo6PH5BbDyhTcMBQ7ZHO1WJsn5Ib-tpouF0-r75SSL1eN91_DmXZK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCEuBcRXSoEFgeBixd61vfYBIadtRFQaIlFEezLe9W4TKXFKPkD8NX4dM45tGoG49cA1Hq127bfzZrI7bwBeYAgkZGSt42kS1Tax7yida8d6OpZKScGVLZtNyMEgOj2Nh1vws66FoWuVtU8sHXU-0_QfeYdLdKQh9Vzr2OpaxPCg9_biq0MdpOiktW6nsYbIkfnxHdO3xZv-AX7rl5z3Dk_23zlVhwFHY2CydLwQ43cMAbTMosi6QsYS6TJ23VwYyhRskGtFlG4ynqnAeoGMbYi5W5hZ6StX4LjXYBtDcp-3YHvYPx6eNeme4F641jISOGTHIFeSQFq4wYBlo4A_6eASH27e1bxEfr1b__Nruw07VcjNkvUeuQNbprgLxwnbn6xIJQK5m31E6E4N6yKl52xWMIyKWbesVGafR_jO2Af0rNOqZJUlk3Nc1nI0ZeOC9ZLB4ck9-HQlK7gPrWJWmIfAENNubHyBpJf7UtlM-1wJa00sYx15bhte15871ZXuOrX_mKSYfxEy0gYZbXjemF6sxUb-ZtQlzDQGpA9e_jCbn6eVu0nDXAmT81wEfu5nJowMD4zG4Fh6nsIUsw2vCHEpeTGcjM6qYgxcEumBpYn0ETIxJ8u9Glhp5d4W6W9UteFZ8xgdE502ZYWZrdCGYnukg9Brw4M1hps5C9wvrohwcLmB7o1FbT4pxqNS_BwzbrqavPvvaT2FGwjz9H1_cPQIbnIqWaGTRLkHreV8ZR7Ddf1tOV7Mn1SblsGXqwb8L4ROgIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Clustering+Scheme+Based+on+the+Binary+Whale+Optimization+Algorithm+in+FANET&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Yan%2C+Yonghang&rft.au=Xia%2C+Xuewen&rft.au=Zhang%2C+Lingli&rft.au=Li%2C+Zhijia&rft.date=2022-09-27&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=24&rft.issue=10&rft_id=info:doi/10.3390%2Fe24101366&rft.externalDocID=A745709276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon